
Journal of

Clinical Medicine

Article

Risk-Aware Machine Learning Classifier for Skin
Lesion Diagnosis

Aryan Mobiny * , Aditi Singh and Hien Van Nguyen

Department of Electrical and Computer Engineering, University of Houston, Houston, TX 77004, USA
* Correspondence: amobiny@uh.edu

Received: 16 June 2019; Accepted: 15 August 2019; Published: 17 August 2019
����������
�������

Abstract: Knowing when a machine learning system is not confident about its prediction is crucial
in medical domains where safety is critical. Ideally, a machine learning algorithm should make
a prediction only when it is highly certain about its competency, and refer the case to physicians
otherwise. In this paper, we investigate how Bayesian deep learning can improve the performance
of the machine–physician team in the skin lesion classification task. We used the publicly available
HAM10000 dataset, which includes samples from seven common skin lesion categories: Melanoma
(MEL), Melanocytic Nevi (NV), Basal Cell Carcinoma (BCC), Actinic Keratoses and Intraepithelial
Carcinoma (AKIEC), Benign Keratosis (BKL), Dermatofibroma (DF), and Vascular (VASC) lesions.
Our experimental results show that Bayesian deep networks can boost the diagnostic performance of
the standard DenseNet-169 model from 81.35% to 83.59% without incurring additional parameters or
heavy computation. More importantly, a hybrid physician–machine workflow reaches a classification
accuracy of 90% while only referring 35% of the cases to physicians. The findings are expected to
generalize to other medical diagnosis applications. We believe that the availability of risk-aware
machine learning methods will enable a wider adoption of machine learning technology in clinical
settings.

Keywords: Bayesian deep network; model uncertainty; Monte Carlo dropout; physician-friendly
machine learning; skin lesion

1. Introduction

In recent years, deep neural networks (DNNs) have gained tremendous attention and shown
outstanding performances in many different computer vision tasks. These models are composed
of stacks of processing layers to learn powerful representations from high-dimensional input data
with multiple levels of abstraction [1]. Such models have quickly found their path to medical
imaging and analysis applications such as lung nodule detection and classification in lung computed
tomography (CT) scans [2,3], cancer detection in infrared spectroscopic images [4], and cerebral
microbleeds detection in magnetic resonance (MR) images [5]. Deep networks have even matched
or surpassed human-level performance in tasks such as diabetic retinopathy detection [6] and skin
lesion classification [7]. Such systems can be employed to detect patients at risk from a prescreening
examination, thus considerably decrease the physicians’ workload and diagnostic errors.

Computer-aided diagnosis (CAD) systems utilize sophisticated image processing and artificial
intelligence techniques to assist doctors in the interpretation of medical images. Physicians use the
output of CAD as a second opinion to improve the overall diagnosis performance by drawing the expert
attention to abnormalities they overlooked, prompting them to re-evaluate the cases that might have
been initially diagnosed incorrectly, and alleviating the inter-observer variability [8]. However, despite
the recent successes reported in the literature, DNNs have not been extensively adopted in clinical
settings thus far. One reason is that most of the existing studies focused on improving the stand-alone
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performance of CADs and comparing it against the human expert. However, the performance of
CAD does not necessarily have to be comparable to or better than that by physicians, but needs to
be complementary to that by physicians [8,9]. As a result, optimizing the quality of the interaction
between physicians and CAD systems as a team is often overlooked.

Another reason for the slow uptake of the automated CAD systems is that DNN-based models
tend to fail silently and have no risk-management mechanism [10,11]. In other words, they cannot
inform doctors when they are not confident about their predictions. This raises the concern about
the reliability of automated systems in real-life settings and situations with the possibility to become
life-threatening to humans such as automated decision making or recommendation systems in the
medical domain. An automated cancer detection system, for example, could encounter test examples
which lie outside of its data distribution, thus make unreasonable suggestions and create harmful
biases on physicians’ decisions. It is therefore desirable for DNNs to provide uncertainty measure in
addition to the diagnostic decisions. Given this uncertainty measure, a physician could be informed at
times when the system is essentially guessing at random [12,13].

This paper presents a lightweight, scalable CAD system which outputs an uncertainty estimate in
the automated skin lesion diagnosis task (Figure 1). Based on this uncertainty, we investigate a hybrid
physician–machine workflow where computers examine the majority of skin images and refer only
difficult samples (i.e., predictions with lower confidence) to dermatologists for inspection. Displaying
a confidence measure for each prediction facilitates more appropriate trust because physicians are
less inclined to trust CAD diagnoses when they know that CAD does not have high confidence in it.
Our model is simple to implement and incurs no additional complexity to the existing deep networks.
The main contributions of this paper can be summarized as follows:

certain?

accept

YES
NO

input images refer to 
phycisiandistributions

output predictiverisk-aware 
Bayesian model

Figure 1. Processing pipeline of the proposed risk-aware Bayesian model. The Bayesian model
outputs one predictive distribution per class (instead of the scalar outputs of the standard networks)
whose mean and dispersion represents the network prediction and uncertainty, respectively. In the
far right panel, the green (red) borders of the images illustrate the correct (incorrect) predictions of
the automated model which is not always available as it requires manual annotation of samples by
medical experts. The green (red) shaded areas, in contrast, depicts the regions where the model is
certain (uncertain) about its prediction. Uncertainty is the natural output of the Bayesian model which
serves as complementary information to refer the uncertain samples to experts and improve the overall
prediction performance of the automated system.

1. We propose a DNN-based CAD model that uses approximate Bayesian inference to output
an uncertainty estimate along with its prediction in skin lesion classification. The proposed
framework is general enough to support a wide variety of medical machine learning tasks and
applications. Our results demonstrate the effectiveness of the confidence ratings in improving
the diagnosis performance of the CAD–physician team and reducing the physician workload.

2. We formulate metrics to evaluate the uncertainty estimation performance of the Bayesian
models. These metrics provide us with an informative tool to compare the quality of uncertainty
estimations obtained from various models. Moreover, they provide hints for choosing an
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appropriate uncertainty threshold to reject samples and refer them to the physician for
further inspection.

3. We provide in-depth analysis to show that the uncertainty-aware referral system via the Bayesian
deep networks is effective for improving the team diagnosis accuracy on NV, BCC, AKIEC, BKL,
and VASC lesion types.

The rest of this paper is organized as follows: Works related to uncertainty estimation and skin
lesion classification are presented in Section 2. Section 3 explains the method used to approximate
variational inference in Bayesian deep networks and generate uncertainty estimates for the skin lesion
classification task. Data description and preparation is provided in Section 4. Experimental results
are presented in Section 5 and discussed in Section 6. Section 7 concludes the paper with future
research directions.

2. Related Work

2.1. Physician–CAD Interaction

Similar to the synergy between human experts in a multiple-reading setting, the combination of a
physician (or a team of physicians) and CAD system creates a diagnostic team [9]. Many studies have
shown the superior diagnostic performance of the CAD–physician team compared to the stand-alone
physician performance [14–16]. However, there are studies that found CADs to have no benefit on
experts’ diagnostic performance [17,18]. Observer studies show that the human experts’ level of trust
in the CAD system is a key factor in improving team performance [9]. Doctors sometimes under-trust,
CADs which consequently prevents them from utilizing their benefits. On the other hand, over-trust in
automation leads to making diagnostic errors that would not have happened without CAD [18].

The way the output of CAD systems is presented to the human expert is a determining factor
in building the appropriate level of trust and optimizing the team performance. Conventional CAD
systems have a certain response criterion. The structure in the input image is considered normal or
abnormal based on whether the extracted information meets the criterion or not. However, most
CAD systems do not express their confidence to the predicted response, thus may unreasonably
bias the physicians’ decision-making [9]. Various studies have found that doctors might put too
much trust in CAD, thus accept many of the CAD predictions which decreases the overall diagnostic
performance [18]. For example, Alberdi et al. [19] found that radiologists put too much trust in the
CAD’s ability to detect abnormalities which eventually caused the radiologists assisted by CAD to
have lower sensitivity than unaided radiologists.

Displaying a confidence measure along with the conventional CAD prediction can help physicians
to adapt their trust according to the model confidence. Therefore, they can rely less on automation when
it is less confident and vice versa. Several studies found that radiologists’ classification performance of
lung nodules improved when they were assisted that provided a malignancy likelihood [20,21]. Similar
observations were also reported for breast mass classification [22,23]. This shows that estimating
the uncertainty of the automated model can be useful; however, it has been often overlooked
when designing deep neural networks (DNN) models for health-care. Leibig et al. [12] found that
uncertainty estimates can provide useful information in the task of diabetic retinopathy classification
to reject the predictions when the network is uncertain. However, they did not evaluate the effect
of uncertainty-informed referral in the CAD–physician team diagnostic performance. In this paper,
we propose a DNN-based CAD system that outputs a precise confidence estimate along with its
prediction for the skin lesion classification task. We then exploit the model uncertainty to evaluate the
stand-alone performance of the CAD and compare it with that of the CAD–physician team to display
its practical effectiveness.
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2.2. Skin Lesion Diagnosis

Skin cancer, including both malignant melanoma and non-melanoma, is consistently ranked
among the most widespread types of cancer in the past several years [24]. According to Bray et al. [25],
skin cancer accounts for more than 7.5% of all new cancer cases and 1.3% of cancer-related deaths
reported all around the world in 2018.

Computer-aided diagnosis (CAD) systems aim to improve the human experts’ performance in
terms of diagnostic accuracy and speed by alleviating the inter-observer variability and addressing the
limited availability of trained experts [26]. Performance of the conventional CAD systems relied on
the intermediate image processing stages such as extraction of hand-crafted features [27,28]. In recent
years, deep learning-based approaches have attracted considerable interest in the computer vision
and machine learning community including the medical imaging domain [29–31]. Convolutional
neural networks (CNN) can automatically extract the higher-level representations directly from raw
input images [32]. These models have been adopted and used in an end-to-end fashion in the skin
lesion diagnosis task [33,34]. Esteva et al. [7] achieved dermatologists-level diagnosis performance
using an enormous dataset and a standard Inception-v3 [35] architecture. Later, Gessert et al. [36]
employed an ensemble of CNNs and achieved the best performance on a much smaller dataset
(HAM 10000 [37]) for the ISIC 2018 Skin Lesion Diagnosis challenge. Despite the recent successes in
improving the stand-alone diagnostic performance of the DNN-based automated models, to the best of
our knowledge, there has been no study on how machine and dermatologists work together as a team.

2.3. Uncertainty Estimation

In the context of machine learning, knowing when an autonomous model is uncertain, and thus
likely to make an incorrect prediction is important; especially in medical diagnosis where safety is
critical. Generally, there are two types of uncertainty in Bayesian modeling [38]. Model uncertainty,
also known as Epistemic uncertainty, measures what the model does not know due to the lack of
training data. This uncertainty captures our ignorance about which model generated our collected
data, thus can be explained away given enough data [39]. Aleatoric uncertainty, however, captures
noise (such as motion or sensor noise) inherent in the data and cannot be reduced by collecting more
data [40]. Studies have used different methods such as test-time data augmentation [41] and directly
learning a mapping from the input data [40] to reliably estimate the input-dependent predictive
uncertainty of deep neural networks. In this paper, we mainly focus on the former type of uncertainty
as medical data are often scarce, making the model uncertainty the dominant mode.

Traditionally, most of the studies on epistemic uncertainty estimation are inspired by Bayesian
inference with Bayesian Neural Network (BNN) [42] as the classic example of such models. BNNs are
the probabilistic variant of the traditional neural networks which attempt to produce a distribution
over the output for any given input. However, such models are computationally expensive in
practice due to a large number of parameters of neural networks, as well as the computationally
intractable inference of the model posterior. Thus, much effort has been spent on developing
scalable, approximate BNNs [43–46]. Variational inference is the most common approach used for
approximating the model posterior using a simple variational distribution such as Gaussian [46].
The parameters of the distribution are then set in a way that it is as similar as possible to the true
distribution. However, the use of the Gaussian distribution considerably increases the required number
of parameters and makes it computationally expensive. Gal et al. [39] showed that Dropout [47],
a regularization technique commonly used in DNNs, is equivalent to approximate variational inference
in the deep Gaussian process [48]. This technique has been widely adopted and used in various
medical applications where safety is crucial. For instance, it has been shown to reliably estimate the
prediction uncertainty in drug discovery [49] and diabetic retinopathy [12]. In the segmentation setting,
DeVries et al. [50] demonstrated that such uncertainty estimates can be exploited for predicting the
segmentation quality of the skin lesions. A potential disadvantage of MC-Dropout method is that it
often requires many forward-pass samplings, which makes it computationally expensive [51]. Another
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approach to estimate uncertainty is Multiplicative Normalizing Flows [52], which does not scale to
very large convolutional networks. An alternative method is named Deep Ensembles [53], which trains
several models and uses the variance of the output predictions as uncertainty estimates. However, this
technique is quite resource-intensive as it requires storing several separate models and performing
forward-passes through all of them to make the inference.

3. Materials and Methods

3.1. Uncertainty Estimation via Bayesian Neural Networks

Theoretically, training a standard neural network with L layer parameterized by the weights
is equivalent to the maximum likelihood estimation (MLE) of the network parameters, resulting
in a single set of best parameters. However, using such point estimates ignores any uncertainty
that we may have in the proper weight values [54]. A Bayesian neural network is the probabilistic
version of the artificial neural networks which places a prior distribution (often a Gaussian) over
the network’s parameter [42] and outputs a probability distribution over model parameters that
expresses our belief regarding how likely the different model parameter values are. Therefore, given
a new test sample, a Bayesian neural network outputs a predictive posterior distribution over class
membership probabilities by integrating over the posterior. Moreover, the dispersion of this predictive
posterior reflects the reliability of the predictions, yielding the model’s uncertainty to its predictions.
Such information is not available in a standard network as it only outputs a single value specifying
such prediction.

In a Bayesian network, predicting the unknown label is equivalent to using an ensemble
of an infinite number of neural networks with various configuration of the weights. This is
computationally intractable for neural networks with any size. Therefore, so much effort has been put
into approximating Bayesian deep networks to make them easier to train [55,56]. However, some of
the approximation methods do not scale to very large convolutional networks and datasets.

3.2. MC-Dropout for Bayesian Neural Network Approximation

Recently, Gal et al. [39] showed that a feed-forward neural network (i.e., cascade of densely
connected layers) with an arbitrary number of layers, arbitrary non-linearities, and dropout [47]
applied to all the units is mathematically equivalent to approximate variational inference in the deep
Gaussian Process model [48]. This idea is later extended to convolutional neural networks showing
that dropout can be used at test time to impose a Bernoulli distribution over the weights of the
convolutional neural network to obtain an approximation to the predictive posterior distribution
without requiring any additional model parameters [51].

Dropout is a technique used in many deep models to avoid over-fitting in which the units of a
neural network are randomly dropped (i.e., its activation is set to zero) with probability pdrop. This
method, called Monte Carlo (MC) Dropout, suggests that dropout approximately integrates over
the model’s weights, yielding an interpretation of the model uncertainty. In practice, implementing
the MC-Dropout technique is straightforward as many modern neural network architectures already
leverage dropout for regularization purposes. In a standard neural network with dropout, each unit is
randomly dropped with probability pdrop at training time. At test time, the dropout is switched off,
meaning that the units are always present and the weights are multiplied by (1− pdrop) [47].

In contrast to standard networks, when using the MC-Dropout method to obtain the model
uncertainty for a given test sample x∗, the dropout mechanism is kept on and the prediction
(i.e., forward pass) is performed multiple times. This process is commonly referred to as Monte
Carlo sampling over the network parameters and results in an approximate predictive posterior
distribution. The predictive mean (µpred) over the Monte Carlo iterations is then used as the final
prediction on the test sample:
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µpred ≈
1
T

T

∑
t=1

p(y∗|x∗, ŵt) (1)

where T is the total number of MC sampling iterations and ŵt is the shorthand notation for the weights
of the network with dropout imposed to its units in the tth MC iteration (i.e., the tth forward pass).
For each test sample x∗, the class with the largest predictive mean (µpred) is selected as the output
prediction. On the other hand, the dispersion of the distribution of predictions is a reasonable proxy
for the model uncertainty. Similar to Gal et al. [10], we use predictive entropy (H) to quantify the
model uncertainty as:

H(y∗|x∗,D) = −∑
c

p(y∗ = c|x∗,D) log p(y∗ = c|x∗,D) (2)

where c ranges over all classes. Generally, the range of the obtained uncertainty values is not fixed
across different datasets, network architectures, number of MC sampling, etc. Therefore, we use the
normalized entropy Hnorm ∈ [0, 1] computed as Hnorm = H−Hmin

Hmax−Hmin
to report our results and facilitate

the comparison across various sets and configurations.

3.3. Uncertainty Evaluation Metrics

The MC-Dropout technique provides a lightweight, scalable approach to estimate the uncertainty
in deep neural networks. However, quantitative evaluation of the resulted uncertainty values is
challenging. This is because unlike model predictions, there is no ground truth for the uncertainty
estimates. Here, we propose metrics to evaluate the uncertainty estimation performance of the
Bayesian frameworks. These metrics require only the ground truth label of the sample, the model
prediction and the estimated uncertainty value, Hnorm. Predictions can simply be divided to correct
and incorrect by matching the ground truth and the model prediction. Likewise, we can apply
a threshold HT ∈ [0, 1] on the continuous uncertainty estimation values of Hnorm to split the
predictions into certain (Hnorm < HT) and uncertain (Hnorm > HT) groups. Therefore, when making
inference in the Bayesian setting, we generally face four scenarios which are incorrect-uncertain (iu),
correct-uncertain (cu), correct-certain (cc), and incorrect-certain (ic) predictions.

In a Bayesian framework, if high model uncertainty is indicative of erroneous predictions, it can
be leveraged to mimic the clinical workflow and select proper subsets of the samples with uncertain
diagnoses for further testing by an expert. This procedure will eventually increase the prediction
performance of the automated system, thus builds the experts’ trust in such systems. More specifically,
we want the final automated system to:

Proposition 1. Predict correctly if it is certain about its prediction.

Proposition 2. Be uncertain if the prediction is incorrect.

It should be noted that the converse of the above two assumptions is not necessarily the case.
In other words, if a model is making a correct prediction on a sample, it does not necessarily require
to be certain on the same. A model might, for instance, correctly detect an object, but with relatively
higher uncertainty. This can happen if the instance is rarely presented to the model in such pose or
condition. The above propositions can be summarized as the following conditional probabilities:

PHT (correct|certain) =
P(correct, certain)

P(certain)
=

Ncc

Ncc + Nic
= Rcc(HT) (3)

PHT (uncertain|incorrect) =
P(uncertain, incorrect)

P(incorrect)
=

Niu
Niu + Nic

= Riu(HT) (4)
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where N and R represent the count and ratio for each combination. We can also measure the overall
accuracy of the uncertainty estimation as the ratio of the desired cases (i.e., correct-certain and
incorrect-uncertain) over all possible cases. We call this metric Uncertainty Accuracy (UA) and
define it as:

UA(HT) =
Ncc + Niu

Ncc + Niu + Ncu + Nic
(5)

Higher values of these metrics correspond to the model that performs better. Note that the above
three metrics are defined as functions of HT as their value changes with uncertainty threshold, HT .
After computing the uncertainty estimation Hnorm for an input image, the prediction is certain if
Hnorm < HT , and uncertain if Hnorm > HT at each threshold HT . Therefore, the value of the proposed
metrics can be used to set a proper threshold and refer appropriate subsets for further inspection by
medical experts.

3.4. Approximate Bayesian Network Building Strategy

We considered several popular, state-of-the-art deep neural network architectures in our
experiments, including VGG-16 [57], ResNet-50 [58], and DenseNet-169 [59]. The fully Bayesian
variant of these networks should be trained with dropout after every convolutional and fully-connected
layer [39]. However, it has been shown that in practice it is too strong a regularizer that decelerates the
training and eventually deteriorates the prediction performance of the model [51,60]. Therefore, we
quantitatively analyzed the performance of several Bayesian variants with different configurations to
find the ones with the best prediction performance in the classification task in hand. While there are an
infinite number of possible configurations to examine, we investigated a handful of plausible ones
to find the sub-optimal configurations by: (1) inserting/removing the dropout at different network
locations; and (2) grid search on the dropout ratio with pdrop ∈ [0.1, 0.9] with step sizes of 0.1.

The overall architecture of the final Bayesian DenseNet-169 model and its building blocks are
presented in Figure 2 as the network which achieves the best performance in the lesion classification
task (see Section 5 for detailed information on the results). Note that all Bayesian networks used in our
study are actually approximate Bayesian models (as the exact Bayesian inference is computationally
intractable for NNs). However, we drop the term “approximate” to avoid redundancy as is usually
done in the literature. The standard DenseNet-169 network is composed of four Dense Blocks (DB)
with a growth rate of 32 (see Table 1 in [59] for more detailed information). Each DB is followed
by a convolution and average pooling pairs which together compress the information by reducing
the spatial dimension and number of feature maps by half. The four DBs are composed of 6, 12, 32,
and 32 bottleneck blocks, respectively. The bottleneck block was initially proposed by He et al. [58]
and includes two convolution layers with filter sizes of 1 and 3, respectively. A global average pooling
layer is used after the last DB, followed by fully-connected layers with, respectively, 128 and 7 (the
total number of classes) units.
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(k=7)

Dropout (pdrop=0.5)

fully-connected layer (h=
128)

Concatenate

k=
1

k=
1

k=
1

k=7, s
=2

Figure 2. Schematic of the Bayesian DenseNet-169 architecture. The diagram shows the entire pipeline
for the system which is trained end-to-end. Instead of a single scalar, Bayesian network outputs a
predictive distribution per class whose mean and dispersion represents the network prediction and
uncertainty, respectively. The number in the dense blocks corresponds to the number of bottleneck
block within that dense block. k: kernel size, s: stride, nk: number of convolutional kernels, GR: growth
rate [59].

3.5. Training Procedure

As can be seen in Table 1, the strong class imbalance is a major challenge to be taken care of when
dealing with this dataset. Therefore, we used loss balancing to compensate for the class imbalance.
The utilized weighted cross-entropy loss function is defined as:

L = −
C

∑
c=1

wc yc log pc (6)

where c is the class index, C is the total number of classes, yc is the ground truth label, and pc is
the softmax-normalized model prediction. wc is the weight multiplied by the loss of class c and is
defined as:

wc =
N

C× Nc
(7)

with N as the total number of training samples and Nc the number of training samples in class c.
Intuitively, this weighting strategy puts a stronger weight on the classes with fewer samples, thus puts
more force on the network to predict them correctly.

Table 1. Class Distribution of HAM10000 dataset [37].

Lesion Type MEL NV BCC AKIEC BKL DF VASC Total

Number of samples 1113 6705 514 327 1099 115 142 10,015

We trained the network to minimize the weighted cross-entropy loss using ADAM [61] optimizer.
We started the training with an initial learning rate of 0.001 and reduced it with a factor of 0.2 after
each 10 epoch following a step-wise approach. Batch size was set to 128 and training was performed
for the maximum of 100 epochs. We evaluated the validation accuracy after every epoch and saved the
model with the best prediction accuracy on the validation set.
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4. Data

4.1. Data Description

We used the publicly available HAM10000 (Human Against Machine with 10,000 training
images) [37] dataset for evaluating the accuracy of the automated diagnosis of pigmented skin lesions.
This dataset contains 10,015 dermatoscopic images of the most important diagnostic categories in the
realm of pigmented lesions collected from a diverse population and different modalities. Images are
labeled by expert pathologists as one of the seven categories of Melanoma (MEL), Melanocytic Nevi
(NV), Basal Cell Carcinoma (BCC), Actinic Keratoses and Intraepithelial Carcinoma (AKIEC), Benign
Keratosis (BKL), Dermatofibroma (DF), and Vascular lesions (VASC). Example images of each of the
seven lesion types and the number of available samples of each lesion type are shown in Figure 3 and
Table 1.

MEL NV BCC AKIEC BKL DF VASC

Figure 3. Illustrating examples from all of the pigmented skin lesion categories in the HAM dataset,
including Melanoma (MEL), Melanocytic Nevi (NV), Basal Cell Carcinoma (BCC), Actinic Keratoses
and Intraepithelial Carcinoma (AKIEC), Benign Keratosis (BKL), Dermatofibroma (DF), and Vascular
lesions (VASC) classes.

4.2. Data Preparation

The original images are of size 600× 450 pixels. We, however, resized all images to 224× 224 pixels
(using a bicubic interpolation over 4× 4 pixel neighborhood), which is the common size used in
ImageNet [62] challenge. This reduces the computational cost of the model and allows initializing
the model parameters with those of the models pre-trained on ImageNet. The images were then
standardized channel-wise using the mean and standard deviation values of the ImageNet dataset.

We initially split the whole dataset into training (80% of samples per class) and test (the remaining
20%) sets. We also made sure that images from the same lesion cannot occur in both training and test
splits according to the information provided by the organizers [37]. At training time, we performed
five-fold cross-validation where each fold includes an equal number of samples from each class.
This means that the whole training set was randomly divided into training and validation sets five
times and then a neural network was trained on each. Real-time data augmentation was also applied
during training to mitigate over-fitting and improve the generalization of the model. Training images
were randomly flipped along horizontal and vertical axes with a probability of 0.5, shifted along both
axes, distorted with random changes in brightness and saturation, and randomly rotated around the
center. At test time, each of the five trained models was evaluated on the disjoint test set and the final
results are reported as the mean and standard deviation over the prediction accuracies.
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5. Experimental Results

We start by describing the final Bayesian designs, evaluating their prediction accuracy and
convergence performance. We also compare the performance of our proposed methods with that
of the state-of-the-art (non-Bayesian) models used in other studies. Then, we analyze the obtained
model uncertainty to see if it is useful for ranking the sample predictions, referring them for further
inspection and correction, and improving the overall model performance. We finally shed light on the
black box of the proposed Bayesian network to find the underlying causes of model uncertainty.

5.1. Bayesian Architecture Designs

We analyzed distinct probabilistic versions of the VGG-16, ResNet-50, and DenseNet-169
architectures according to the criteria explained in Section 3.4 to find the approximate Bayesian
variants with the best prediction performance. Our experiments show that applying dropout to the
initial convolution layers deteriorates the prediction performance of the networks regardless of the
model architecture. Moreover, we observed that the ideal placement and ratio of the dropout layers
depends on the model architecture. For VGG-16, the best prediction performance is achieved by
placing the dropout layer with pdrop = 0.2 before all max-pooling layers except the first one. We,
however, achieve the best performance by dropouts applied after the residual and dense blocks of
the ResNet-50 and DenseNet-169 with pdrop = 0.4 and pdrop = 0.5, respectively (see Appendix A.2 for
more details on the final Bayesian architectures).

For each network, we also assessed the value of using pre-trained architectures. To do so, all
network parameters were initialized by the weights of the model pre-trained on ImageNet [62],
except the weights of the fully-connected layers, which were initialized randomly according to
He et al. [63]. Similar to Gessert et al. [36], we found that fine-tuning the models pre-trained on
ImageNet significantly outperforms the models trained from scratch.

5.2. Prediction Performance of the Bayesian Models

In this section, we investigate the inference performance of the proposed models and compare
the prediction performance of our models with those achieved in other studies for the skin lesion
classification task.

Table 2 summarizes the prediction accuracy of our implemented models (bottom), as well as
that of the state-of-the-art models proposed in other studies (top). Among our models, Bayesian
DenseNet-169 significantly outperforms the rest of the models. It also performs on par with or
marginally better than the state-of-the-art models, except some of the models presented in [36], which
exploit additional auxiliary processing stages to improve the performance (such as working with
crops of the high-resolution images instead of down-sampling, conducting an extensive multi-crop
evaluation, employing an ensemble of CNNs and a meta-learning step via training an auxiliary SVM
classifier). However, as shown in the subsequent sections, our proposed Bayesian model is able to
exceed their performance using uncertainty-aware referrals.

Figure 4a illustrates the prediction performance of the Bayesian networks (as well as their
non-Bayesian variant shown by dotted lines with the same color) for the different number of
Monte Carlo simulations (T). Interestingly, the Bayesian DenseNet-169 outperforms the standard
DenseNet-169 model after only two MC samples. Note that adding the Bayesian inference
(i.e., MC-Dropout sampling) boosts the diagnostic performance of all three standard networks, with the
Bayesian DenseNet-169 model performance improving by 2.24%. Moreover, Bayesian DenseNet-169
performs significantly more accurate than the other two Bayesian models at all Ts. It also converges
faster and achieves its lowest prediction error of 16.41% (classification accuracy of 83.59%) after
only 10 samples while this number is 27 and 18 for Bayesian VGG-16 and ResNet-50, respectively.
The normalized confusion matrix of the Bayesian DenseNet-169 at T = 10 is depicted in Figure 4b
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showing its per-class performance. We used this configuration as our best performing model for
generating the results and analyses presented in the subsequent sections.

Table 2. Quantitative comparison of the implemented models in skin lesion classification of HAM
dataset. The ∗ sign on some models shows that auxiliary processing stages and methods were exploited
to improve the performance. Our models are shown in bold. T∗ represents the required number of
Monte Carlo simulations to achieve the best performance in the Bayesian networks.

Method % Prediction Accuracy (±std)

PNASNet [64] 76.00
ResNet-50 + gcForest [65] 80.04

VGG-16 + GoogLeNet Ensemble [66] 81.50
Densenet-121 with SVM ∗ [36] 82.70

Densenet-169 ∗ [36] 85.20

VGG-16 79.63 (±0.25)
ResNet-50 80.45 (±0.21)

DenseNet-169 81.35 (±0.14)
Bayesian VGG-16 (T∗ = 27) 81.02 (±0.22)

Bayesian ResNet-50 (T∗ = 18) 82.37 (±0.14)
Bayesian DenseNet-169 (T∗ = 10) 83.59 (±0.17)
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Figure 4. Test predictive performance of the Bayesian models in skin lesion classification. (a) Test
prediction error of the Bayesian frameworks at different numbers of MC iterations (i.e., forward passes).
The best result is achieved via Bayesian DenseNet-169 at 10 MC sampling. The shaded area around
the curves shows one standard deviation. The dotted lines show the test error for the best standard
(i.e., non-Bayesian) counterparts in the same color. (b) Normalized confusion matrix of the Bayesian
DenseNet-169 on test data with 10 MC sampling.

5.3. Uncertainty Estimation Performance of the Bayesian Models

In this section, we analyze the uncertainty estimation performance of the proposed Bayesian
frameworks. We first describe how to generate and interpret the output predictive distributions (one
per output class), and then use them to compute the model prediction score (µpred) and uncertainty
(Hnorm). Finally, we perform an experiment to show that the model uncertainty measurements are often
higher for incorrect predictions. This eventually implies that the model uncertainty could be exploited
to mimic the clinical workflow and refer samples with uncertain diagnoses for further analysis to
improve the overall diagnostic performance of the physician–machine team.
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In a standard neural network classifier, we obtain a single probability vector (of size equal to the
number of classes) per input sample by applying a softmax normalization at the end of the network.
In a MC-Dropout approximated Bayesian model, however, we obtain a predictive posterior distribution
per output class by simply leaving the drop out on at test time. In other words, when the dropout
is on, each forward pass results in a sample from the predictive posterior distributions. Figure 5
shows example input images and the corresponding predictive distributions generated by Bayesian
DenseNet-169. While Bayesian model outputs seven distributions (one per output class), we only
display the distributions associated with the true (in green) and predicted class (in red; only if the
sample is misclassified). For each input sample, the class with the largest output distribution mean
is selected as the output prediction and the dispersion of the output distributions (measured as in
Equation (2)) depicts the model uncertainty. Intuitively, the wider the output posterior distributions of
all classes, the less confident is the model in the prediction. For example, Figure 4d shows a correctly
classified sample where the model is certain about its prediction (Hnorm = 0.01). In contrast, Figure 5i
shows a correctly classified sample where the model is completely uncertain (Hnorm = 1.00).
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Figure 5. Illustrating sample output posterior distributions and the corresponding uncertainty
estimates using the Bayesian DenseNet-169. The Bayesian inference outputs a posterior distribution
(p(y|X)) per class where X represents the input image. We present the posterior distribution of the
correct (in green) and incorrect (in red) classes. Predictions are grouped into incorrect–uncertain
(a–c), correct–certain (d–f), correct–uncertain (g–i), and incorrect–certain (j–l) categories at threshold
HT = 0.5. Note that Kernel density estimation with a Gaussian kernel is used to plot the output
posterior distributions, for which the bandwidth was chosen according to Scott’s method [67].

Given the prediction scores (µpred) and the normalized uncertainty estimates (Hnorm), we can
group the model predictions to incorrect–uncertain (iu), correct–uncertain (cu), correct–certain (cc) and
incorrect–certain (ic) according to the criteria explained in Section 3.3. These groups are presented
in Figure 5. As an example, a sample is grouped as “iu” if the prediction is wrong and the model is
uncertain as well. While the ground truth label is not always available at test time, the estimated model
uncertainty can serve as an informative hint to detect such predictions and refer them to medical
experts. However, this statement is true only if high model uncertainty is indicative of incorrect
predictions. This can be summarized as the two propositions presented in Section 3.3. Therefore, in a
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well-designed Bayesian model which satisfies these conditions, such uncertainty-aware predictions
add complementary information to the output of the conventional deep networks and can be leveraged
to increase the overall performance of the automated systems.

To check if our model satisfies the mentioned propositions, we plot the distribution of the
uncertainty estimates for correct and incorrect predictions. Figure 6 shows that model uncertainty
is indeed higher for incorrect predictions. This means that we can evaluate Hnorm at test time and
leverage it to mimic the human clinical workflow by referring the uncertain predictions to the medical
expert for further investigation.

Model uncertainty (Hnorm)

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

3.0

2.5

2.0

1.5

1.0

0.5

0.0

correct

incorrect

Figure 6. Distribution of normalized uncertainty values (Hnorm) for all test samples grouped as correct
and incorrect predictions. It shows that model uncertainty is higher for incorrect predictions. Therefore,
it serves as complementary information to refer the uncertain samples to experts and improve the
overall prediction performance of the automated system. Kernel density estimation with a Gaussian
kernel is used to plot the output posterior distributions.

We also incorporate the evaluation metrics proposed in Section 3.3 (namely, Rcc, Riu, and UA)
to evaluate and compare the uncertainty estimation performance of various Bayesian models. We
change the uncertainty threshold, HT , in the range [0, 1], and compute and plot the values of the
evaluation metrics as in Figure 7. Note that, when HT = 0, all predictions are marked as uncertain.
Hence, P(certain) = 0 and the value of Rcc is undefined. Therefore, we start the uncertainty threshold
from 0.01 for the plot of Rcc. On the other hand, when HT = 1, all predictions become certain
(i.e., P(uncertain) = 0); thus, the values of both Rcc and UA will be the same as the overall prediction
accuracy of the model. Therefore, the proposed metrics serve as useful tools for the experts to decide
about the proper value of the uncertainty threshold, and send useful, informative decision referrals to
physicians. For example, Riu determines the fraction of incorrect predictions which fall in the uncertain
category at various thresholds. It is over 80% and 90% at HT = 0.3 and HT = 0.2, respectively, for
Bayesian DenseNet-169. On the other hand, Rcc highlights the fraction of the certain predictions, which
are indeed correct. The Bayesian DenseNet-169 model makes correct predictions 90% and 95% of the
times when it is certain at thresholds of HT = 0.5 and HT = 0.3, respectively. However, the respective
values are about 88% and 91% for Bayesian VGG-16, and 89% and 93% for Bayesian ResNet-50.
This highlights the role of these metrics in comparing the quality of the uncertainty estimations for
different network architectures or uncertainty estimation methods.
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Figure 7. Quantitative evaluation of the uncertainty estimates via the proposed metrics. Illustrates the
values of Rcc (a), Riu (b), and UA (c) for varying thresholds of uncertainty (HT ∈ [0, 1]). The shaded
area around each curve shows one standard deviation for the 5-fold cross-validation.

5.4. Uncertainty-Aware Skin Lesion Classification and Referral

We performed an experiment to examine whether a hybrid workflow, which combines Bayesian
deep networks and dermatologists, would result in better accuracies compared to that of deep
networks or dermatologists alone. Specifically, we first sorted all test samples according to their
prediction uncertainty. Our system rejects a sample and refers it to dermatologists for further diagnosis
when its uncertainty exceeds a certain threshold. If the uncertainty is lower than the threshold,
the system accepts BNN’s prediction as the final outcome. The stand-alone prediction accuracy
of the BNN is computed using only the accepted (i.e., non-referred) samples. To approximate the
BNN–dermatologist team accuracy on the whole data, we need to know dermatologist’s diagnostic
accuracy. Prior work shows that a dermatologist’s performance heavily depends on her level of
experience in dermoscopy [68–70]. For example, experts with ≥5 years of experience perform
significantly better than beginners with <2 years of experience [68–70]. Therefore, we computed
the physician–machine team accuracy with different dermatologist’s accuracies varying from 60%
to 80%, as reported in [7,70]. This eventually enabled us to understand the effect of dermatologist’s
accuracy on the overall accuracy of the hybrid workflow.

As shown in Figure 8a, the stand-alone prediction accuracy of the BNN monotonically increases
with the fraction of referred images. Note that only non-referred images are considered for computing
machine’s accuracy. For example, if 20% of the data are referred to doctors, then we compute
the accuracy using the remaining 80% of the dataset. We also compared the results with those
of the random-referral; i.e., randomly selecting and rejecting the samples with no use of uncertainty
information (Figure 8a, black curve). The experimental results show that, when only rejecting 5%
of the samples for further inspection, the accuracy of the uncertainty-informed classifier is already
significantly better than that of the random-referral counterpart. Moreover, the prediction accuracy
goes up to 90% and 95% when referring 25% and 40% of the most uncertain samples for examination,
respectively. In Figure 8b, the prediction accuracy of the model decreases monotonically with
the increasing levels of tolerated model uncertainty. On the other hand, the BNN-dermatologist
performance (shown in orange) depicts the impact of the dermatologist diagnostic performance on
the overall team performance. For a beginner-level dermoscopy performance (i.e., 60% prediction
accuracy), solely relying on BNNs will result in a more accurate overall diagnosis. However, for an
experienced dermatologist (i.e., 80% accuracy), the team performance reaches almost 90% when
rejecting either almost 35% of the most uncertain samples (see Figure 8a) or samples with Hnorm ≥ 0.35
(see Figure 8b).
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Figure 8. Enhanced prediction accuracy of physician–machine team via uncertainty-aware referral.
(a) The classification accuracy as a function of the fraction of referral. The black curve shows the
effect of rejecting the same number of samples randomly (i.e., with no use of uncertainty information).
(b) The classification accuracy as a function of the tolerated amount of normalized model uncertainty.
The shaded areas around the blue and black curves show one standard deviation for the five-fold
cross-validation. For the BNN–dermatologist curves (shown in orange), the corresponding stand-alone
performance of the dermatologist is shown in the red box on each curve.

5.5. Lesion-Specific Performance Analysis of Bayesian DenseNet-169

We analyzed the effect of uncertainty-based referrals on the diagnosis performance of different
lesion types. Figure 9 depicts the stand-alone prediction performance of the BNN model on remaining
samples at various uncertainty thresholds. As shown, the uncertainty-aware referrals help to improve
the diagnostic performance of NV, BCC, AKIEC, BKL, and VASC lesions in a wide range of thresholds.
However, the uncertainty-based referrals are not effective for DF and MEL categories. To find the
reason, we plot the distribution of the uncertainty estimates for each lesion type in Figure 10. We also
used Kruskal-Wallis [71] test to check if the distribution of the uncertainty values (correct vs. incorrect
prediction) are significantly different for each lesion. The Kruskal–Wallis test was selected because it is
non-parameteric and does not assume a particular distribution for the data. The null hypothesis is that
the population medians of all of the groups are equal. The p-values are presented in Figure 10 for each
lesion category. The resulted p-values show that we can not reject the null hypothesis for MEL and DF
categories at 1% and 5% thresholds. This means that the Bayesian model is generally not able to output
distinct (preferably higher) uncertainty values for the incorrect predictions of the DF and MEL lesion
types, thus uncertainty-based referrals do not improve the model prediction for these categories.

To understand how the Bayesian model uncertainty changes with other factors, we plot the
model uncertainty with respect to per-class model prediction accuracy and the number of training
samples from each class in Figure 11. Uncertainty is computed as the mean uncertainty value for the
samples of that class in the test set. This figure shows that there is an inverse relationship between
class accuracy and model uncertainty (see Figure 11a), and a strong inverse relationship between the
model uncertainty and the number of samples in each class of the training set, except for VASC (see
Figure 11b).
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Figure 11. Analyzing the Bayesian DenseNet-169 model uncertainty in skin lesion classification. (a)
Bayesian DenseNet prediction performance as a function of mean model uncertainty for each class. (b)
Number of training samples in each class as a function of mean model uncertainty for each class.

6. Discussion

In this study, we showed that we can compute informative, interpretable uncertainty estimates for
the skin lesion diagnosis task using the connection between the dropout operation and approximate
Bayesian inference [39,51]. This method, commonly known as MC-Dropout [39], is scalable to large
neural networks and input images and requires no additional labels or parameters. We observed that
adding the MC-Dropout sampling immediately boosts the diagnostic performance of the popular
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standard neural networks by 1.39%, 1.92%, and 2.24% for VGG-16, ResNet-50, and DenseNet-169,
respectively. More specifically, the Bayesian DenseNet-169 model obtains the largest prediction boost
for the Basal Cell Carcinoma (+6.1%) and Benign Keratosis (+4.7%) lesions, but achieves no significant
performance gain for the Melanoma and Vascular lesions.

Even though approximate Bayesian inference has the advantage of estimating the model
uncertainty, it comes with the potential price of longer inference time. This is because we need
to evaluate the network stochastically multiple times (shown as T in Equation (1)) and average the
results to make the final prediction. Therefore, while the training time of the Bayesian framework
stays the same, the test time is theoretically scaled by the number of averaged forward passes (T).
This becomes more important in practice and in domains such as medical applications where the
test-time efficiency is critical. However, this is not of major concern in real-world applications because
deep networks are often implemented on distributed hardware [51]. Therefore, we can transfer the
input image to a GPU, replicate it multiple times (i.e., T times) to form a mini-batch, feed the whole
batch to the model at once and average the results. This eventually allows us to make the inference
and obtain the uncertainty estimates in constant time. In our application, computing the predictive
posterior (with T = 10) for one image took less than 100 ms on a desktop machine with 128 GB of
RAM memory and an NVidia GTX 1080 with 8 GB of video memory.

We observed (Figure 6) that model uncertainty is generally higher for incorrect predictions.
Therefore, it is an effective measure of model confidence that can be used to inform physicians of times
when the classifier is more likely to make mistakes. As a result, when referring the 20% and 25% of the
most uncertain samples, the prediction accuracy of the automated model monotonically increases to
90% and 95%. This is in line with the findings in [72], which takes advantage of uncertainty-informed
predictions to boost the model performance in an active learning setting. Uncertainty-based referrals
have also been studied in the diabetic retinopathy detection task [12] and shown to be informative in
detecting the models’ potential mistakes and improving the overall machine–physician performance.
A toy 2D example in [12] revealed that the uncertainty-informed decision referral takes multiple
separating hyperplanes into account, thus performs superior to the referrals made by the standard
softmax outputs which take only one hyperplane.

We used the reports of the earlier studies to compute the physician–machine team accuracy for
dermatologists with varying level of dermoscopy experience and prediction performance. A limitation
of this approach is that the dermatologist–machine accuracy is computed under the assumption that
the performance of dermatologists is independent of the referred images. This might not be the
case in practice as referred images might be more difficult than normal images which result in lower
dermatologist’s accuracy. Our experimental results demonstrate that for an experienced dermatologist
with 80% diagnostic accuracy, it is best to reject 35% of the most uncertain CAD predictions so that the
team performance reaches to almost 90% (Figure 8a). This means the hybrid workflow can save 65% of
the physician’s time while increasing the diagnosis accuracy by 10% at the same time.

The analysis is then broken down to the lesion categories to investigate the effectiveness of
uncertainty-based referrals for each lesion type. The results in Figures 9 and 10 show that the model
uncertainties are generally higher for incorrect predictions of five lesion types out of seven (namely,
NV, BCC, AKIEC, BKL, and VASC). Therefore, as we refer more samples from the most uncertain
model decisions, the model diagnostic accuracy percentage improves over the remaining samples
of these lesion types (see Figure 9). However, the Bayesian model fails to output higher uncertainty
values for the incorrect predictions of lesions of MEL and DF categories.

Analysis of the underlying causes of the model uncertainty reveals that the classes for which
Bayesian DenseNet performs better, such as NV and VASC, are also the ones for which it is more
confident. Conversely, for the more challenging classes, such as DF or AKIEC, Bayesian DenseNet
shows a much higher model uncertainty. On the other hand, Figure 11b reveals a strong inverse
relationship between the model uncertainty and the number of samples in each class of the training
set, except for VASC. Thus, it can be inferred that the Bayesian model is often more confident about
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the samples that are more prevalent in the training set. Conversely, for the rarer classes, such as BCC
and DF, Bayesian DenseNet is less confident. The only exception is the vascular lesions (VASC) class,
in which the model makes quite confident predictions on average while the training set is relatively
small. The reason is that, compared to other classes, the samples of this class have a relatively different
appearance, which makes them easier to discriminate from samples of other classes. Therefore, this
class becomes less ambiguous to the model, resulting in more confident model predictions.

This behavior of the uncertainty values estimated by the MC-Dropout method is consistent
with the definition of model uncertainty where more training data are associated with less model
uncertainty and vice versa. It eventually confirms that our approximate Bayesian model can effectively
capture the uncertainty created by the lack of data in some classes. Similar observations were made by
Kendall et al. [60] in estimating the model uncertainty in the semantic segmentation setting. In the
road scene understanding task, the Bayesian model has been shown to be more confident about the
more prevalent classes such as Sky or Road compared to the more rare classes such as traffic signs.

Software and Code Availability

All models were implemented using the TensorFlow (version 1.13.1) and Keras (version 2.1.4)
library [73]. Network training and prediction were performed using an NVIDIA GeForce GTX 1080 and
with CUDA versions 9.0 and cuDNN 7.5. We will release the source code and trained models for public
evaluation upon publication at https://github.com/hula-ai/skin_lesion_uncertainty_estimation.

7. Conclusions

In this paper, we present an approximate risk-aware deep Bayesian model, named Bayesian
DenseNet-169, which outputs an estimate of the model uncertainty with no additional parameter or
major change in the network’s architecture. Our classifier makes a prediction only when it is highly
certain about its competency, and refers the case to physicians otherwise. Our experimental results in
the skin lesion classification task show that the Bayesian model achieves high prediction diagnosis
on par with the state-of-the-art models. We show that imposing approximate Bayesian inference
increases the diagnostic performance of the standard DenseNet-169 model from 81.35% to 83.59%.
Moreover, the prediction accuracy reaches nearly 90% and 95% on the remaining samples when
exploiting the model uncertainty to refer, respectively, 25% and 40% of the most uncertain samples
for further examination. This property enables a hybrid physician–machine workflow that saves
human effort while maintaining high diagnostic accuracy. The proposed mechanism is general and
applicable to any medical image classification task, involving microscopic, CT, MR, and ultrasound
images. We expect that the availability of this technology will enable the wider adoption of machine
learning technology in clinical settings. The future work will investigate the possibility of sending the
uncertainty estimates to the network as feedback information to directly use it to modify and improve
its prediction capability.
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Abbreviations

The following abbreviations are used in this manuscript:

DNN Deep Neural Network
BNN Bayesian Neural Network
MC Monte Carlo
iu incorrect-uncertain
cc correct-certain
ic incorrect-certain
cu correct-uncertain
UA Uncertainty Accuracy

Appendix A

Appendix A.1. Dropout as Approximate Variational Inference in Bayesian Neural Networks

A Bayesian neural network is the probabilistic version of the artificial neural networks, which
places a prior distribution (often a Gaussian) over the network’s parameter [42]. Given the entire
training data D = {X, y}, a Bayesian network produces a probability distribution over model
parameters, p(w|X, y), that expresses our belief regarding how likely the different model parameter
values are. Therefore, given a new test sample x∗, we can obtain the predictive posterior distribution
over class membership probabilities by integrating over the posterior:

p(y∗|x∗,D) = Ep(w|D)[p(y
∗|x∗, w)] =

∫
p(y∗|x∗, w)p(w|D) dw (A1)

where p(y∗|x∗,D) is the predictive distribution that a test input data x∗ belongs to an unknown class
y∗. According to Equation (A1), making a prediction about the unknown label is equivalent to using an
ensemble of an infinite number of neural networks with various configuration of the weights. This is
computationally intractable for neural networks with any size. Therefore, so much effort has been
put into approximating Bayesian deep networks to make them easier to train [55,56]. Variational
inference [46] is a technique commonly used to approximate the posterior on the weights p(w|D) with
a variational distribution, qθ(w), parameterized on θ, whose structure is easy to evaluate:

p(y∗|x∗,D) ≈
∫

p(y∗|x∗, w)qθ(w) dw (A2)

In the classification setting, Gal et al. [39] proved that minimizing the difference
(i.e., KL-divergence) between the true posterior p(w|D) and the variational distribution qθ(w) is
equivalent to minimizing the conventional softmax loss in an L2-regularized neural network classifier
with dropout [47] applied to its units. This method, called Monte Carlo (MC) Dropout, suggests that
dropout approximately integrates over the model’s weights, yielding an interpretation of the model
prediction and the associated uncertainty.

Appendix A.2. Bayesian Model Architectures

Figure A1 represents the Bayesian architectures used in our experiments. A grid search is
conducted on several network configurations (i.e., with various placements of dropout layers and drop
ratio, p) to find the structures with the best prediction performance.
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Figure A1. Designed Bayesian Network Architectures. In all convolution and pooling layers, stride is
set to 1 unless otherwise mentioned. F represents the number of convolution filters and h is the number
of units in the fully-connected layers.
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