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Abstract

Simulation tools are key to designing and optimizing breeding programs that are multiyear, high-effort endeavors. Tools that operate on
real genotypes and integrate easily with other analysis software can guide users toward crossing decisions that best balance genetic gains
and genetic diversity required to maintain gains in the future. Here, we present genomicSimulation, a fast and flexible tool for the stochas-
tic simulation of crossing and selection based on real genotypes. It is fully written in C for high execution speeds, has minimal dependen-
cies, and is available as an R package for the integration with R’s broad range of analysis and visualization tools. Comparisons of a simulated
recreation of a breeding program to a real data set demonstrate the simulated offspring from the tool correctly show key population fea-
tures, such as genomic relationships and approximate linkage disequilibrium patterns. Both versions of genomicSimulation are freely avail-
able on GitHub: The R package version at https://github.com/vllrs/genomicSimulation/ and the C library version at https://github.com/
vllrs/genomicSimulationC/.
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Introduction
When real breeding schemes and genetic improvement programs

are high-effort, multiyear undertakings, simulation tools offer a

valuable opportunity to judge feasibility or balance trade-offs in

design so as to get the most out of the real programs (Li et al.

2012). One of the key problems in optimizing breeding scheme de-

sign is parent selection, which is highly dependent on the actual

parents that are available to the breeding program (Sun et al.

2011; Li et al. 2012; Bernardo 2020).
Here, we introduce genomicSimulation, a fast, flexible R pack-

age for the stochastic simulation of breeding programs beginning

with real genotype data. The package is designed to provide high-

speed crossing simulation capabilities that can be easily inte-

grated with R’s wide range of visualization and genetic analysis

tools (R Core Team 2022). genomicSimulation begins with user-

provided marker maps, founder genotypes, and (optional) lists of

allele effect values, so can easily simulate breeding schemes on

real maps and candidate founders. It simulates meiosis without

mutation on alleles at discrete positions provided in the genome

map. The linkage phase of the resulting genotypes is tracked.

genomicSimulation works as a scripting tool, with functions for

performing targeted crosses, random crosses, doubled haploids,

and selfing. genomicSimulation’s inbuilt genotypic value calcula-

tor uses an additive model of marker effects. Based on the pack-

age’s range of functions, users can script their own custom

selection routines in R. The package has no dependencies beyond

C standard libraries. All core functionalities are written in C in or-
der to achieve high execution speeds.

For even faster simulations, genomicSimulation’s underlying
C library (in itself a fully functional simulation tool) is also avail-
able. It is distinguished from the R package only by the lack of de-
fault parameters and lack of R vector data output options.

The package was originally developed for use on self-
pollinated crop species, but its flexible set of crossing operations
allows it to be used more broadly in outcrossing species.
genomicSimulation has full documentation, user guides, and is
in ongoing development.

Materials and methods
genomicSimulation is structured as a set of “building block”
scripting functions. Users have full flexibility to intersperse
requests to perform a cross and produce new offspring and re-
structure groups to perform selection or restructure the breeding
pool.

The first step in using genomicSimulation is a call to the setup
function, load.data(). Two data files are required to set up the
tool: a matrix file contains the alleles of at least one founder ge-
notype in diploid format (i.e. 2 positions per locus) at a set of dis-
crete positions, and a linkage map to situate those positions in
the model of the genome. If the phase at heterozygous positions
in the founder genotypes is not known, it is randomized on load.
Alleles can be any nonspace character, which allows for the
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package to be used on defined and known Mendelian genes as
well as SNPs.

The simulation stores every simulated genotype as a sequence
of characters in memory.

To create a cross, the simulation generates a gamete indepen-
dently from each of the 2 parents. No distinction is made be-
tween male and female parent at present, although the direction
of the cross can be specified by the user. Karlin and Liberman’s
(1979) count-location method is used to simulate meiosis (Fig. 1).
First, the number of crossovers to occur in each chromosome is
drawn from a Poisson distribution whose parameter is the dis-
tance in Morgans between the first and last positions tracked on
that chromosome (Fig. 1a). The positions of those crossovers
along the chromosome are then drawn from a uniform distribu-
tion (Fig. 1b). Finally, a random logical value (0 or 1) is drawn to
choose which of the 2 possible gametes to use (Fig. 1c).

The count-location method of simulating meiosis ignores
crossover interference. The specific distributions chosen add the
additional assumptions that the number of crossovers is propor-
tional to the chromosome length and that crossovers are uni-
formly distributed along the chromosome. This choice of
distributions and assumptions is shared with the existing simula-
tion tool Plabsoft (Maurer et al. 2008). Because, under this method
of simulating meiosis, the number of recombinations along a seg-
ment is proportional to its length, linkage maps with distances
measured in centimorgans are more appropriate than physical
maps. Functionality to predetermine crossover sites or probabili-
ties, if for example linkage disequilibrium block structure is
known, will be added in future.

During setup, there is also the option to load an input file con-
taining the numeric effects of particular SNP alleles. This enables
the internal breeding value calculator to produce breeding values
for individuals which are calculated using an additive model: the
breeding value of a given genotype is the sum across all marker
positions of each marker’s 2 alleles’ effect values (if such allele
effects are loaded). If required, the breeding value can be masked
to simulate phenotypes of a quantitative additive trait, e.g. by
adding to the breeding value a random variable sampled from a
normal distribution with a defined variance (see below). This
function can be used to compare different breeding schemes with
regard to rates of genetic gain for a defined trait, or to assess the

genetic merit of specific crosses for the traits for which they have
estimated marker effects, as a basis for crossing decisions.

The example simulation, below, makes use of
genomicSimulation’s mechanisms for scripting custom selection
methods to mask the breeding values calculated by the simula-
tion tool to make a simulated phenotype. The phenotype was
simulated as P ¼ Gþ E, where the environmental contribution E
was a normally distributed variable with mean 0 and variance Ve.
Given a broad-sense heritability value for the phenotype, the var-
iance Ve can be calculated by rearranging:

H2 ¼ Vg

Vg þ Ve
:

The simulated phenotypes were produced by adding a draw
from the distribution E to each true breeding value. An imple-
mentation of this can be found in the example simulation. Other
methods of manipulating or masking the breeding value can be
similarly designed by users.

Features
At any time after the initial setup command, more external gen-
otypes can be loaded using the command load.more.geno-
types(), and the simulation’s optional stored set of marker
effects can be substituted for another with load.different.ef-
fects(). With these features, users can simulate the introduction
of new genetic material into an ongoing breeding program, cal-
culate genotypic values for multiple traits with separate sets of
marker effects, and/or manually simulate environmental fluc-
tuations across years and/or locations by using different sets of
marker effects.

Simulated data can be saved to tab-separated text files or
pulled into the user’s R environment as vectors.

A range of functions is available for simulating the production
of offspring. These include cross.randomly(), self.n.times(),
make.doubled.haploids(), and cross.all.pairs(). To carry out spe-
cific crosses or crossing plans, users can call cross.combinations()
with vectors laying out the parents to cross.

Every genotype loaded or produced in genomicSimulation is
allocated to a group. Mixing and separating groups allow for sig-
nificant flexibility in regards to simulating multigenerational

(a) (b) (c) (d)

Fig. 1. Meiosis simulation procedure in genomicSimulation uses a count-location strategy. The following steps are performed for every homologous
pair of chromosomes. (A sample procedure is marked on the diagrams.) a) First, the number of crossovers is drawn from a Poisson distribution with
expectation matching the length of the chromosome in Morgans. b) Next, the positions of each of those crossovers are drawn uniformly across the
length of the chromosome. c) A final random draw determines which of the 2 resultant gametes is chosen. d) The gamete is created by reading along
the chosen starting chromosome, swapping to the other of the pair whenever a crossover point is encountered.
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breeding pools, or having several interacting streams in the
breeding program. Inbuilt (noncustom) options for group manip-
ulation include combine.groups(), break.group.into.families(),
break.group.into.halfsib.families(), and a range of functions to
randomly partition a group (which can be used to demarcate

male/female offspring, or to create subgroups of specific sizes for
complex breeding program designs), alongside custom group ma-
nipulation using make.group().

The function select.by.gebv() performs truncation selection on
breeding values calculated by the internal breeding value calcu-
lator. Custom selection methods are also possible: this involves

using data from see.group.data() and some R scripting to identify
the best individuals, followed by passing those individuals’ in-
dexes to make.group() to move them into a new “selected” group.
Because of the limited list of noncustom options, most selection
in genomicSimulation will involve this custom selection method
interface and the relevant template script from the documenta-

tion (https://vllrs.github.io/genomicSimulationC/html/templates.
html).

Groups and genotypes persist until explicitly destroyed by a
call to delete.groups(). Therefore, mixed-generation crossing

operations are possible, and users have control over their mem-

ory resource usage. Templates for common breeding program

operations are also available in the documentation.
More in-depth description of features and usage examples

are provided in the R package vignette, R documentation,

C library guides, and C library documentation. These can be

downloaded with the package or accessed at the package

GitHub links.

Results and discussion
Example simulation
To provide an insight into the effectiveness and flexibility of the

genomicSimulation tool, a sample script for simulating a simple

wheat breeding program with nonoverlapping generations is

shown in Box 1. The simulation was initiated with genotype data

for 50 real founder lines (Supplementary Fig. 1), and the effect

values initialized with values calculated from phenotypic data

for yield.
The simulated breeding program was divided into cycles. The

first stage of each cycle involved random crosses between

Box 1. R script to simulate a simple breeding program using genomicSimulation. The program uses nonoverlapping cycles and
selects (via the custom selection interface) after the first 2 selfing steps, with different accuracies. This version implements the
“across all lines” selection condition results shown in Fig. 2, b and c; the script for the “within families” condition calls break.grou-
p.into.families() after generating the F1 crosses, then runs the rest of the script commands independently for each family group
produced by the break.group command.

g0 <- load.data(“parent-genotypes.txt,” “genetic-map.txt,” “effects.txt”)

get.top.by.phenotype <- function(group, heritability, portion) f
info <- data.table(Index¼see.group.data(group,”X”),

GEBV¼see.group.data(group,”BV”))

# simulate phenotype ¼ genotype þ environmental variation

# using normally distributed Ve and heritability H ^2¼Vg/(Vg þ Ve)

Vg <- var(info$GEBV)

Ve <- Vg/heritability—Vg

info$Pheno <- info$GEBV þ rnorm(length(info$GEBV), mean¼0, sd ¼ sqrt(Ve))

# Select those with the top phenotype

n <- length(info$Index) * portion

return(make.group(info[order(info$Pheno, decreasing¼TRUE),][1: n, Index]))
g
for (cyc in 1: ncycles) f

f1 <- cross.randomly(g0, n.crosses¼25, offspring¼20)

f2 <- self.n.times(f1, n¼1)
f2s <- get.top.by.phenotype(f2, 0.1, 0.2)

f3 <- self.n.times(f2s, n¼1)
f3s <- get.top.by.phenotype(f3, 0.4, 0.5)

f4 <- self.n.times(f3s, n¼1)
f4.info <- see.group.data(f4, “B”) #result for plotting

delete.group(c(g0, f1, f2, f2s, f3, f3s))

g0 <- f4

g
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founder inbred lines (using cross.randomly()) to generate new
recombinants. One selfed progeny from each recombinant was
“grown,” and phenotyped at 10% broad-sense heritability for the
yield trait (using the breeding-value-masking method outlined
above; heritability value arbitrarily chosen) to mimic selection on
heterozygous potentially unreplicated material early in the
breeding cycle. The top 20% of the generation by phenotype (per-
centage arbitrarily chosen) was selected to pass on to the next
generation. One selfed progeny of each of these was “grown” and
phenotyped at 40% heritability for the yield trait (number arbi-
trarily chosen) to mimic more accurate selection later in the
breeding cycle (e.g. in early yield trials). The top 50% of that gen-
eration were selected and progressed by selfing to the last gener-
ation of the cycle. These final progeny then served as the
founders of the next cycle. Figure 2a includes a visualization of
the steps of the simulated breeding cycle.

In this simulation, genomicSimulation’s groups were used to
represent the new population of plants grown each generation,
and also to pull the selected plants out of the generation’s wider
generated population.

Two conditions were tested in simulation:

1) Selection across the whole set, that is, the top 20% of all the
lines in that generation is to be selected.

2) Selection within each family (the set of seeds sharing the
same parent-crossed plants), that is, the top 20% of each
family is to be selected.

In both scenarios, the selection intensities were simulated as
described above. Each simulation condition was replicated 10
times.

The results of running the script were consistent with expecta-
tions. Figure 2b shows that the genetic value of the yield score in
the population increased with each cycle, because of selection
and the correlation between the phenotype and the heritable ge-
netic trait. The condition where selection was performed across
all plants showed a higher rate of gain than the condition where
selection was within families, because it could select more plants
from good families and therefore increase the proportion of good
alleles in its population faster. Figure 2c shows the variance in ge-
netic value scores decreased as cycles increased, as the propor-
tion of beneficial alleles in the population and the proportion of
plants with many of these alleles increased. Selecting within
families kept this diversity measure higher than selecting across
the whole population.

Validation
A structured durum wheat population from Alahmad et al. (2019)

was simulated using genomicSimulation to assess the tool’s abil-

ity to recover the genetic structure found in the empirical data

set. The linkage map for the markers in the empirical data set

was not available, so a direct linear correlation between physical

and genetic positions was assumed. The structured population

was developed through the nested association mapping (NAM)

design presented in Fig. 3a. This design was simulated with

genomicSimulation using the cross.combinations() and self.-

n.times() commands to produce 10 families of 100 genotypes in

the final generation.
R packages SelectionTools v. 19.4 and ComplexHeatmap v.

2.9.3 were used to produce the heatmaps of genetic (Roger’s) dis-

tance shown in Fig. 3, b and c. The population structure of 10

family relationships and 2 shared-elite-parent relationships is

clearly visible in both simulated and real genotype heatmaps.

The distributions of genetic distances also show the same profiles

(Supplementary Fig. 2). However, the real population shows

higher variation in genetic distances within families, as shown in

the wider range of base colors in the heatmaps and in

Supplementary Fig. 3. This may reflect a degree of assortative

mating to increase variation when matings were allocated, which

was not mimicked in the simulation. This may well account for

the differences in level of variance observed.
Linkage disequilibrium decay of the real NAM population is

slightly lower than in the simulated population (Fig. 4), probably

as a result of the simple distributions used in simulating meiosis.

Functionality to customize this choice of distributions, or to set

crossover points and probabilities, is a development goal for

genomicSimulation.

Run speed
The tool was benchmarked against existing R packages MoBPS

(Pook et al. 2020), AlphaSimR (Gaynor et al. 2020), and the

Breeding Scheme Language, BSL (Yabe et al. 2017) (Table 1).

genomicSimulation was significantly faster than most counter-

parts at generating large numbers of simulated genotypes.

Methods to precalculate or reuse components of the breeding

value calculation, to bring those compute times closer to coun-

terparts, are under consideration. genomicSimulation offers a

wider range of file-output formats than these counterpart pack-

ages, and its selection is still being developed.

(a) (b) (c)

Fig. 2. a) Diagram of each cycle of a simple breeding program plan. The program was simulated using genomicSimulation (see Box 1 for the
genomicSimulation implementation). b) Mean and (c) variance in the population’s genetic breeding value are shown for each replication (thin lines)
and averaged across replications (thick lines). In the first condition, the best phenotypes across the entire population in the relevant generation are
selected, while in the other condition, the best phenotypes in each family are selected.
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Summary
Simulation is a valuable tool to investigate the choices needed to
carry out a breeding program. Various simulation tools in this

area exist. Some, such as QU-GENE (Podlich and Cooper 1998)
and ADAM-Plant (Liu et al. 2019), are standalone programs, but
an increasing number are R packages. These include Plabsoft
(Maurer et al. 2008), BSL (Yabe et al. 2017), MoBPS (Pook et al. 2020),
and AlphaSimR (Gaynor et al. 2020). genomicSimulation joins
these ranks as a simple, flexible, freely available tool designed for
simulation and decision-making relating to real genome maps
and potential founders at high speeds. It is available as a stand-
alone command-line tool or as a set of R scripting commands.

R’s popularity in biological data analysis means it houses a
range of cutting-edge genetic analysis and genomic selection
packages with which users may already be familiar. Developing a
breeding program simulation in base R, however, requires signifi-
cant effort and planning, and may produce a slow-running tool.
genomicSimulation provides an engine to carry out simulations
according to breeding programs that can be scripted in R. At pre-
sent, it offers an additive internal breeding value calculator, al-
though this offering will be expanded to include nonadditive
genetic effects. It is expected that users script more complex ge-
netic evaluation methods themselves, taking advantage of the
available templates/guides available in the documentation
(https://vllrs.github.io/genomicSimulationC/html/templates.html),
for example, to simulate a phenotype (as in the example in this ar-
ticle), or recalculate and reload SNP effect values.

Its approachable syntax, easy interoperability with other R li-
braries, and automatically fast execution (thanks to the underly-
ing C library implementation) make it a useful tool to simulate,
test, and compare breeding strategies. genomicSimulation should
be straightforward to install thanks to its lack of dependencies

Table 1. Average execution time (in seconds) across 6 repeats of
tasks in genomicSimulation v0.2, running on a consumer-model
laptop with 8 GB RAM and Intel i5-7200U CPU @ 2.50 GHz.

Mean execution
time (s)

Load 50
genotypes

of
5,000
SNPs

Perform
105

random
crosses

Get
resulting
breeding
values

Get
resulting

genotypes

genomicSimulationC 0.66 4.26 70.13 67.99
genomicSimulation (in

RStudio)
0.97 2.05 74.60 108.18

MoBPS (in RStudio) 0.74 193.99 0.24 No equivalent
AlphaSimR (in RStudio) 0.25 15.47 3.12 102.29
BreedingScheme

Language (in
RStudio)

1.19 * * *

The benchmarks are compared to the times taken to perform comparable
tasks in simulation tools MoBPS (Pook et al. 2020), AlphaSimR (Gaynor et al.
2020), and Breeding Scheme Language (Yabe et al. 2017). The tasks
benchmarked are: (1) loading 50 genotypes of 5,000 SNPs, (2) perform 100,000
random crosses between those genotypes with one progeny per cross, (3)
calculate then save the breeding values of the 105 genotypes from task 2 to an
R dataframe (except for genomicSimulationC, which rather saves them to a
file), and (4) save the 105 genotypes from task 2 to a file. Note that the R version
of genomicSimulationalso shares the C library’s functionality for saving
simulated data to files rather than to R dataframes. The time taken to save
output to files is comparable across R and C versions. Cells marked with an
asterisk (*) mark tasks that could not be benchmarked due to memory
limitations on the testing machine.

(a) (b) (c)

Fig. 3. a) The crossing plan of a structured population developed by Alahmad et al. (2019). The matrices of Roger’s Genetic Distance between all (b) real
imputed genotypes, (c) simulated genotypes, of the final-generation offspring resulting from that crossing design.

Fig. 4. The mean LD decay (r2) between markers in the real founding genotypes of the NAM population, the real F6 genotypes, and the simulated F6
genotypes, as a histogram on distance between markers in centiMorgans (according to the converted physical map).
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beyond C standard libraries. Documentation and use guides are

available. Development is ongoing.

Data availability
Code and installations of both versions of genomicSimulation are

freely available on GitHub: The R package version at https://

github.com/vllrs/genomicSimulation/ and the C library version at

https://github.com/vllrs/genomicSimulationC/. The data under-

lying this article are available in the article and in its online sup-

plementary material. Code used to run the Example Simulation

is provided in Supplementary Material 2. The input data for the

Example Simulation is available in Supplementary Materials 3

through 5 (respectively, the founder genotypes, the map, and the

marker effects). Code used to run the Validation simulation is

provided in Supplementary Material 6. The input data for this

simulation are available in Supplementary Materials 7 and 8 (re-

spectively, the founder genotypes and the map).
Supplemental material is available at G3 online.
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