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Abstract: Recent advancements in Artificial Intelligence (AI) and Machine Learning (ML) technol-
ogy have brought on substantial strides in predicting and identifying health emergencies, disease
populations, and disease state and immune response, amongst a few. Although, skepticism remains
regarding  the  practical  application  and  interpretation  of  results  from  ML-based  approaches  in
healthcare settings, the inclusion of these approaches is increasing at a rapid pace. Here we provide
a brief overview of machine learning-based approaches and learning algorithms including super-
vised, unsupervised, and reinforcement learning along with examples. Second, we discuss the appli-
cation of ML in several healthcare fields, including radiology, genetics, electronic health records,
and neuroimaging. We also briefly discuss the risks and challenges of ML application to healthcare
such as system privacy and ethical concerns and provide suggestions for future applications.
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1. INTRODUCTION
The  application  of  machine  learning  dates  back  to  the

1950s when Alan Turing proposed the first machine that can
learn and become artificially intelligent [1]. Since its advent,
machine learning has been used in various applications, rang-
ing from security services through face detection [2] to in-
creasing efficiency and decreasing risk in public transporta-
tion [3, 4], and recently in various aspects of healthcare and
biotechnology  [5-10].  Artificial  intelligence  and  machine
learning have brought significant changes in business pro-
cesses and have transformed day-to-day lives, and compara-
ble  transformations  are  anticipated  in  healthcare  and
medicine. Recent advancements in this area have displayed
incredible progress and opportunity to disburden physicians
and improve accuracy, prediction, and quality of care. Cur-
rent machine learning advancements in healthcare have pri-
marily served as a supportive role in a physician or analyst's
ability to fulfill their roles, identify healthcare trends, and de-
velop disease prediction models. In large medical organiza-
tions, machine learning-based approaches have also been im-
plemented to achieve increased efficiency in the organiza-
tion of electronic health records [11], identification of irregu-
larities  in  the  blood  samples  [5],  organs  [6-8],  and  bones
[12]  using  medical  imaging  and  monitoring,  as  well  as  in
robot-assisted surgeries [9, 13]. Machine learning applica-
tions have recently enabled the acceleration of testing and
hospital response in the battle against COVID-19. Hospitals
have been able to organize, share, and track patients, beds,
rooms, ventilators, EHRs, and even staff during the pandem-
ic using a deep learning system by GE called the Clinical
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Command Center [14]. Researchers have also used artificial
intelligence  for  the  identification  of  genetic  sequences  of
SARS-CoV2 and the creation of vaccines as well as for their
monitoring [15].

Many new developments emerge as the field of health-
care grows into the new world of technology. Artificial intel-
ligence and machine learning-based approaches and applica-
tions are vital for the field’s progression, including increased
speed of diagnosis, accuracy, and simplicity. The purpose of
this review is to highlight the advantages and disadvantages
of machine learning-based approaches in the healthcare in-
dustry. As the application of new machine learning technolo-
gy takes the healthcare industry by storm, we aim to provide
a brief overview of the various approaches to machine learn-
ing and highlight the fields where these approaches are pri-
marily applied. We discuss their widespread use and future
advancement  opportunities  in  healthcare.  We also  address
the ethical and logistical risks and challenges that occur with
their application.

2. OVERVIEW OF ARTIFICIAL INTELLIGENCE
Although the terms machine learning, deep learning, and

artificial  intelligence  are  typically  used  interchangeably,
they represent different sets of algorithms and learning pro-
cesses. Artificial Intelligence (AI) is the umbrella term that
refers to any computerized intelligence that learns and imi-
tates  human  intelligence  [16].  AI  is  most  regarded  for
autonomous machines such as robots and self-driving cars,
but it also permeates everyday applications, such as personal-
ized advertisements and web searches. In recent years, AI de-
velopment and application have made incredible strides and
have been applied to many areas due to their higher levels of
decision-making, accuracy, problem-solving capability, and
computational skills [17]. In generally all development of AI
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algorithms, the data obtained is split into two groups, a train-
ing and test data set, to ensure reliable learning, representa-
tive  populations,  and  unbiased  predictions.  As  the  name
suggests, the training set is used for algorithm training that
includes sets of characterizing data points (features) and cor-
responding predictions (in the case of supervised learning).
The  testing  data  set  is  new  to  the  algorithm  and  is  solely
used to test the algorithm's abilities. This measure is taken to
eliminate biases in the algorithm's testing by the training da-
taset [18]. Once an algorithm passes through a training and
testing phase with acceptable results, the algorithms are im-
plemented  in  healthcare  settings.  The  application  of  AI  is
broad and has many applied sub-regions; here, we provide
an overview of machine learning and deep learning, two of
the several sub-regions of AI.

Machine learning encompasses several different algorith-
mic models and statistical methods to solve problems with-
out specialized programming [19]. Several machine learning
models  are  single-layered,  therefore,  large  components  of
feature extraction and data processing are performed prior to
inputting the data into the algorithm [20]. Without the extra
layers, these machine learning algorithms require intense da-
ta preprocessing in order for the algorithms to determine ac-
curate predictions and to avoid over-fitting or under-fitting
the training dataset. Deep learning is a more elaborate sub-
form of machine learning that utilizes layered artificial neu-
ral networks and provides increased accuracy and specificity
with decreased interpretability [21]. The neuronal network
method is characterized as the multilayer network that sup-
ports the connection between the artificial neurons, or units,
in each layer with that of the layer before and after it [22].
These networks can learn, discern, and deduce from data on
their  own using these multilevel links for data processing,
and the data are processed until  the specialized results are
achieved [21].

2.1. Types of Learning Approaches
Most of the machine learning and AI-based algorithms

are built on different learning approaches. One subtype is su-
pervised  learning,  which  is  used  in  training  classification
and prediction  algorithms based  on  previous  examples,  or
outputs. An important distinction for this learning technique
is that the training set involves features and corresponding
predictions, or outcomes. Simply put, the supervised learn-
ing approach generalizes information from the training set's
features to construct a model that can correctly predict train-
ing-set outcomes and then uses the learned model to make
predictions  using  the  new  features  in  the  testing  data  set
[20].  Decision  Trees,  Random  Forest,  Support  Vector
Machines, and Artificial Neural Networks are a few types of
ML algorithms that implement supervised learning approach-
es.  Decision  tree  algorithms  form  a  decision  support  tool
that begins with a single node and identifies the possible out-
comes of that decision. The tree continues with the product
of that decision and the following decisions until it reaches a
final  product  [23].  Support  Vector  Machines  (SVM)  are
known as classification algorithms that use supervised learn-
ing to classify features in two group problems by finding the

largest margin hyperplane to separate the data and providing
the  best  fit  to  organize  it  [16,  24].  Artificial  Neural  Net-
works (ANNs) consist of an input layer, one or more hidden
layers, and output layers, where functional unities/neurons
in one layer are connected to every neuron in the layer be-
fore and after [25]. In healthcare, supervised machine learn-
ing approaches are  widely implemented in  disease predic-
tion [26], identifying hospital outcomes [14], and image de-
tection [27] to name a few.

Another subtype of AI-based learning approaches is un-
supervised learning, which is typically used to evaluate data
and to cluster applications. Unsupervised machine learning
is usually purposeful in data analysis, stratification, and re-
duction rather than prediction. In general, unsupervised clus-
tering  methods  use  algorithms  to  group  data  that  has  not
been classified or categorized into independent clusters. Al-
though data preprocessing and feature extraction are done be-
fore  the  input  in  most  forms  of  machine  learning,  this
method  allows  for  the  extraction  of  features  and  explores
possibilities of data clusters by identifying the underlying re-
lationships  or  features  in  the  data,  then  grouping  them by
their similarities [18]. Some unsupervised learning approach-
es  include  the  k-Means  algorithm,  Deep  Belief  Networks,
and Convolutional Neural Networks. The most common un-
supervised learning algorithm is the k-Means algorithm that
is used as a clustering method to identify the mean between
groups within unlabeled datasets and create groups based on
the mean [18]. A Deep Belief Network (DBN) is a multi-lay-
er  network consisting of intra-level  connections useful  for
data retrieval that typically uses unsupervised learning and
has  many  hidden  layers  tasked  with  feature  detection  and
finding  correlations  in  the  data  [28,  29].  A  Convolutional
Neural  Network (CNN) is a multilayer network that  relies
on  feature  recognition  and  identification  and  is  useful  for
anomaly  detection,  image  recognition,  and  identification
[25]. Many unsupervised algorithms are used for clustering
due to the lack of predetermined results and homogeneity in
the data, and although the unsupervised methods are useful
and quick, they are only semipopular in healthcare.

Reinforcement learning is another learning method that
is neither supervised nor unsupervised learning. Similar to
the mechanisms of conditioning in psychology, this learning
depends on the sequences of rewards, and it forms a strategy
for  operation  in  a  specific  problem  space.  Reinforcement
learning methods have the potential to influence their envi-
ronment, are geared towards optimizing the error criterion,
and have been described as the closest form of learning as
seen in humans and animals [30]. Given the types of learn-
ing approaches, the selection of learning methods is relative-
ly less complicated than the selection of algorithms and is
usually dictated by the implementation purpose. A common-
ly used neural network that uses reinforcement learning is
the  Recurrent  Neural  Network  (RNN).  An RNN is  one  of
the neural networks in which every artificial neuron is con-
nected; the artificial neurons can receive inputs with delays
in time and can reuse outputs from previous steps as input
for a future step. It is useful for time series prediction, trans-
lation, speech recognition, rhythm learning, and music com-
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position [25]. Although healthcare applications of reinforce-
ment learning remain limited due to its need for structure,
heterogeneous  data,  definition  and  implementation  of  re-
wards,  and extensive computational  resources,  it  still  pos-
sesses  the  significant  potential  to  bring  major  strides  in
healthcare.

Given  the  several  types  of  machine  learning  and  deep
learning approaches, it is highly imperative to identify and
implement an approach suitable specific to the healthcare ap-
plication. Several factors, including the number of features
[28], sample size [31, 32], and data distributions [33], can
have significant effects on the learning and prediction pro-
cesses and should be considered.

3. AI IN HEALTHCARE
In healthcare, common machine learning advances have

been evolving for years. The application of AI has the capac-
ity to assist with case triage and diagnoses [26], enhance im-
age scanning and segmentation [34], support decision mak-

ing [11], predict the risk of disease [35, 36], and in neuroi-
maging [37]. Here we provide a brief overview of current ad-
vances in AI applications to specific aspects of health sci-
ence.  Inclusion  criteria  for  the  applications  mentioned  are
based on the higher availability of digital  data used in the
ML-based  approaches  and  their  clear  implementation  of
learning  approaches  with  clinical  applications  and  experi-
ments. In the current review, we focused on ML application
to healthcare in the fields of electronic health records, medi-
cal imaging, and genetic engineering. These areas also repre-
sent healthcare’s “BIG” data, or the structured and unstruc-
tured data of the field, and have shown significant promise
in relation to clinical applications.

Our search strategy is as follows: articles between June
and December 2020, online libraries and journal databases
including, but not limited to, and Academic OneFile, Gale,
Nature,  Sage  Journals,  Science  Direct,  PsycNet,  and
Pubmed were used. The compilation of articles and papers
focused on the use of machine learning and artificial intelli-

Table 1. List of primary references.

Healthcare
Area

Type of
Machine Learn-

ing Model
Description Applied or

Experiment References

EHRs SVM, DT Using EHRs for predicting diagnoses Applied Liang et al. 2014 [26]
- RNN Predicting post-stroke pneumonia using deep neural network approaches Experiment Ge et al., 2019 [35]

- LSTM, CNN Deep EHR: Chronic Disease Prediction Using Medical Notes Experiment Liu, Zhang & Razavian 2018
[40]

- ML SRML-Mortality Predictor: A hybrid machine learning framework to predict
mortality in paralytic ileus patients using Electronic Health Records (EHRs) Experiment Ahmad et al., 2020 [41]

Medical
Imaging CNN Dermatologist-level classification of skin cancer with deep neural networks Experiment Esteva et al. 2017 [7]

- CNN Chexnet: Radiologist-Level Pneumonia Detection on Chest X-Rays with Deep-
-Learning Applied Rajpurkar et al., 2017; Tsai

& Tao, 2019 [8]
- CNN International evaluation of an AI system for breast cancer screening Experiment McKinney et al. 2020 [49]

- Deep CNN Deep-learning algorithm predicts diabetic retinopathy progression in individual
patients Experiment Arcadu et al. 2019 [56]

- DBN Structural MRI classification for Alzheimer's disease detection using deep be-
lief network Experiment Faturrahman et al., 2017 [37]

- Decision tree Machine learning approaches for integrating clinical and imaging features in
late-life depression classification and response prediction Experiment Patel et al., 2015 [27]

Genetic
Engineering &

Genomics
RT Application of machine learning models to predict tacrolimus stable dose in re-

nal transplant recipients Experiment Tang et al. 2017 [10]

- ML Artificial intelligence predicts the immunogenic landscape of SARS-CoV-2
leading to universal blueprints for vaccine designs Applied Malone et al. 2020 [15]

- Deep CNN,
Deep FFs Off-target predictions in CRISPR-Cas9 gene editing using deep learning Applied Lin & Wong 2018 [76]

- RNNs DeepHF: Optimized CRISPR guide RNA design for two high-fidelity Cas9
variants by deep learning Applied Wang et al., 2019 [85]

- Random Forest CUNE: Unlocking HDR-mediated nucleotide editing by identifying high- effi-
ciency target sites using machine learning Applied O’Brien et al., 2019 [86]

- CNNs ToxDL: deep learning using primary structure and domain embeddings for as-
sessing protein toxicity Applied Pan et al., 2020 [87]

Applied is defined as an algorithm or application that is currently available on a public or private platform to healthcare professionals. It also refers to applications that are currently
applied in medical practices such as clinics, hospitals, etc. An experiment is defined as an algorithm or application that has been used in a research study. EHR: Electronic Health Re-
cords, SVM: Support Vector Machine, LSTM: Long Short-Term Memory Neural Network, CNN: Convolutional Neural Network, MLP: Multi-Layer perceptron Neural Network,
RNN: Recurrent Neural network, DBN: Deep Belief Network, ANN: Artificial Neural Network, ML: Machine Learning.
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gence in healthcare as well as current and potential applica-
tions. Search terms included machine learning in healthcare,
artificial  intelligence  medical  imaging,  BIG  data  and  ma-
chine  learning,  machine  learning  in  genomics,  electronic
health records, challenges of AI in healthcare, and medical
applications of AI. Variations of these terms were used to en-
sure exhaustive search results. Searches were not limited by
year or journal Table 1.

3.1. Electronic Health Records
Electronic Health Records (EHRs), originally known as

clinical information systems, were first introduced by Lock-
heed in the 1960s [38]. Since then, the systems have been re-
constructed many times to create an industry-wide standard
system.  In  2009,  the  US  federal  government  invested  bil-
lions in promoting EHR implementation in all practices in
an effort to improve the quality and efficiency of the work;
this ultimately resulted in nearly 87 percent of office-based
practices  nationwide  implementing  EHRs in  their  systems
by 2015 [39].  BIG data collected from EHR systems with
structured feature data have been instrumental in deep learn-
ing applications, including medication refills and using pa-
tient history for predicting diagnoses [11]. This has resulted
in significant improvement in data organization, accessibili-
ty, and quality of care and has helped physicians with diag-
noses and treatments. The standardization of features across
datasets has also allowed for increased access to health re-
cords for research purposes.

Considering the vital role that prediction plays in provid-
ing treatment, scientists have developed deep learning mod-
els for the diagnosis and prediction of clinical conditions us-
ing EHRs. In a recent research study, Liu, Zhang, and Raza-
vian developed a deep learning algorithm using LSTM net-
works (reinforcement learning) and CNNs (supervised learn-
ing)  to predict  the onset  of  diseases,  such as  heart  failure,
kidney failure, and stroke. Unlike other prediction models,
this algorithm used both structured data obtained from EHR
and unstructured data  contained in  progress  and diagnosis
notes. As explained by Liu and colleagues, the inclusion of
unstructured data within the model resulted in significant im-
provements in all the baseline accuracy measures, further in-
dicating  the  versatility  and  robustness  of  such  algorithms
[40]. In another research study using deep neural network ap-
proaches, Ge and colleagues built a model to predict post-
stroke pneumonia within 7 and 14-day periods. The model
returned an Area under the ROC curve (AUC, a measure of
model performance by combining sensitivity and specificity
of a model) value of 92.8 percent for the 7-day predictions
and 90.5 percent for the 14-day predictions [35], providing a
highly  accurate  model  predicting  pneumonia  following  a
stroke. In addition, several ML-based models have also been
implemented to predict mortality in ICU patients. In one of
such models, Ahmad and colleagues have shown great abili-
ty  to  predict  mortality  in  paralytic  ileus  (PI,  incomplete
blockage of the intestine that prohibits the passage of food,
eventually leading to a build-up and complete blockage of
the intestines) patients using EHRs. The algorithm, named
Statistically Robust Machine Learning-based Mortality Pre-

dictor (SRML-Mortality Predictor), showed an 81.30% accu-
racy rate in predicting mortality in PI patients [41]. Provid-
ing  patients  and  practitioners  with  predicted  mortality,
through  the  use  of  EHR  prediction  algorithms,  can  allow
them to make more educated clinical treatment decisions.

3.2. Medical Imaging
Given the digital nature of data and the presence of struc-

tured  data  formats  such  as  DICOM  (Digital  Imaging  and
Communications  in  Medicine),  medical  imaging  has  seen
significant strides with the implementation of machine learn-
ing-based approaches to several imaging modalities, includ-
ing  Computed  Tomography  (CT),  Magnetic  Resonance
Imaging  (MRI),  X-Ray,  Positron  Emission  Tomography
(PET),  Ultrasound,  and  more.  Several  ML-based  models
have  been  developed  to  identify  tumors  [42,  43],  lesions
[44], fractures [45, 46], and tears [47, 48].

In a recent study, McKinney and colleagues have imple-
mented a deep learning algorithm to detect tumors based on
Mammograms in earlier stages of growth. In comparison to
traditional screening techniques used to identify tumors, th-
ese deep learning-based screen techniques allow for the iden-
tification and location of tumors in earlier stages of breast
cancer,  allowing  for  a  better  rate  of  resection.  In  a  direct
comparison, the deep learning-based approach was able to
outperform  experienced  radiologists  by  an  AUC  score  of
11.5%  [49].  Several  other  studies  have  also  implemented
ML-based approaches for breast cancer detection with vari-
able  success,  including  models  by  Wang  and  colleagues
[50],  Amrane  and  colleagues  [51],  and  Ahmad  and  col-
leagues  [52].

Similarly, in a recent study, Esteva and colleagues used
CNN (unsupervised learning) to classify 2032 different skin
diseases using dermoscopic images. An objective compari-
son of CNN classification with that of 21 board-certified der-
matologists resulted in “on par” performance, further con-
firming the veracity of the results [7]. When implemented in
conjunction  with  the  average  consumer  mobile  platform,
this approach can result in ease of use and early diagnosis.
In  parallel,  studies  have  also  implemented  ML-based  ap-
proaches  to  quantify  the  progression  of  retinal  diseases
[51-54]. In one such study, Arcadu and colleagues applied a
deep learning CNN to detect the aneurysms that cause vision
loss  due  to  the  progression  of  Diabetic  Retinopathy  (DR)
[55]. The CNN was also able to detect small and low con-
trast  microaneurysms,  although  it  was  not  explicitly  de-
signed to accomplish that task [55, 56]. Given that diabetic
retinopathy is a common eye condition that affects around
60 percent of type 1 diabetes patients [57], it is difficult to
detect in its preliminary stages. Early prediction obtained us-
ing a CNN approach has the potential to prevent and delay ir-
reversible damage to patients' vision. X-rays have been used
for decades to identify abnormalities in the chest cavity and
lung disease,  though an in-depth careful  examination by a
training radiologist is often required. In a recent study, Ra-
jpurkar and colleagues conducted a retrospective study to ex-
plore the capacities of a 121-layer convolutional neural net-
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work to  examine a  collection of  chest  x-rays  with  various
thoracic diseases and identify irregularities in an attempt to
mimic the detection by trained radiologists [8]. In compari-
son, CNN's performance in the accuracy of identification ob-
served was 81%, which was 2% higher than that of the radi-
ologists. Although applied retrospectively, this study, along
with CNNs developed by Tsai and Tao [58], Asif and col-
leagues [59],  Liang and colleagues [60],  and Lee and col-
leagues  [61],  indicates  incredible  support  that  these  ap-
proaches can provide in examining and diagnosing illnesses,
further reducing the burden on healthcare professionals.

ML-based  approaches  have  also  been  implemented  to
predict and diagnose disease progression of neurodegenera-
tive diseases, including Alzheimer's disease [37, 62], Parkin-
son's  disease  [63,  64],  serious  mental  disorders  including
Psychosis, [65, 66], depression [27, 67], PTSD [68], and de-
velopmental disorders, including autism [69, 70] and ADHD
[71, 72]. In one such study, Faturrahman and colleagues pre-
sented a higher-level model using DBNs(unsupervised learn-
ing) for predicting Alzheimer's Disease (AD) progression us-
ing  structural  MRI  images,  resulting  in  91.76%  accuracy,
90.59% sensitivity,  and 92.96% specificity [37].  Although
there is no cure for AD, early diagnosis can help implement
strategies to delay the symptoms and degeneration. Using de-
cision  tree  models  and  feature-rich  data  sets  consisting  of
functional  MRI,  cognitive  behavior  scores,  and  age,  Patel
and colleagues developed a model to predict the diagnosis
and  treatment  response  for  depression.  The  model  scored
87.27%  accuracy  for  diagnosis  and  89.47%  accuracy  for
treatment response [27]. This predictive diagnosis can help
identify patients with depression and develop personalized
treatment plans based on their responses. With the current
ML applications in medical imaging, it is evident that its use
has  valuable  implications  for  advancing  the  medical  field
due to its pronounced advantages in accuracy, classification,
sensitivity, and specificity in prediction and diagnoses.

3.3. Genetic Engineering and Genomics
The  discovery  of  the  adaptive  DNA  system  known  as

CRISPR (Clustered Regularly Interspaced Short Palindrom-
ic  Repeats)  has  cultivated  the  field  of  genetic  engineering
[73].  This  exploration  of  “programmable  endonucleases”
has simplified genetic engineering and has helped make the
process of genetic modification and diagnosis easier, as well
as dropping the cost of the procedure dramatically [74]. The
recent  application  of  CRISPR to  Cas  (CRISPR-associated
protein) editing, such as Cas-9 [75] and Cas-13a [73],  has
changed genetic editing, though the tool is not perfect. Re-
cently, several machine learning techniques for predicting of-
f-target  mutations  in  Cas9  gene  editing  have  emerged.  A
new program developed by Jiecong Lin and Ka-Chun Wong
has improved the quality of these machine learning predic-
tions  by  using  deep  CNNs  (AUC score:  97.2%)  and  deep
FFs (AUC score: 97%) [76]. Considering the space for error
and off-target mutations using the Cas9 tool, scientists are
using Cas9 for developing activity predictors and more reli-
able  Cas9  variants  to  reduce  error.  These  models  include
higher accuracy and fidelity Cas9 variants [77-79], hyper-ac-

curate Cas9 variants [80], and guide RNA design tools using
deep learning [81-85].

Outside of CRISPR gene editing, O'Brien and colleagues
have developed a service to provide efficiency in nucleotide
editing using random forest algorithms (supervised learning)
to investigate how different nucleotide compositions influ-
ence  the  HDR (homology-directed  repair)  efficiency  [86].
They developed the Computational Universal Nucleotide Ed-
itor (CUNE), used to find the most efficient method to identi-
fy a precise location to enter a specific point mutation and
predict  HDR  efficiency.  Additionally,  Pan  and  colleagues
have  developed  a  model  for  prediction  in  gene  editing
named ToxDL that uses a CNN approach to predict protein
toxicity in-vivo using only the sequence data [87]. Another
branch of genetic engineering, pharmacogenomics, has also
made significant strides in the use of AI and machine learn-
ing to determine stable doses of medications that have be-
come  popular  [88-90].  In  one  such  study,  Tang  and  col-
leagues implemented an ML-based approach to determine a
stable Tacrolimus dose (the immunosuppressive drug) for pa-
tients who received a renal transplant to reduce the risk of
acute rejection [10].  The use of machine learning in phar-
macogenomics has recently been applied in psychiatry [90],
oncology [91], bariatrics [92], and neurology [93].

Machine  learning  applications  of  genetic  engineering
have also been instrumental in the fight against COVID 19.
In a recent study, Malone and colleagues utilized software
based on machine learning algorithms to “predict which anti-
gens have the required features of HLA-binding, processing,
presentation to the cell surface, and the potential to be recog-
nized by T cells to be good clinical targets for immunothera-
py” [15]. The use of immunogenicity predictions from this
software, along with the presentation of antigen to infected
host-cells, allowed the team to successfully profile the “en-
tire SARS-CoV2 proteome” as well as epitope hotspots. Th-
ese discoveries help predict blueprints for designing univer-
sal vaccines against the virus that can be adapted across the
global population.

4. RISKS AND CHALLENGES
While machine learning-based applications in healthcare

present unique and progressive opportunities, they also raise
unique risk factors, challenges, and healthy skepticism. Here
we discuss the main risk factors including the probability of
error in prediction and its impact, the vulnerability of the sys-
tems' protection and privacy, and even the lack of data avail-
ability to obtain reproducible results. Some of the challenges
include  ethical  concerns,  loss  of  the  personal  element  of
healthcare, and the interpretability and practical application
of the approaches to bedside setting.

One  of  the  most  important  risks  of  machine  learn-
ing-based algorithms is the reliance on the probabilistic dis-
tribution and the probability of error in diagnosis and predic-
tion. This also gives rise to a healthy skepticism related to
the validity and veracity of predictions from ML-based ap-
proaches. Even though the probability of error and reliance
on probability is deep-rooted in the various aspects of health
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care, the implications of ML-based approaches resulting in a
human fatality are severe.  One solution is  to subject  these
machine learning-based approaches to strict institutional and
legal approval by several organizations before their applica-
tion [94, 95]. Another approach that can be implemented is
the human intervention and oversight from an experienced
healthcare worker in highly sensitive applications to avoid
false-positive or false-negative diagnoses (e.g., diagnosis of
depression or breast cancer). The inclusion of present health-
care professionals in developing and implementing these ap-
proaches may increase adaption rates and decrease concerns
related  to  fewer  employment  opportunities  for  humans  or
the shrinking of the workforce [96].

Another risk associated with the application of ML and
deep learning algorithms to health care is the availability of
high-quality training and testing data with large enough sam-
ple sizes to ensure high reliability and reproducibility of the
predictions. Given that the ML and deep learning-based ap-
proaches  'learn'  from  data,  the  importance  of  quality  data
cannot be stressed enough. In addition, the large amounts of
feature-rich data required for these learning networks and ap-
proaches are not readily available and may also represent a
narrow distribution of the population sample. Moreover, in
several healthcare segments, data collected are incomplete,
heterogeneous,  and  have  a  significantly  higher  number  of
features  than  the  number  of  samples.  These  challenges
should  be  taken  into  great  consideration  when  developing
and  interpreting  the  results  of  ML-based  approaches.  The
open science and recent push towards research data sharing
may assist in overcoming such challenges. One should also
consider the risk associated with privacy as well as ethical
implications of the application of ML-based approaches to
healthcare. With the understanding that these approaches re-
quire large-scale, easily expandable data storage, and signifi-
cantly high computing power, several ML-based approaches
are developed and implemented using cloud-based technolo-
gies.  Given  the  sensitive  nature  of  healthcare  data  along
with privacy concerns, increased data security and accounta-
bility should be one of the first aspects to be considered well
before model development.

With respect to ethical concerns, researchers working on
applying  ML-based  approaches  to  healthcare  can  readily
learn from the field of genetic engineering which has under-
gone extensive ethical debate. The controversy surrounding
the use of genetic engineering to create long-lasting genetic
advancements and treatments is a continuous discourse. Iden-
tification and editing of injurious genetic mutations, such as
the HTT mutation that causes Huntington’s disease, may pro-
vide life-altering treatment for harmful diseases [97]. Con-
trarily,  creating  treatments  that  alter  the  individual’s
genome, as well as that of their offspring, while it is still in-
accessible due to costs, may worsen the socio-economic di-
vide for populations that are unable to afford such care [98].
Recently, there has been an emergence of guidelines for the
development of AI machinery. In 2019, Singapore proposed
a  Model  Artificial  Intelligence  Governance  Framework  to
guide private sector organizations on developing and using
AI ethically [99]. The US Administration has also released

an executive order to regulate AI development and “main-
tain American leadership in artificial intelligence” [100]. Th-
ese guidelines and regulations, though strict, have been put
forth to ensure ethical research conduct and development.

An important challenge with ML application to health-
care is associated with the interpretation and clinical applica-
bility  of  the  results.  Given  the  complex  structure  of  ML-
based approaches, especially deep learning-based methods,
it  becomes  incredibly  complex  to  distinguish  and  identify
the original features' contribution towards the prediction. Al-
though this may not present significant concern in other ap-
plications of ML (such as web searches), lack of transparen-
cy  has  created  a  huge  barrier  for  the  adaptability  of  ML-
based  approaches  in  healthcare.  As  clearly  understood  in
healthcare, the solution strategy is as important as the solu-
tion itself. There must be a systematic shift towards identify-
ing and quantifying underlying data features used for predic-
tion. The involvement of physicians and healthcare profes-
sionals in the development, implementation, and testing of
ML-based approaches may also help improve the adoption
rates. Additionally, although there is healthy skepticism relat-
ed to the potential of a decreased personal relationship be-
tween a patient and PCP due to increased implementation of
ML-based approaches, they represent a unique opportunity
to increase engagement. Studies have shown that the physi-
cian-patient relationship has already become a fading con-
cept, and nearly 25 percent of Americans do not have a PCP
[101].  Here,  ML  can  provide  unique  opportunities  to  in-
crease engagement where patients discuss the results of po-
tential diagnoses and increase the efficiency of outreach pro-
grams. Early prognosis due to ML-based approaches may al-
so help patients develop a healthy lifestyle in consultations
with their PCPs. Finally, a physician-focused survey found
that 56 percent of physicians were spending 16 minutes or
less with their patients, and 5 percent of them spent less than
9 minutes [102]. The application of AI approaches in diag-
noses  and  symptom  monitoring  can  ease  stress  and  give
physicians more personal time with their patients, thus im-
proving patient satisfaction and outcomes.

CONCLUSION
While  the  overview  demonstrates  how  much  progress

has been achieved with machine learning, there continues to
be potential for widescale advancement in the future. Many
of the current machine learning advancements in healthcare
aim to support the physician’s or specialist's ability to pro-
vide  a  more  effective  treatment  to  patients  with  increased
quality, speed, and precision. The challenges of developing
ML algorithms can be solved by developing and implement-
ing improvements in data collection, storage, and dissemina-
tion or by creating algorithms to process unstructured data to
address the lack of data availability. Future applications can
also bring forth inexpensive forms of medical imaging and
affordable medical examinations, potentially ending health
disparities and creating more accessible services for coun-
tries  and  lower-income  populations.  Scientists  expect  ad-
vancement in the prediction of personalized drug response,
optimization of medication selection and dosage, and an ap-
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plication of genetic modification to provide treatment for ge-
netic  disorders  and  mutations  [103].  With  its  application,
ML can augment the role of physicians and redefine patient
care. While the risks and challenges of the future application
are addressed and corrected, the current ML algorithms can
provide  an  excellent  framework  for  future  advancements
and applications of ML in healthcare.
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