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ABSTRACT: We consider the Casson hybrid nanofluid (HN) (ZnO + Ag/Casson fluid)
that flows steadily along a two-directional stretchable sheet under the influence of an applied
changing magnetic flux and is electrically conducting. The basic Casson and Cattaneo−
Christov double diffusion (CCDD) formulations are used for the simulation of the problem.
This is the first study on the analysis of the Casson hybrid nanofluid by using the CCDD
model. The use of these models generalize basic Fick’s and Fourier’s laws. The current
produced due to the magnetic parameter is taken into consideration by using the generalized
Oham law. The problem is formulated and then transformed to a coupled set of ordinary
differential equations. The simplified set of equations is solved using the homotopy analysis
method. The obtained results are presented through tables and graphs for various state
variables. A comparative survey in all the graphs is presented for the nanofluid (ZnO/Casson
fluid) with the HN (ZnO + Ag/Casson fluid). These graphs depict the effect of various
pertinent parameters, like Pr, M, Sc, γ, Nt, m, Nb, δ1, and δ2, varying values over the flow. The
Hall current parameter m and stretching ratio parameter γ show increasing trends for the velocity gradient, while the magnetic
parameter and the flux of mass depict opposite trends for the same profile. The increasing values of the relaxation coefficients show
an opposite trend. Furthermore, the ZnO + Ag/Casson fluid shows a good performance in the transfer of heat and thus can be used
for cooling purposes to increase the efficiency of the system.

1. INTRODUCTION
The study of the phenomena of heat energy and mass
transport has attracted researchers for the last few decades.
The main idea behind this trend is their applications in various
fields of technology. With the passage of time, new ideas were
introduced and the effectiveness of tools is strengthened day by
day. One such tool is the suspension of nanomaterial(s) in host
fluid. This idea is given by Choi.1 The size of these
nanoparticles varies from 1 to 100 nm. Results in the literature
have proved that the smaller the size of the nanoparticles, more
effective are its results.2 The idea of nanofluids opened a new
door, where investigations have been started to prepare these
nanofluids both at industry and laboratory levels. Rashidi et al.3

studied the roughness of the surface for condensation flow
inside microchannels. In that work, they established a relation
between surface roughness and condensation and reported that
condensation varies only with the height and roughness of the
surface. Mansoury et al.4 analyzed Al2O3 + H2O nanofluid flow
inside the parallel heat exchangers. In this analysis, they
reported a 26% increase in the transfer rate of heat energy for
1% addition of the nanoparticles. A T-shape square cavity
having pores was examined by Hatami et al.5 for the optimal
heat transfer rate by using the finite element method (FEM).
The impact of various nanoparticles on the Nusselt number is
discussed with contour plots by implementing response surface
methodology. A more recent survey can be found in refs 6−8.

The results discussed above form the aim in the literature to
elaborate a single type of nanoparticle mixed with a
conventional fluid. Recently, the thermal conduction capability
of a hybrid type fluid was studied by Jin et al.9 This work plays
a key role in providing a base for the use of the hybrid
nanofluid (HN; fluid that contains nanoparticles of different
kinds) in academia. A comparative analysis of hybrid and
common nanofluids is presented in this study. Furthermore,
they recommended a massive enhancement in the transfer of
heat analysis for the HN. Hybrid nanofluids are less expensive,
are easily available, and have many applications in industry as
well as in engineering and technology.10 The aluminum and
SiO2 composition of H2O based HNs for the impact of the
nanoparticle concentration on the transfer of heat is examined
by Yıldız et al.11 This study recommends a higher thermal
energy transfer subject to improved nanoparticle concen-
tration. Also, the nanoparticle volume fraction augments the
transfer of heat with its minimal size. An experimental analysis
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of a hybrid nanofluid (Cu−Al2O3/water) for studying the
rheological properties and the transfer of heat is performed by
Asokan et al.,12 followed by Ho et al.,13 who performed a
comparative analysis of microencapsulated phase change
material (MEPCM) and phase change material (PCM)
nanoparticles for the transfer of heat and concentration.
Their study shows a better performance of MEPCM
nanoparticles in both analyses. A more brief survey on HNs
including experimental analysis can be found in refs 14−19.
In the last few decades various approaches, geometries, and

assumptions have been made for the analysis of fluid flow
problems. Among them, one inclusion is boundary layer
conducting magnetohydrodynamic (MHD) fluid flow. Khan20

analyzed molybdenum disulfide nanofluid flow impacted by
the presence of a magnetic field for heat transfer enhancement
treatment. Similarly, Chamkha et al.21 undertook the mixed
convection motion through a square enclosure by employing a
magnetic field. The non-Newtonian Buongiorno model for
two-phase flow inside a pipe is reported by Alsabery et al.22

They considered aluminum nanoparticles inside water and
analyzed the impact of a magnetic field on various state
variables. The enhancing trend due to the impact of a magnetic
field in the analysis of the non-Newtonian fluid flow past a
wedge is reported by Muhammad et al.23 This study
recommends an increasing velocity profile with higher
microorganisms. The MHD flow through a perforated medium
was studied by Siddiqui and Sheikholeslami.24 The results are
displayed through contour plots for parameters, like Hartmann
and Reynolds numbers. The study recommends a decreasing
pattern in the boundary layer thickness for larger values of the
volume fraction and the Reynolds number. Sheikholeslami25

used the lattice Boltzmann method (LBM) for the three-
dimensional flow in the existence of a magnetic field. In this
study, he analyzed the impact of Lorentz forces on the
temperature profile. The generation of entropy inside an
enclosure during three-dimensional natural convective flow
was studied by Seyyedi et al.26 by using control volume FEM
(CVFEM). Also, a briefer survey of nanofluid flow and entropy
generation during the rotating frame is presented by Khan et
al.27

In the past few years boundary layer flow past a stretchable
surface has been examined by different researchers. The aim
behind this analysis is the applications of the boundary layer
flow that varies from metallurgy, to coatings of various sheets,
to drawing and tinning of wires. This idea was first given by
Sakiadis,28 which was further undertaken by Crane29 in the
case of stretching sheet. A more physical description with
inclusion of the boundary restriction is given in refs 30 and 31.
The cases of suction/injection and the to-and-fro motion of
the sheet are analyzed by Magyari et al.32 and Wang33 for the
liquid film. A few years later Miklavcǐc ̌ and Wang34 explained
the exact solution of the unstable sheet. In their reports they
found that the surface stability is directly linked with the mass
suction. Similar reports were presented by Bhattacharyya35 for
the exponential expanding surface. The case of stagnation
point motion of a nanofluid along an extendable sheet is
presented by Bachok et al.36 A more recent survey by
considering the same geometry is presented in refs 37−40.
Models used to study fluid flow are constituted to explain

the flow of a certain fluid in a more accurate way. These
models are classified as Newtonian and non-Newtonian fluids
in the literature.41 Some basic laws, like Fourier’s and Fick’s,
play a vital role in fluid flow problems.42 These laws are

modified for the convection derivative of time to obtain the
Cattaneo−Christov model.43 Irfan et al.44 examined Carreau
fluid migration by considering the Cattaneo−Christov double
diffusion (CCDD) model for varying thermal conduction. The
thermal transport of Burgers nanofluid is examined by Iqbal et
al.45 using the CCDD model. The applications of non-
Newtonian fluids are in abundance in the literature as
compared to the common Newtonian fluids. In this class one
such an important fluid is the Casson fluid, which has a
mathematical relation for the shear stress. The relation was
introduced by Casson46 for the analysis of a printing ink−oil
suspension. High shear viscosity, thinning, and yield stress are
the most important properties of this fluid.47 This model
behaves like a Newtonian fluid at higher wall stress as
compared to the yield stress. In 2007, Mitsoulis48 presented
details of the behavior of the deformation rate of the Casson
stress tensor. Some of the benchmark problems are reviewed
and the flow over different surfaces are analyzed in this work.
This work plays a key role in the area of fluid mechanics. Non-
Newtonian fluid flow past a stretching sheet has many
applications in the area of heat and mass transfer analysis.49

The Soret and Dufour effects for a magnetohydrodynamic fluid
flow past an expanding surface were investigated by Reddy et
al.50 Goud Bejawada et al.51 studied the heat and mass transfer
for the Casson fluid flow past an inclined Forchheimer porous
moving plate. The thermophysical properties of the Casson
fluid flow past an inclined surface are reported by Ramzan et
al.52 In this work they studied various effects, like Dufour,
Soret, and chemical reaction. More relevant work on this fluid
can found in refs 53 and 54. The CCDD model for the to-and-
fro and oscillatory motion of the sheet by considering the
stretched and micropolar fluid migration was studied by
Ahmad et al.55 and Rauf et al.,56 respectively. For the analysis
of the expanding surface by taking the Walters-B and Prandtl
fluid flow, Hayat et al.57,58 used the CCDD model. In these
reports the source and sink of heat are explained. A more
detailed survey on the CCDD model can be found in refs
59−62.
The behavior of the Casson fluid flow and its applications at

higher and lower shear rates attract researchers. These
applications vary from drilling processes to bioengineering
and food processing. Mabood et al.63 studied the magnetic
field impact of the Casson fluid flow past a stretching surface.
They examined the thermal radiation impact by considering
the surface as porous. Anwar et al.64 analyzed the variable wall
temperature for the natural convective unsteady MHD Casson
fluid flow. The impact of radiation and suction/injection are
described in this study. Sandeep et al.65 presented a detailed
survey by analyzing the chemically reactive Casson fluid flow
past a curved heated surface. Saleem et al.66 studied the Casson
fluid flow inside a tube. The tube wall was considered wavy
and stretchable. Hafeez et al.67 presented the impact of
rotation during the MHD Casson fluid flow though a surface
having an inclination. In this work, the peristaltic transport is
also considered for fluid flow. Alzahrani et al.68 studied the
viscous impact of the Casson fluid flow past a rotating channel.
The variable thermal conductivity and thermal radiation
impact are briefly explained by Rehman et al.69 In this work
they examined non-Newtonian behavior in various flow
regimes.
In view of the literature presented above, the goal of this

work is to elaborate the conducting 3D Casson fluid flow past a
bistretching sheet by considering the CCDD model in a
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variable magnetic field. The thermal energy and mass transfer
analysis with the impact of the current produced during the
HN migration are taken into account. The work aims to
generalize the Fourier and Fick laws. This is the first attempt to
analytically study the 3D Casson fluid flow for the two-way-
stretching surface in a variable magnetic field by considering
the CCDD model. The article is divided into five main
sections, where sections 2 and 3 explain the formulation of the
problem and solution strategy. The obtained results are
discussed in section 4, whereas discussion of the tables and
conclusions are presented in sections 5 and 6, respectively.

2. PROBLEM FORMULATION
Assume the non-Newtonian Casson HN (Ag + ZnO + Casson
fluid) motion past an expanding surface in the x- and y-
directions with u ce x y l

w
( / )= + and v de x y l

w
( / )= + , respectively.

In uw and vw, l is the sheet length and c and d are the velocity
references. The flow is incompressible and steady. The
schematic diagram is assumed in such a way in the Cartesian
system of coordinates that its midpoint originates at the origin
as presented in Figure 1. A time dependent magnetic field is

applied at an angle of 90° to the surface of the geometry
chosen. The concentration and wall temperature are given by
the relations

C C C
a x y

l
exp

( )
2w 0=
+i

k
jjjj

y
{
zzzz

and

T T T
a x y

l
exp

( )
2w 0=
+i

k
jjjj

y
{
zzzz

respectively. The current produced due to the applied
magnetic field is taken into account. This current is
mathematically given by the following relations.70
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where B is the magnetic field having strength B0, V is the
velocity, E is the electric field strength, j is the current density,
ne and e are the electron number density and charge, Pe is the
pressure of electrons, σhnf is the HN electrical conductivity, te is
the electron collision time, and ωe is the electron frequency,
respectively. There is no external voltage applied to the fluid
flow, so as a result we take E 0= . Also, j is constant;
therefore, j 0· = . Furthermore, the current density is
constant during the flow region and is zero along the z-axis.
Furthermore, we assume the rheological relation for the

incompressible Casson fluid as follows:71
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Here, ϖc is the non-Newtonian model critical value, eij is the
rate of deformation, py is the stress yield, and ϖ = eijeij.
The heat transfer and mass transfer are formulated with the

CCDD model for the generalization of the Fick and Fourier
laws:43,72

q k T q V q q V V q( ( ) )te+ = + · · + · (2)

J D C J V J J V V J( ( ) )tB c+ = + · · + · (3)

Here, J and q represent the mass and heat fluxes, DB represents
the Brownian motion, T (C) denotes the temperature
(concentration), k is the thermal conductivity, and λc (λe)
represents the concentration (energy relaxation) parameter,
respectively.
In view of the above assumptions, the steady Casson hybrid

nanofluid flow with the CCDD model takes the following
forms:57,73
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Figure 1. Problem geometry.
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where κe and κc are the Cattaneo−Christov steady relations,
given by61
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Here, ρ is the density, u, v, and w are the components, ν is

the viscosity, τ is the heat capacity ratio,
p

(2 )b
0.5

y
= is the

Casson parameter, and DT is the thermophoretic parameter. As
per the geometry chosen, the boundary restrictions under the
imposed assumptions can be given as
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where ( )w Sc
l0 2

0.5
1

f= , in which S1 represents the suction or
injection case demonstrates the flux of mass. The following
similarity variables are introduced:61
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Here, the prime represents the derivative with respect to η.
Using eq 12 in eqs 4−11b, we have72,74
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with boundary conditons
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= , δ1 = λea, and δ2 = λca represent the magnetic parameter,
Prandtl number, Hall current parameter, Schmidt number,
Brownian motion parameter, thermophoretic parameter,
stretching ratio, and thermal and concentration variables for
energy and mass flows, respectively. In like manner the HN
density, specific heat, and viscosity are denoted by ρhnf,

C( )p hnf and μhnf respectively. The basic hybrid nanofluid
models are defined as75
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The important engineering parameters are
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here Rex
u xw= and Rey

V yw= are Reynolds numbers. Table 1
tabulates the properties of the components of the chosen HN.

3. SOLUTION OF THE PROBLEM USING THE
HOMOTOPY ANALYSIS METHOD (HAM)

This particular section deals with the solution of the reduced
system of eqs 13−17b. We will use the semianalytical method
HAM for the solution. The idea behind the use of this
procedure is its fast convergence and degree of freedom in
choosing the initial guess. This method was originally
introduced by Liao77 by using the concept of homotopy. He
established a mapping given in eq 27, in two continuous
functions in the topological spaces X and Y .78

X Y: 0, 1× [ ] (27)

Here, X X, 0 ( )1[ ] = and X X, 1 ( )2[ ] = holds x X .

4. RESULTS AND DISCUSSION
The results achieved by solving the above equations through
HAM are displayed through graphs and tables here. The
graphs in Figures 2−19 show the effects of different quantities
on the state functions. The quantities of engineering
importance are displayed in Tables 2 and 3.

The influence of mass flux S1 over the velocity gradient f ′(η)
of the selected nanofluid (ZnO + Casson fluid) and HN (Ag +
ZnO + Casson fluid) is portrayed in Figure 2. The S1
parameter values are 0.1, 0.3, and 0.5. It is evident from
Figure 2 that the addition of Ag to a simple nanofluid reduces
the f ′(η) profile in comparison with the simple nanofluid.
Furthermore, the increasing γ strength drops the velocity
profile of both fluids. The drop with enhancing η is more
prominent at smaller values of η as displayed by the greater
distance between these curves. The separation in the curves
decreases at higher η values. Both fluids follow approximately
the same pattern. It is therefore concluded that the augmenting
flux reduces the f ′(η) distribution.
The dynamics of both fluids for changing magnetic flux

strength M are exhibited in Figure 3. The M values are 0.1, 0.5,
and 0.9. Figure 3 displays that the enhancing strength of M
causes a drop in f ′(η) distribution. The reduction in f ′(η) is
higher for middle η values. The separation in the curves
depreciates with enhancing η. The increasing M causes a

Table 1. Nanomaterials and Base Fluid Properties61,76

property Ag ZnO Casson fluid

k (W/(m K)) 429 19 0.6376
Cp (J/(kg K)) 235 540 4175
ρ (kg/m3) 10500 5606 989

Figure 2. f ′(η) variation with S1.

Table 2. Computed Values of Cfx and Cfy with Varying (γ)

γ

0.2 0.4 0.6 0.8 1.0

−Cfx 1.03012 1.06423 1.09045 1.22346 1.12778
−Cfy 2.12532 1.78099 1.50623 1.29478 1.19564

Table 3. Computation of θ′(0) and ϕ′(0) with Changing δ1
and δ2

δ1, δ2
0.0 0.2 0.4 0.6 0.8

−θ′(0) 0.49043 0.50881 0.51841 0.52961 0.52986
−ϕ′(0) 0.50984 0.50982 0.50899 0.52012 0.52982
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decrease in f ′(η) at a higher rate in the HN in comparison with
the normal nanofluid. Thus, the augmenting Lorentz force due
to high M restricts the velocity distribution.
The f ′(η) dependence on m is exhibited in Figure 4. The m

values are 0.1, 0.5, and 0.9. Figure 4 exhibits that the rising

strength of m augments f ′(η) for both fluids. The uplift is
higher at intermediate η values. Thus, the higher values of m
augment the velocities of both fluids.
The f ′(η) variation with the changing strength of the

stretching ratio γ is graphed in Figure 5. The γ values are 0.1,
0.5, and 0.9. Figure 5 shows that larger γ causes f ′(η)

enhancement. The overlapping profiles of both fluids show
that the rising γ has similar effects on the fluid velocity.
The influence of Casson fluid parameter (ξ) over the

velocity gradient is displayed in Figure 6. It is clear that f ′(η)

falls with enhancing ξ. Physically, the larger the Casson fluid
parameter, the more viscous is the fluid. Furthermore, the
viscosity augments the elasticity of the HN that causes the
decline of the momentum boundary layer.
The impacts of S1 and γ over g′(η) are plotted in Figures 7

and 8, respectively. The S1 values are 0.1, 0.3, and 0.5, and

those of γ are 0.1, 0.5, and 0.9. It is evident from Figure 7 that
the addition of Ag to the simple nanofluid drops the g′(η)
profile. Furthermore, increasing γ causes mitigation of the
vertical component of the velocity gradient. The drops in the
profiles of both fluids have similar dependences on the mass
flux parameter. The augmenting γ causes enhancement of the
g′(η) profile for both fluids as exhibited in Figure 8. The
enhancement rate is higher for the HN in comparison with the
simple nanofluid. Thus, the addition of Ag drastically changes
the g′(η) profile. The separation between the two profiles with
augmenting γ is more obvious at the central region of the
graph.
The impact of ξ is exhibited in Figure 9 over g′(η). The

enhancement in ξ increases the thickness of the fluid
parameter, which further flattens along the y-axis. The viscosity

Figure 3. f ′(η) variation with M.

Figure 4. f ′(η) variation with m.

Figure 5. Dependence of f ′(η) on γ.

Figure 6. f ′(η) dependence on ξ.

Figure 7. g′(η) variation with S1.
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of the fluid enhances, which further slows down the motion; as
a result the momentum boundary layer falls.
The variations of temperature θ(η) of both fluids with

changing Pr and Nt are graphed in Figures 10 and 11,

respectively. The chosen values of Pr are 0.7, 1.1, and 1.5.
Figure 10 displays that the addition of Ag with the simple
nanofluid raises the temperature distribution of the resultant
HN. In addition, the temperature of both fluids mitigates with
rising Pr values. The drop in temperature displays a strange
dependence on rising Pr. At smaller Pr, the temperature of the

simple nanofluid drops quickly in comparison with HN. The
temperature drop enhances with increasing Pr. Hence the
lower thermal diffusivity due to higher Pr reduces the
temperature of both fluids. Figure 11 depicts the effect of
augmenting thermophoresis has on the fluid temperature. The
increase in temperature with rising Nt is greater for the HN.
The temperature enhancement is more drastic at intermediate
η values.
The variations of θ(η) with augmenting Nb, γ, and δ1 are

plotted in Figures 12, 13, and 14, respectively. Figure 12 shows

Figure 8. Variation in g′(η) with γ.

Figure 9. Dependence of f ′(η) on ξ.

Figure 10. θ(η) dependence on Pr.

Figure 11. Variation in θ(η) with Nt.

Figure 12. Impact of variation in Nb on θ(η).

Figure 13. Variation in θ(η) with γ.
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that the enlarging randomness due to larger Nb augments the
temperature. The enhancement in temperature of HN is higher
with augmenting Nb in comparison with the nanofluid. The
increasing γ reduces the temperature as displayed in Figure 13.
The drop displays almost the same pattern for both fluids. The
difference is more obvious at intermediate η values. The
increasing δ1 also displays a reduction in θ(η). The drop rates
for both fluids follow almost the same trend. Thus, the
increasing relaxation in thermal energy causes reduction of the
temperature of both fluids.
The fluid concentration (ϕ(η)) variations with the

increasing mass flux relaxation parameter (δ2) and γ values
are exhibited in Figures 15 and 16, respectively. The δ2 values

are 0.0, 0.4, and 0.8, whereas the γ values are 0.1, 0.5, and 0.9.
The augmenting δ2 drops the temperature of the fluids.
Initially, the drop is higher for the nanofluid. As δ2 increases,
the drop rate enhances as is evident from the increasing
distance between the curves. At the largest δ2, the drop in
concentration for the hybrid nanofluid becomes larger as
compared to the simple nanofluid. The increasing γ also causes
a fall in ϕ(η) as displayed in Figure 16. The decline in the HN
concentration is higher than that in the simple nanofluid.
The variations of ϕ with enhancing Nb, Nt, and Sc are

exhibited in Figures 17, 18, and 19, respectively. The chosen
values of Nb are 0.3, 0.5, and 0.7. Figure 17 shows a complex
dependence of ϕ(η) with changing Nb. At smaller η, the
concentration first enhances, reaches a maximum, and then

decreases with higher η values. The concentration drop
depreciates with the larger randomness due to larger Nb
values as shown by the mitigating spacing of the curves. The
enhancing thermophoresis due to higher values of Nt results an
increase in ϕ(η). The increasing rate is more obvious at
smaller η. The increasing Nt affects the fluid concentrations of
the fluids exactly in the same manner as cleared from the
overlapping curves. The effect of varying Sc over ϕ(η) is
depicted in Figure 19. The Sc values are 0.4, 1.0, and 1.6.
Figure 19 displays a reduction in ϕ(η). The drop for the
nanofluid is higher with the enhancing Sc than the drop for

Figure 14. θ(η) dependence on δ1.

Figure 15. Influence of variation in δ2 on ϕ(η).

Figure 16. Impact of γ on ϕ(η).

Figure 17. Nb impact on ϕ(η).

Figure 18. Impact of variation in Nt on ϕ(η).
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HN. Therefore, the enhancing viscosity due to higher values of
Sc changes the ϕ(η) profile of nanofluid more drastically.
Figure 20 displays the variation of ϕ(η) with changing ξ. It

displays a decreasing trend with the higher ξ strength.

Physically, the larger values decline the thickness of the
momentum of the boundary layer as the viscosity increases as a
result the intermolecular bond increase that results in the
decline of the concentration profile.

5. TABLES DISCUSSION
This portion expresses the numerical computation of
coefficients of interest in Tables 2 and 3 with changing values
of the selected parameters namely, γ, δ1, and δ2.61 Table 2
exhibits the opposite behavior with rising γ for the coefficient
of friction. Table 3 displays that the heat transfer enhances
with the increasing relaxation parameter and displays a similar
behavior for mass transfer.

6. CONCLUSIONS
This section is devoted to the results obtained for the hybrid
Casson nanofluid flow. Here, we explained the combination of
Casson fluid with ZnO and with Ag + ZnO for the formation
of nanofluid and hybrid nanofluid. The CCDD model is taken
into account for modeling the problem. The problem is solved
with the semianalytical method HAM, and the results are
plotted for the impacts of various parameters. The results show
that the common nanofluid is weaker than the hybrid

nanofluid. The main outcomes of this work are summarized
as follows:

• The velocity gradients fall with increasing values of the
dimensionless mass flux (S1).

• The Casson fluid parameter ξ with its increasing trend
decreases the velocity f ′ and concentration ϕ profiles. An
opposite trend has been reported for g′.

• The larger values of the Prandtl number (Pr) result in a
decline of the thermal boundary layer.

• Nt and Nb increase the concentration of the moving
nanoparticles, and as a result with its increasing value, heat
transport becomes dominant.

• The Hall current produced due to the influence of the
magnetic parameter and the mass flux with its larger values
decrease the velocity profile.

• Both the thermal and concentration profiles decline with
larger values of the thermal and concentration relaxation
parameters.

• The ratio parameter γ shows an opposite trend for both
the temperature and concentration profiles.
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Figure 20. Impact of ξ on ϕ(η).
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