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Abstract

Transcriptome‐Wide Association Studies (TWASs) have become increasingly

popular in identifying genes (or other endophenotypes or exposures) associated

with complex traits. In TWAS, one first builds a predictive model for gene

expressions using an expression quantitative trait loci (eQTL) data set in stage 1,

then tests the association between the predicted gene expression and a trait

based on a large, independent genome‐wide association study (GWAS) data set

in stage 2. However, since the sample size of the eQTL data set is usually small

and the coefficient of multiple determination (i.e., R2) of the model for many

genes is also small, a question of interest is to what extent these factors affect the

statistical power of TWAS. In addition, in contrast to a standard (univariate)

TWAS (UV‐TWAS) considering only a single gene at a time, multivariate TWAS

(MV‐TWAS) methods have recently emerged to account for the effects of

multiple genes, or a gene's nonlinear effects, simultaneously. With the absence

of the power analysis for these MV‐TWAS methods, it would be of interest to

investigate whether one can gain or lose power by using the newly proposed

MV‐TWAS instead of UV‐TWAS. In this paper, we first outline a general

method for sample size/power calculations for two‐sample TWAS, then use real

data—the Alzheimer's Disease Neuroimaging Initiative (ADNI) expression

quantitative trait loci (eQTL) data and the Genotype‐Tissue Expression (GTEx)

eQTL data for stage 1, the International Genomics of Alzheimer's Project

Alzheimer's disease (AD) GWAS summary data and UK Biobank (UKB)

individual‐level data for stage 2—to empirically address these questions. Our

most important conclusions are the following. First, a sample size of a few

thousands (~8000) would suffice in stage 1, where the power of TWAS would be

more determined by cis‐heritability of gene expression. Second, as in the general
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case of simple regression versus multiple regression, the power of MV‐TWAS

may be higher or lower than that of UV‐TWAS, depending on the specific

relationships among the GWAS trait and multiple genes (or linear and

nonlinear terms of the same gene's expression levels), such as their correlations

and effect sizes. Interestingly, several top genes with large power gains in

MV‐TWAS (over that in UV‐TWAS) were known to be (and in our data more

significantly) associated with AD. We also reached similar conclusions in an

application to the GTEx whole blood gene expression data and UKB GWAS data

of high‐density lipoprotein cholesterol. The proposed method and the

conclusions are expected to be useful in planning and designing future TWAS

and other related studies (e.g., Proteome‐ or Metabolome‐Wide Association

Studies) when determining the sample sizes for the two stages.
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1 | INTRODUCTION

Transcriptome‐Wide Association Studies (TWASs) have
been increasingly applied to identify genes associated with
complex traits (Gusev et al., 2016). The statistical principle
underlying TWAS is (two‐sample) two‐stage least squares
(2SLS; Gamazon et al., 2015; Gusev et al., 2016). In stage 1,
for a candidate gene, a regression model is often trained on
a small eQTL data set to predict its expression level using
its cis‐nucleotide polymorphism (cis‐SNPs). Then in stage 2,
the pretrained model is used to predict the gene expression
(of the candidate gene) using the SNPs from a much larger
genome‐wide association study (GWAS) data set that is
independent of the eQTL data set in stage 1; then the
predicted gene expression is tested for association with the
trait of the GWAS data to determine whether there is an
association between the gene and the trait. If an association
is established, under the framework of instrumental
variable (IV) regression and its related valid IV assump-
tions, the gene can be interpreted as (putative) causal,
similar to Mendelian randomization (MR; Angrist et al.,
1996; Xue & Pan, 2020). For stage 1, various methods,
including stepwise variable selection coupled with ordinary
least squares (OLS), lasso and elastic net penalized
regression, and some Bayesian methods, have been applied
to select cis‐SNPs to be IVs while building a predictive
model for gene expression (Gamazon et al., 2015; Gusev
et al., 2016; Xue & Pan, 2020). In contrast, in stage 2
typically a simple regression or a univariate association test
is conducted. It is also notable that GWAS summary data,
not necessarily GWAS individual‐level, can be applied in
stage 2, largely facilitating the wide applicability of TWAS
(Gusev et al., 2016).

Despite the success of TWAS in discovering important
gene‐trait associations (and putative causal genes for traits;
Gamazon et al., 2015; Gusev et al., 2016), some important
questions remain open. First, although the GWAS data set
used in stage 2 usually contains from tens to hundreds of
thousands of individuals, the eQTL data set is often quite
small with a sample size of only a few hundreds or
thousands. To what extent does the difference in sample
sizes affect the power of TWAS? We therefore study the
effects of stages 1 and 2 sample sizes on the power of
TWAS. Second, the predictive power as measured by the
coefficient of multiple determination, R2, of a pretrained
model in stage 1 is usually very low with ≤R 0.052 . Part of
the reason is that the predictive power is upper bounded by
the gene's expression heritability (Gamazon et al., 2015).
Assuming that a lower R2 is partly due to the small sample
size (and thus large estimation errors), if we were able to
increase R2, how much would that boost the power of
TWAS? Lastly, in contrast to a standard (univariate) TWAS
(UV‐TWAS) considering only a single gene at a time,
multivariate TWAS (MV‐TWAS) has recently emerged to
account for the effects of multiple genes, or of a gene's
linear and nonlinear effects (Knutson et al., 2020; Lin et al.,
2022). We are not aware of any studies on the power of
MV‐TWAS. In particular, it would be of interest to
investigate whether one can gain or lose power by using
MV‐TWAS as compared with UV‐TWAS: while accounting
for multiple related genes' (predicted) expression levels may
boost power, the expected presence of their correlations
may reduce the precision of the estimates and thus
statistical power.

We will use real data, mainly the Alzheimer's Disease
Neuroimaging Initiative (ADNI) gene expression data
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(Shen et al., 2013) and the International Genomics of
Alzheimer's Project (IGAP) Alzheimer's disease (AD)
GWAS summary data (Li et al., 2002), to empirically
answer these questions. More specifically, we will use the
fitted gene expression imputation models with the ADNI
eQTL data and the fitted TWAS models with the IGAP
GWAS data as the true models (with the true parameter
values) in power/sample size calculations, which are
more realistic than some arbitrarily chosen simulation
models or parameter values to mimic unknown truths,
leading to more meaningful conclusions to guide the
study design for future TWAS. In addition, we will also
apply the methods to the GTEx gene expression data and
UK Biobank (UKB) GWAS data (GTEx Consortium,
2020; Sudlow et al., 2015). We will propose a general
approach to sample size/power calculations for both
univariate and multivariate TWAS, which can be applied
to plan future TWAS and other related studies (such as
Proteome‐ or Metabolome‐Wide Association Studies). In
particular, since both TWAS and MR are special cases of
IV regression (Burgess et al., 2015; Xue & Pan, 2020), one
may wonder whether we could simply follow an
approach used for MR to calculate the power for TWAS.
The short answer is no. Most power calculation methods
for MR either account for only a single IV or focus on
one‐sample problems (Brion et al., 2012; Burgess, 2014;
Freeman et al., 2013; Pierce et al., 2010). L. Deng et al.
(2020) proposed a general procedure allowing for both
two‐sample setups and multiple (independent) IVs, but
they assumed a single exposure. In contrast, we aim to
inspect multivariate TWAS models with multiple
(possibly correlated) exposures and multiple correlated
IVs/SNPs, comparing their power to that of the standard/
univariate TWAS. We note that our proposed sample
size/power calculation method is general for two‐sample
2SLS, applicable not only to (two‐sample) TWAS
(and related Proteome‐ or Metabolome‐Wide Association
Studies), but also to (two‐sample) multivariable MR with
possibly correlated SNPs/IVs (Burgess et al., 2015;
Burgess & Thompson, 2015; Porcu et al., 2019).

The paper is organized as follows: in Section 2, we first
introduce the general TWAS model along with necessary
notations, then three specific TWAS models, whose power
will be studied. Next, we propose a general sample
size/power calculation procedure that can be applied to
TWAS analyses, followed by the real data sets to be used.
In Section 3, we apply the proposed method to the real
data sets, addressing the three questions mentioned above.
In Section 4, we summarize the main results, discuss the
importance of the findings, and point out some potential
limitations of the current study.

2 | MATERIALS AND METHODS

2.1 | A general TWAS model

Let n1 and n2 be the sample sizes of the eQTL and
GWAS data in stages 1 and 2, respectively. We assume
that there are no overlaps between the two data sets;
that is, the two samples are independent as required
by the two‐sample 2SLS. For a given gene of interest,
let Z1 be an n p×1 matrix coding for its cis‐SNPs as IVs
in the eQTL data set, Z2 be an n p×2 matrix for the
IVs in the GWAS data set, x0 be an n × 11 vector of the
observed expression levels of the gene in the eQTL
data set, and Y be an n × 12 vector of the GWAS trait;
p is the numbers of the IVs/SNPs used to predict
the gene's expression. Following these notations and
the standard valid IV assumptions, a general TWAS
model is

X Z β ν= + ,1 1 (1)

X Z β ν= + ,2 2 2 (2)

Y X θ u Z βθ ν θ u Z βθ ω= + = + + = + ,2 2 2 2 (3)

where X x x x= ( , , …, )q0 1 ( −1) with x x, …, q1 ( −1) being either
higher‐order terms of x0 or expression levels of other genes
related to the gene of interest in the eQTL data; X2 would be
the gene's expression levels in the GWAS data, though not
actually observed, and X Z βˆ = ˆ

2 2 is the imputed gene
expression levels; θ θ θ= ( , …, )q

T
0 ( −1) is a q × 1 vector of the

(unknown) causal effects of interest, and β β β= ( , …, )q0 ( −1)

is a p q× matrix for the (unknown) regression coefficients;
ν1 and ν2 are independent error terms as n q×1 and n q×2
matrices, each row of which is independently and normally
distributed with mean 0 and covariance matrix Σν .
Independent of ν1 , the error term u is an n × 12 vector
following a normal distribution with mean 0 and covariance
matrix σ Iu

2 , and the error term ω is an n × 12 vector
following a normal distribution with mean 0 and covariance
matrix σω

2 I.
For simplicity of notation, we assume that X and Y are

already suitably adjusted for covariates, and variables Z1 , Z2 ,
X , and Y are standardized to have their sample means all
equal to 0 and sample variances to 1. Furthermore, here we
assume that the GWAS individual‐level data are available for
simplicity and clarity of presentation, but in practice only
GWAS summary data are required in stage 2 as to be shown
in our numerical examples.

This general TWAS model allows us to accommo-
date more general cases than the standard TWAS
where genes are imputed and tested only one by one
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(i.e., with q = 1). For example, in contrast to the
standard TWAS of imputing and testing only a linear
term x0 , one can impute x0 and x0

2 in stage 1 and test
both terms in stage 2 to account for possibly nonlinear
effects of gene expression; doing so can gain power and
identify additional genes (Lin et al., 2022). When q is 1
and larger than 1, the general TWAS model represents
the UV‐TWAS and MV‐TWAS, respectively.

Applying (two‐sample) 2SLS (i.e., OLS in each stage),
we obtain the estimators for the unknown parameters in
the general TWAS model as

∕ ∕ 
( )
( )β Z Z Z X X Z β

θ X X X Y

X Z β X Z β n σ Y X θ n

ˆ = , ˆ = ˆ,

ˆ = ˆ ˆ ˆ ,

Σ̂ = ( − ˆ) ( − ˆ) ( − 1), ˆ = − ˆ ˆ .

T T

T T

ν
T

ω

1 1

−1

1 2 2

2 2

−1

2

1 1 1
2

2 2
2

2

Note that our proposed methods require the use of
OLS estimator (OLSE), or more generally, maximum
likelihood estimator (MLE), in each stage as used above,
because the (corrected) covariance matrix formula for θ̂
to be shown later is based on the OLSE (or MLE).

2.2 | Some specific TWAS methods

2.2.1 | UV‐TWAS

We first consider the standard (univariate) TWAS, testing
the linear effects of the genes one by one with X x= 0 ,
denoted as UV‐L. For this model, we focused on studying
the impact of the sample size and the stage 1 pretrained
model's predictive capability as measured by the
coefficient of multiple determination, R2, on the power
of TWAS. We increased the sample size of stage 1 by a
factor of 1, 2, 5, and 10, the sample size of stage 2 by a
factor of 1, 1.2, 1.5, and 2, and the R2 of the fitted
imputation model by 0.1, 0.2, and 0.3 (but capped the
final increased R2 at ≤0.95) to examine their influences
on the power. Note that we increase the R2 by a fixed
amount, not relative to the original R2, to see the direct
effects of R2. The calculation of R2 can be found in
Section 2.2.4.

As noted in Lin et al. (2022), the quadratic effect of
gene expression can be regarded as the influence of a
gene's expression variability on the trait. We therefore
also consider another UV‐TWAS model, denoted as
UV‐Q, in which we test the quadratic term of gene
expression on a trait with X x= 0

2 (i.e., with only a
quadratic term and no linear term). We will compare the

power of this model to that of MV‐TWAS to be
introduced later.

2.2.2 | TWAS‐LQ

As shown in Lin et al. (2022), testing for quadratic effects
of gene expression may unveil additional genes whose
expression levels are nonlinearly associated with a trait.
In this extended MV‐TWAS model, denoted TWAS‐LQ,
we consider both linear and quadratic terms of gene
expression. In other words, we have X x x= ( , )0 0

2 and test

the corresponding θ in the model as described in (1)–(7).
For power calculations, we set θ θ˜ = ˆ as estimated from
the IGAP AD GWAS summary data, and used the
corrected covariance matrix formula. Depending on
which components of θ to be tested, we can have three
approaches, called TWAS‐L, TWAS‐Q, and TWAS‐LQ:
We test only the linear component, the quadratic
component, and both linear and quadratic components,
respectively.

2.2.3 | Other MV‐TWAS

One possible downside of MV‐TWAS with multiple genes
is that their correlated gene expression levels may lead to
the loss of power as compared with UV‐TWAS. Here we
consider a possibly more extreme situation where we
expect a greater loss of power: because many physically
neighboring genes have correlated expression levels (and
their expression levels are often more highly correlated if
they are closer to each other), we include every two
neighboring genes in the MV‐TWAS model. That is, if x0
and x1 are the expression levels of two neighboring
genes, we have X x x= ( , )0 1 in the MV‐TWAS model.
This setup is both more challenging and useful for TWAS
because we often would like to identify which gene
(among several with correlated expression) in a GWAS
trait‐associated locus is indeed causal. Similar to TWAS‐
LQ, in MV‐TWAS we consider the power for three tests,
called MV‐Target, MV‐Alternative, and MV‐Joint, to test
the (linear) effects of the first gene, of its neighbor, and of
both the genes, respectively.

2.2.4 | Coefficient of multiple determination

For each UV‐TWAS model, the coefficient of multiple
determination R2 was calculated as
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∕ ∕

ˆ
R RSS TSS RSS n= 1 − = 1 − ( − 1)

= 1 − Σ ,ν

2
1

where RSS andTSS were the residual sum of squares and
the total sum of squares for the model; the second
equality in the above equation follows from the fact that
each X was standardized to have a sample variance of 1;
that is, ∕X TSS nVar( ) = ( − 1) = 11 . To assess the effects
of different R2 on the power of TWAS, we simply
changed the value of Σ̂ν : for example, to increase R2 by
0.1, we set the new Σ̂ν to max(0.05, Σ̂ − 0.1)ν and then
used the new Σ̂ν in the power calculation. Note that this
capped R2 at 0.95.

The R2 can be interpreted as the (estimated) cis‐
heritability of the gene's expression levels based on the
gene's cis‐SNPs, which is expected to be lower than the
gene's heritability based on the genome‐wide SNPs (i.e.,
both cis‐ and trans‐SNPs).

2.3 | Power calculations

The standard TWAS estimate of the variance of θ̂ ignores
the estimation errors with X̂ , or equivalently, with β̂ , in
stage 1, thereby underestimating the true variance. We
adopt the formula in Inoue and Solon (2010) for a
corrected covariance matrix estimate of θ̂ as

∕






θ θ

n

n
θ θ σVar^ ( ˆ ) = Var^ ( ˆ ) 1 + ˆ Σ̂ ˆ ˆ ,c S
T

ν ω
2

1

2
(4)

where  θ X X σVar ( ˆ ) = ( ˆ ˆ ) ˆS
T

ω2 2
−1 2 is the standard/naive

variance estimate, which ignores the estimation variabil-
ity in stage 1 and thus would be obtained under the
assumption of ∞n =1 . The formula clearly illustrates
that if the sample size in stage 1 is much smaller than
that in stage 2, then we will have an inflated variance and
thus reduced power in stage 2. With the corrected
estimate of the covariance matrix, we now outline the
hypothesis testing procedure as follows. Let q be the
number of exposures (columns of X ), r be the number of
exposures we want to test, A A A= { , …, }r1 be a given
subset of q{1, 2, …, } with each ∈A q{1, …, }i and
≤ ≤r q1 . For each gene, we aim to perform the

following test in stage 2 with

≠H θ H θ θ: = 0 versus : = ˜ 0,A A A
0 1 (5)

where θ θ θ= ( , …, )A
A A

T
r1

is a subvector of θ to be tested,

and here we let θ θ˜ = ˆA A
, that is, we use the estimated

effects as the real effects under the alternative. Then
 θVar ( ˆ )c

A
, the estimated covariance matrix of θ̂

A
, is just

the corresponding submatrix of θVar ( ˆ )c . The TWAS test
statistic is

T θ θ θ= ˆ (Var ( ˆ )) ˆ ,
A

c
A A−1

T

(6)

which has a central χr
2 distribution under the null H0 ;

however, under the alternative H1 , T follows a non-
central χ2 distribution with r degrees of freedom and

noncentrality parameter θ θ θ˜ (Var ( ˆ )) ˜A
c

A A−1
T

. The power
is given by

≥ ∕ ( )P T χ H ,r α m,1−
2

1 (7)

where α is the nominal significance level, m is the
number of genes to be tested, and ∕χr α m,1−

2 is the

∕α m(1 − )th quantile of a central χ2 distribution with r
degrees of freedom. Here we follow the popular practice
of using the Bonferroni correction to adjust for multiple
testing in TWAS.

2.4 | Data

2.4.1 | The ADNI eQTL data

Data used in the preparation of this article were obtained
from the ADNI database (http://adni.loni.usc.edu). The
ADNI was launched in 2003 by the National Institute on
Aging (NIA), the National Institute of Biomedical
Imaging and Bioengineering (NIBIB), the Food and Drug
Administration, private pharmaceutical companies, and
nonprofit organizations, as a 60‐million, 5‐year
public–private partnership. The primary goal of ADNI
has been to test whether serial magnetic resonance
imaging, positron emission tomography, other biological
markers, and clinical and neuropsychological assessment
can be combined to measure the progression of mild
cognitive impairment (MCI) and early AD. Determina-
tion of sensitive and specific markers of very early AD
progression is intended to aid researchers and clinicians
to develop new treatments and monitor their effective-
ness, as well as lessen the time and cost of clinical trials.
The Principal Investigator of this initiative is Michael W.
Weiner, MD, VA Medical Center and University of
California‐San Francisco. ADNI is the result of efforts of
many coinvestigators from a broad range of academic
institutions and private corporations, and subjects have
been recruited from over 50 sites across the United States
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and Canada. The initial goal of ADNI was to recruit 800
subjects but ADNI has been followed by ADNI‐GO and
ADNI‐2. To date these three protocols have recruited
over 1500 adults, ages 55–90, to participate in the
research, consisting of cognitively normal older indivi-
duals, people with early or late MCI, and people with
early AD. The follow‐up duration of each group is
specified in the protocols for ADNI‐1, ADNI‐2, and
ADNI‐GO. Subjects originally recruited for ADNI‐1 and
ADNI‐GO had the option to be followed in ADNI‐2. For
up‐to‐date information, see www.adni-info.org.

We used the ADNI whole‐genome sequencing (WGS)
and gene expression data (Shen et al., 2013) as the eQTL
data in stage 1. After removing 37 individuals with any
missing data, we had n = 7111 individuals and 17,256
genes. Following previous ADNI studies (Lin et al.,
2022), we adjusted for five covariates, namely, age,
gender, year of education, handedness (left or right
handed), and intracranial volume. We regressed the gene
expression (X ) on these covariates and then used the
standardized residuals as the new X to remove any
potential effects they may have on AD, as shown by
previous studies (Doody et al., 1999; van Loenhoud et al.,
2022). For each gene, we extracted the SNPs from its cis‐
region by expanding 100 kb upstream and downstream of
its coding region. SNPs with minor allele frequency
≤0.05 or any missing values were also excluded. We
further pruned the SNPs so that the absolute value of the
pairwise Pearson correlation between any two SNPs was
less than 0.8. If the number of SNPs was still larger than
50 after pruning, we would keep the top 50 SNPs with the
highest correlations (in their absolute values) with the
gene's expression levels X . If q > 1 (as in the MV‐TWAS
models), for each column i of X , we would take the top
50 SNPs with the highest correlations (in absolute values)
with the column as Ii and use I I= i i as the SNPs for
stage 1. Next, the data were normalized to have mean 0
and variance 1, and we used backward selection with
AIC as the criterion to select SNPs. The final model
would be a linear regression model given by the
backward selection procedure. For each gene, the F test
was performed to assess the fit of the final model; if the p
value was ≥0.001, the gene was discarded (i.e., not used
in the subsequent analysis). The choice of the tuning
parameters (such as 0.8, 50, and 0.001 above) was
somewhat arbitrary and largely followed a previous
study (Xue & Pan, 2020) with some adjustments and
the following rationale: highly correlated SNPs are not
expected to help much to predict gene expression while
causing the multicollinearity problem, thus we pruned
out highly correlated SNPs; given the relatively small
sample size, to avoid large estimation errors (due to large
variability), we decided to use a relatively simple linear

model for effective prediction; and to satisfy the IV
relevance assumption in 2SLS, we only chose cis‐SNPs
that were likely to be associated with a gene's expression
level as IVs.

2.4.2 | The IGAP AD GWAS summary data

For the GWAS data in stage 2, we used the summary data
set released by the IGAP in 2013, which contained 54,162
individuals (Li et al., 2002). The IGAP AD GWAS
summary data set was used to estimate the parameters
in stage 2, namely, θ̂ and σ̂ω

2 . To estimate θ̂ , notice that

( ) ( )θ X X X Y β Z Z β β Z Yˆ = ˆ ˆ ˆ = ˆ ˆ ˆ .
T T T T T T
2 2

−1

2 2 2

−1

2

Since we did not have individual‐level data for stage 2,
we used Z1 to estimate Z ZT2 2 and the summary statistics
to estimate Z YT2 . For σ̂ω

2 , we have

   
σ

Y X β

n

Y Z β θ

n

Z β θ

n
ˆ =

− ˆ ˆ
= 1 − 2

ˆ ˆ
+

ˆ ˆ
.ω

T
2 2 2

2

2

2

2

2
2

2

We substituted Z1 for Z2 in the last term, and used the
summary statistics to estimate Y ZT 2 in the second term.
To calculate the power, we assume that under the
alternative hypothesis, the true θ is equal to the estimated
one, that is, θ θ= ˆ.

2.4.3 | The GTEx and UKB data

To check our conclusions further, we used the Genotype‐
Tissue Expression (GTEx) data set and the UKB data
(GTEx Consortium, 2020; Sudlow et al., 2015). For our
purposes, we used the GTEx v8 whole blood data with
19,696 genes and n = 6701 in stage 1. We regressed the
gene expression on some covariates (including the first
five genotype principal components, WGS sequencing
platform, WGS library construction protocol, donor sex,
and PEER factors) provided in the data set, and used the
standardized residuals as the gene expression (i.e., x0 ) as
in a previous TWAS (Lin et al., 2022). The rest of the data
preprocessing and quality control procedures are the
same as for the ADNI data.

For stage 2, we used the individual‐level UKB data
with the high‐density lipoprotein cholesterol as the trait
of interest. Only the data from the individuals of white
British ancestry were used. Any individual who might be
a close relative of another (kinship >0) or had any
missing values for the SNPs selected in stage 1 was also
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removed. The sample sizes for most of the genes were
about 200,000—the exact sample size for a gene
depended on the number of individuals removed due to
missing data—and the total number of SNPs was around
800,000.

For the GTEx data, we obtained the estimated
expression heritabilities and their 95% confidence inter-
vals (CIs) from (Wheeler et al., 2016). Therefore, we used
the estimated expression heritabilities as the upper
bounds of the stage 1 R2 to demonstrate the effects of
increasing R2 on the power of TWAS under more realistic
conditions. The genes with estimated heritability smaller
than the R2 of the stage 1 fitted model were thus
removed. In addition, if the lower bound of the 95% CI of
the estimated heritability was 0, then the R2 of the fitted
model was used as the lower bound because a gene with
heritability 0 cannot be genetically associated with any
trait.

3 | RESULTS

3.1 | Effect of the sample size on TWAS
power

In Figure 1, we show how power varies with the
increasing sample size in stage 1. Except for a few genes
for which the power does not increase at all, in general
increasing the sample size leads to higher power. When
the stage 1 sample size n1 is about 8000, that is, a little
over eleven times the original size, the power nearly
reaches its maximum for most of the genes as if ∞n =1 .
Overall, for most genes, there seems to be only
diminishing power gains by increasing n1 ; that is, the
power only increased barely or only slightly. This result
suggests that the current practice of having a sample size
of eQTL data ranging from a few hundreds to tens of
thousands (Gamazon et al., 2015; Gusev et al., 2016) is
not expected to be a severe limiting factor of the power of
TWAS.

For comparison, in Figure 2, we show how
power varies with the increasing sample size in stage 2.

Note that the naive estimator,  θ X X σVar ( ˆ ) = ( ˆ ˆ ) ˆS
T

ω2 2
−1 2 ,

is inversely proportional to n2 since as → ∞n2 ,

→X X( ˆ ˆ ) 0
T
2 2

−1 , while →σ σˆω ω
2 2 . As a result, increasing

the stage 2 sample size will lower the naive variance
estimate; at the same time, although the inflation factor,

∕θ θ σ1 + ˆ Σ̂ ˆ ˆn

n

T
ν ω

22

1
, will increase with n2 , the final variance

 θVar ( ˆ )c of the estimated causal effect θ̂ will decrease

since ∕θ θ σˆ Σ̂ ˆ ˆ
T

ν ω
2 is usually very small (≤0.03). It is clear

that unless the original power is already close to 1, there

will be notable power gains for almost every gene by
increasing n2 , unlike the situation for increasing n1 .

3.2 | Effect of R2 on the power of TWAS

A more important factor determining TWAS power is the
predictive power of gene expression by SNPs in stage 1,
which can be measured by multiple coefficient of
determination, R2. In Figure 3, we show that how TWAS
power varies with R2; the genes are ordered by the power
after increasing the observed R2 by 0.3. We can see that
even 0.1 increase in R2 boosts the power by a large margin;
a 0.3 increase of R2 leads to high power for most of the
genes. Note that for some genes, there is little power gain
because their original R2's are already large (close to 0.95),
leaving barely any room to increase their R2's (since R2

cannot be larger than 1 and we capped any increased R2 at
0.95); in addition, the power of TWAS depends on not
only the R2 in stage 1, but other parameters in stage 2,
such as the sample size, prediction accuracy of the stage 2
model, and the size and variance of the estimated causal
effect, θ̂ . On the other hand, it is worth pointing out that,
by definition, the true R2 for any gene is biologically upper
bounded by its heritability. In other words, if a gene's true
R2 is small, regardless of the sample size n1 , any analysis
method will always be relatively low powered to detect its
association with a trait in stage 2.

3.3 | Power analysis for TWAS‐LQ and
MV‐TWAS

Figure 4 compares the power for different tests in MV‐
TWAS and TWAS‐LQ with that in UV‐TWAS. It can be
seen that, in general, MV‐TWAS/TWAS‐LQ may subs-
tantially increase or decrease the power as compared
with the standard (linear) UV‐TWAS denoted as UV‐L.
For example, when the underlying relationship between
the gene expression and the trait can be approximated by
a quadratic function (when TWAS‐Q or UV‐Q gives a
small p value), including a quadratic term of the gene
expression in TWAS‐LQ will greatly increase the power,
as indicated by panel C in Figure 4. However, in the case
where the quadratic term is not relevant/significant, for
example, the underlying relationship is approximately
linear, UV‐L outperforms TWAS‐LQ. We observe a
similar result for the MV‐TWAS model. When the
expression of the neighbor gene nearest to the target
gene has a great contribution to the trait, MV‐TWAS
outperforms UV‐TWAS; otherwise, we lose power by
including it in the model.
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As an example, consider gene HLA‐DRB5 and its
nearest neighbor gene HLA‐DRB1 in Figure 4(c). When
considered separately, that is, applying the UV‐L model
to each of the two genes, HLA‐DRB5 is significantly
associated with AD with a p value of 4.4e − 6 that can be
detected with power 0.52, while HLA‐DRB1 has a p value
of 3e − 5 and power 0.28. Pearson's correlation between
the predicted expressions of the two genes is 0.21. Given
the small p value of the neighbor gene and the low

correlation between their predicted expressions, incorpo-
rating the neighbor gene into the MV‐TWAS model
boosts the power from 0.52 to 0.83. On the other hand,
gene GLT8D2 has a p value of 2.02e − 10 and power 0.7
under the UV‐L model. However, since its nearest gene,
TDG, has a much larger p value of 0.64, including it in
the MV‐TWAS model decreases the power to 0.03.
Interestingly, there is rarely any notable power decrease
when the high correlation between a target gene and its

(a)

(b)

FIGURE 1 Power of UV‐L with different sample sizes n1 for the ADNI/IGAP data: (a) for all genes with stage 2 p≤0.01 (in stage 2 for
their association with AD); (b) for 15 top genes (marked by the vertical line in panel (a)) with the most significant p≤5.6e − 6, which is the
significance level after the Bonferroni correction. The genes are ordered by the power for “Inf” (i.e., ∞n =1 ); the lines correspond to the
factors by which we increase n1 . AD, Alzheimer's disease; ADNI, Alzheimer's Disease Neuroimaging Initiative; IGAP, International
Genomics of Alzheimer's Project; UV‐L, univariate linear.
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neighbor gene is the only reason. In fact, if both genes
have p values less than or equal to 0.01 under the UV‐L
model, the correlation between their predicted expres-
sions is less than 0.3 in absolute values except for gene
RNASE3, for which the correlation is 0.87. Under the
UV‐L model, RNASE3 and its neighboring gene RNASE2
have p values of 5.6e − 3 and 8.5e − 4, respectively, and
corresponding power of 0.04 and 0.11; in contrast, the
power for their MV‐TWAS model is 0.09, an increase for

RNASE3 but a decrease for RNASE2. The results suggest
that for MV‐TWAS, the relevance of the genes to the
trait has a larger impact on the power than their
correlation.

Tables 1 and 2 list the genes for which there are
relatively larger improvements of power by TWAS‐LQ
and MV‐TWAS over that of UV‐TWAS. The p values, the
power, and the power gained by using TWAS‐LQ/MV‐
TWAS are also listed. As detailed in Section 4, the

(a)

(b)

FIGURE 2 Power of UV‐L with different sample sizes n2 for the ADNI/IGAP data: (a) for all genes with stage 2 p≤0.01 (in stage 2 for
their association with AD); (b) for 15 top genes with the most significant p≤5.6e − 6. 5.6e − 6 is given by the Bonferroni correction. For
comparison, the order of the genes remains the same as in Figure 1 (ordered by the power for “Inf” in Figure 1); the different lines
correspond to the factors by which we increase n2 . AD, Alzheimer's disease; ADNI, Alzheimer's Disease Neuroimaging Initiative; IGAP,
International Genomics of Alzheimer's Project; UV‐L, univariate linear.
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relevance of these genes to AD has been discussed in the
literature.

3.4 | Results for the GTEx and UKB data

We focused on analyzing the effects of sample sizes and R2

with the GTEx and UKB data, and reached the same
conclusions as before. We observed power increases as the
stage 1 sample size was multiplied by a factor of 2, 5, 10, and
50 (Figure 5). Note that the power increased much less from

“5×” to “10×” than from “1×” to “2×” or from “2×” to “5×,”
the same effect on diminishing power gains discussed in
Section 3.1. Recall that the stage 1 sample size n1 was 670,
and the stage 2 sample size n2 was around 200,000. Due
to the large difference in the sample sizes, we needed to
increase n1 by a factor of no more than 50 for the power
to be almost equal to its maximum as if ∞n =1 . The ratio
∕n n1 2 at which the power nearly attained the maximumwas

similar for both data set—roughly 1/6 or 1/7.
The case for n2 was the same as for the ADNI/IGAP

data, see Figure 6. Regardless of the ratio ∕n n1 2 ,

(a)

(b)

FIGURE 3 (a) Power of UV‐L with different R2 for the genes with stage 2 p≤0.01 for the ADNI/IGAP data; (b) the corresponding
baseline R2 for the genes. The genes are ordered by their power for “+ 0.3.” AD, Alzheimer's disease; ADNI, Alzheimer's Disease
Neuroimaging Initiative; IGAP, International Genomics of Alzheimer's Project; UV‐L, univariate linear.
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increasing n2 always resulted in a notable power gain
unless the power was close to 1, in contrast to
diminishing power gains of increasing n1 .

The availability of the estimated expression heritabil-
ity allowed for a more realistic expectation of the upper
bound of the R2 in stage 1 (Wheeler et al., 2016), as
compared with arbitrarily increasing R2 as done for the
ADNI data. In Figure 7 A, we plotted the power
calculated with the estimated heritability and the 95%

CI bounds against the power calculated with the actual
R2 of the fitted model. Panel B compares the estimated
heritability to the R2 of the fitted model. For most genes,
their fitted R2 values were quite close to their heritability
estimates, leading to their similar power curves. Similar
to that observed for the ADNI data, a larger R2 would
always result in a gain in power; how much a larger R2

would improve the power was also dependent on other
factors as discussed in Section 3.2.

(a)

(b)

(c)

(d)

FIGURE 4 Power comparison for genes with stage 2 p ≤ 0.01 for all models with the ADNI/IGAP data: (a) UV‐L versus TWAS‐L versus
MV‐Target; (b) UV‐Q versus TWAS‐Q versus MV‐Alternative; (c) UV‐L versus TWAS‐LQ versus MV‐Joint; (d) UV‐Q versus TWAS‐LQ
versus MV‐Joint. The genes are ordered by the power for the UV‐TWAS models. AD, Alzheimer's disease; ADNI, Alzheimer's Disease
Neuroimaging Initiative; IGAP, International Genomics of Alzheimer's Project; LQ, linear and quadratic; MV, multivariate; TWAS‐L,
Transcriptome‐Wide Association Study linear; UV‐L, univariate linear; UV‐Q, univariate quadratic.
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4 | DISCUSSION

In summary, we have studied the effects of the sample
size and R2 (or more generally, gene expression
heritability) in stage 1 on the power of the standard/
univariate TWAS, and the potential power gains/losses of
multivariate TWAS. The small sample size of the eQTL

data in TWAS may raise concerns on its possibly
diminishing the power of TWAS by inflating the variance
of the causal estimate θ̂ in stage 2. We have shown that,
as expected, increasing the stage 1 sample size would
increase the power, but, perhaps surprisingly, only to a
limited extent: a sample size n1 of eight thousands, only
about 1/7 of the stage 2 sample size, seemed to nearly
reach the power upper bound (when ∞n =1 ) for almost
all the genes in our ADNI/IGAP real data example. This
result is surprising because this sample size n1 in stage 1
is still much smaller than n2 in stage 2. On the other
hand, the effect of the sample size n2 in stage 2 appears to
be of much higher impact. The same conclusions on the
differing effects of the sample sizes in the two stages in
TWAS were reached in the application to the GTEx and
UKB data. These results are in agreement with a recent
empirical study using other omic and GWAS data
(Baranger et al., 2022): using smaller GWAS data in
stage 2 may dramatically hinder any new discovery at the
end for TWAS.

The case for R2, however, is more complicated than
that for the sample size. Whether and how much the
power would increase as a result of a larger R2 depended
on (1) the original (or baseline) R2, (2) the estimated
variance of the causal effect, and (3) the original power.
Generally, if the original power and original R2 were
small, and the estimated variance was large, then one
would benefit more from a larger R2 than otherwise.
However, it is noted that the R2 for any gene is upper
bounded by the heritability of its expression, so it cannot
really be manipulated for real data to increase power.

The multivariate TWAS analysis suggested that
compared with the standard/univariate TWAS model,
including higher‐order terms or information from other
genes could greatly increase the power (or decrease the
power), at least under some realistic configurations
(since the unknown true parameters are estimated from
the real data) as we demonstrated with the real data.
Interestingly, as shown in Tables 1 and 2, many of the
genes with substantial power gains by TWAS‐LQ and
MV‐TWAS over that of the standard UV‐TWAS are
related to AD as discussed in the literature. For example,
the genes in the human leukocyte antigen (HLA)
complex have been considered risk factors of late‐onsite
AD (Mansouri et al., 2015; Steele et al., 2017; Wang et al.,
2020). APOC1 is another widely known gene, related to
APOE, that affects the risk of AD (Q. Zhou & Zhao, 2014;
X. Zhou et al., 2019). On the other hand, it has been
proposed that BIN1 mediates the risk of AD (Chapuis
et al., 2013). The results justified the use of MV‐TWAS
models to identify additional genes that could be missed
by UV‐TWAS, so researchers may consider incorporating
them into their studies.

TABLE 1 Some AD‐associated genes with relatively large
power gains in TWAS‐LQ over UV‐TWAS (UV‐L or UV‐Q) for the
ADNI/IGAP data

Gene Chromosome p value Power Power gain

FAM117B 2 5.2e− 5 0.21 0.06

HLA‐DQA2 6 3.3e− 26 0.99 0.19

HLA‐DQB1 6 2.8e− 5 0.39 0.28

HLA‐DRB1 6 0 1 0.72

HLA‐DRB5 6 8.1e− 8 0.78 0.26

BCL3 19 2.7e− 8 0.41 0.26

CNN2 19 9.2e− 4 0.19 0.04

Note: The p value/power refers to the stage 2 p value/power of TWAS‐L,
TWAS‐Q, or TWAS‐LQ, whichever resulted in a large power gain, which
was calculated by subtracting the power of UV‐TWAS from that of
TWAS‐LQ.
Abbreviations: AD, Alzheimer's disease; ADNI, Alzheimer's Disease
Neuroimaging Initiative; IGAP, International Genomics of Alzheimer's
Project; LQ, linear and quadratic; TWAS‐L, Transcriptome‐Wide
Association Study linear; TWAS‐Q, Transcriptome‐Wide Association Study
quadratic; UV‐L, univariate linear; UV‐Q, univariate quadratic.

TABLE 2 Some AD‐associated genes with relatively large
power gains in MV‐TWAS over UV‐TWAS (UV‐L or UV‐Q) for the
ADNI/IGAP data

Gene Chromosome p value Power
Power
gain

BIN1 2 3.8e− 15 0.75 0.07

HLA‐DQA2 6 7.1e− 30 0.99 0.18

HLA‐DQB1 6 5.3e− 22 0.99 0.89

HLA‐DRB1 6 1.6e− 16 0.99 0.71

HLA‐DRB5 6 1.1e− 8 0.83 0.31

APOC1P1 19 1.01e− 61 1 0.08

Note: The p value/power refers to the stage 2 p value/power of MV‐Target,
MV‐Alternative, or MV‐Joint, whichever resulted in a large power gain,
which was calculated by subtracting the power of UV‐TWAS from that of
MV‐TWAS.

Abbreviations: AD, Alzheimer's disease; ADNI, Alzheimer's Disease
Neuroimaging Initiative; IGAP, International Genomics of Alzheimer's
Project; LQ, linear and quadratic; MV, multivariate; TWAS‐L,
Transcriptome‐Wide Association Study linear; TWAS‐Q, Transcriptome‐
Wide Association Study quadratic; UV‐L, univariate linear; UV‐Q,
univariate quadratic.
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Although power analysis for TWAS methods has
gained some attention in the literature, to the best of our
knowledge, none of the studies addressed the issues
discussed in this paper. For example, a recent study
inspected the effects of prediction accuracy of the stage 1
model on the TWAS power (Cao et al., 2021). However,
they did not directly examine the effect of R2 on the
power, but instead focused on the influence of replacing
predicted gene expression with observed gene expression.
Other studies either compared TWAS methods with

GWAS, or focused on closely related MR analyses (L.
Deng et al., 2020; Veturi & Ritchie, 2018). In particular,
these studies assumed a univariate, linear stage 2 model
and conducted simulations, instead of using real data to
generate more realistic parameters for analysis. Impor-
tantly, we expect that the current study will be useful in
offering a general approach to sample size/power
calculations for both univariate and multivariate TWAS.

There are a few limitations of this study. First, we
did not account for potential horizontal pleiotropy

(a)

(b)

FIGURE 5 Power of UV‐L with different sample sizes n1 for the GTEx/UKB data. (a) Top 142 genes with the significant p values
(≤4.36e − 6). (b) A selected set of 24 genes with the significant p values, leading to a relatively smooth baseline power curve for better
visualization. 4.3e − 6 is the significance level after the Bonferroni correction. The genes are ordered by the power for “Inf” (i.e., ∞n =1 );
the lines correspond to the factors by which we increase n1 . GTEx, Genotype‐Tissue Expression; UKB, UK Biobank; UV‐L, univariate linear.
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where genetic variants contribute to both gene expres-
sion levels and traits directly, leading to a biased causal
estimate if not suitably accounted (Y. Deng & Pan, 2021;
Lin et al., 2022). Second, one could consider nonlinear
or nonparametric models like random forest (Breiman,
2001), gradient boosting machines (Friedman, 2001), or
other machine learning methods (Okoro et al., 2021) to
boost the prediction accuracy in stage 1, to which the

analysis presented here no longer applies because of our
adopted linear models in stage 1. Third, perhaps most
importantly, some specific results (e.g., required n1 or
the ratio of ∕n n1 2 ) may change if different eQTL
and GWAS data are considered, though we do not
expect that our general conclusions (as discussed in the
first three paragraphs in this section) will change
dramatically.

(a)

(b)

FIGURE 6 Power of UV‐L with different sample sizes n2 for the GTEx/UKB data. (a) Top 142 genes with the significant p≤4.36e − 6.
(b) A selected set of 24 genes with the significant p values, leading to a relatively smooth baseline power curve for better visualization.
4.3e − 6 is the significance level after the Bonferroni correction; For comparison with Figure 5, the order of the genes remains the same
(ordered by the power for “Inf” in Figure 5); the different lines correspond to the factors by which we increase n2 . GTEx, Genotype‐Tissue
Expression; UKB, UK Biobank; UV‐L, univariate linear.
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