
RESEARCH ARTICLE

Computer tomographic analysis of anatomic

characteristics of the ulna – essential

parameters for preshaped implants

Johannes Christof HopfID
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Abstract

Purpose

Anatomically preshaped implants are needed for exact restoration of the anatomy after frac-

tures of the proximal ulna and ulnar shaft, which enables a good functional outcome. Aim of

this computed tomographic analysis was to identify specific characteristics of the ulna. The

data serve for the development of a new intramedullary implant for stabilisation of proximal

and diaphyseal ulna fractures.

Methods

With a standardized research method 100 CT scans of the ulna were evaluated regarding

anatomic parameters like width of the medullary canal, proximal ulna dorsal angulation and

varus angulation. Also, correlations of these parameters were analyzed statistically.

Results

The mean proximal ulna dorsal angulation (PUDA) was 6.4˚ (SD 2.8˚), while the mean varus

angulation of the proximal ulna was 12.4˚ (SD 3.3˚). The length of the ulna bone was 253.6

mm (SD 19.9 mm) on average. The average minimum diameter of the medullary canal was

4.2 mm (SD 1.1 mm) located at 141.3 mm (SD 19.7 mm) from the olecranon tip. There is a

positive correlation between age and minimum diameter in our patient cohort (p< 0.001).

Conclusion

Our study described the anatomy of the proximal ulna and the ulna shaft with a reproducible

research method in a representative patient cohort. The knowledge of the evaluated ana-

tomic parameters can lead to an improvement of any implant design for the fixation of proxi-

mal and diaphyseal ulna fractures.
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Introduction

Exact restoration of forearm anatomy in case of forearm fractures in adults is crucial for a

good functional outcome [1,2]. Therefore, in-depth knowledge of the anatomy and its variabil-

ities is mandatory. The anatomy of the ulna was described in several cadaveric studies as well

as computed tomography morphometric analyses [3–5]. A dorsal and a varus angulation of

the ulna is described in the proximal metaphysis. This leads to a complex anatomy with two

joints for elbow and forearm motion and a wide individual variability [6–8].Especially the res-

toration of the proximal ulna dorsal angulation (PUDA) seems to have an impact on the func-

tional outcome[9,10].

In case of displaced fractures of the ulna surgical treatment is actually done with open

reduction and internal fixation [11,12]. Modern anatomical plates for ulna osteosynthesis are

preshaped to match the specific anatomy and to allow precise reduction and stable fixation

[13–15]. Intramedullary implants are not frequently used for these fractures, although the

principle of intramedullary fixation showed good biomechanical and clinical outcomes on

many other anatomic regions [16,17]. Anatomically preshaped nails with feasible instruments

and suitable locking options are not available on the market, so theoretical advantages of intra-

medullary fixation as less periosteal stripping and preservation of the fracture hematoma are

not used at the forearm [18,19]. Especially the diameter of the medullary canal is an important

anatomical parameter, which must be considered prior to an intramedullary osteosynthesis.

Most anatomic studies of the ulna do not analyse representative patient cohorts, which limits

the significance of their results.

The aim of this study was to describe important anatomic characteristics of the ulna in a

representative patient cohort and its subgroups. One hundred CT scans of the ulna were ana-

lysed with special interest on relevant anatomic landmarks. The data will be used for the devel-

opment of a preshaped intramedullary implant for the proximal ulna and the ulnar shaft [20].

Materials and methods

We analysed Computed-tomography (CT) scans of the forearm with intact ulna and radius

bones, as well as intact elbow und wrist joints with 1mm slice thickness of one hundred indi-

viduals (60 males, 40 females, mean age 63.1 years (SD 19.8)). All CT-scans were angiographic

CT scans of the whole arm in upright position in angiological patients. Scans with a prior ulna

fracture or bony pathology other than osteopenia were excluded beforehand. Philips brilliance

iCT (128 slices) and Philips brilliance CT (64 slices) scanners (Philips, Amsterdam, Nether-

lands) were used. The sample size was calculated for an estimated standard deviation of

0.192mm of the diameter of the medullary canal. A sample size of 89 CT scans was required

for a 95% confidence interval half-width of 0.04mm. Gender and age distribution of the

selected individuals were selected to match the epidemiological data of the Federal Statistical

Office of Germany for ulna shaft fracture for the year 2017 [21]. The individuals in the study

had similar age and gender distribution as the ulna fracture cohort according to the Federal

Statistical Office (Table 1) [21]. No identifying information was used in this study. The CT

data was pseudonymized before analysation. No ethics statement was required for this study.

Measurements

All measurements were done with Sectra Workstation IDS 7 (Sectra Medical, Linköping, Swe-

den). The proximal ulna dorsal angulation (PUDA) and varus angulations were measured in a

3-dimensional reformation of the ulna in strict lateral and dorsal views. The varus angulation

was measured as the angle between the axis of the proximal ulna and the axis of the ulna shaft
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(Fig 1A). The dorsal angulation was measured as the angle between the tangents of the proxi-

mal ulna and the ulna shaft (Fig 1B). The coronoid and olecranon heights were measured after

a multiplanar reformation in a 2-dimensional image in strict lateral view of the ulna bone per-

pendicular to the posterior surface of the ulna. The last measurements were done from the pos-

terior cortex to the tip of the process (Fig 1C). The location of the dorsal and varus angulation

was defined in the 3-dimensional image as the point of intersection of tangents to the proximal

ulna and ulna shaft like described for cadaveric ulnae (Fig 1A and 1B) [6,15]. The length of the

ulna was measured from the olecranon tip to the distal surface of the ulna without measuring

the ulnar styloid process in a 3-dimensional image of the ulna bone.

The medullary canal was visualized in 2-dimensional axial slices after exact multiplanar ref-

ormations along the ulnar axis. The multiplanar reformations were done perpendicular to the

axis of the ulna shaft. A threshold of 700 Hounsfield units was defined for cortical bone

according to the available literature [22,23]. The maximal diameter of the medullary canal was

measured every 10mm in axial slices of the ulna starting 50mm from the olecranon tip until

Table 1. Gender and age distribution.

Parameters Our study Expected value

Gender distribution [male/female] 60/40 60/40

Age distribution

18–44 years 21 30

45–64 years 28 26

> 64 years 51 44

Gender and age distribution of our patient collective in comparison to the expected values from the epidemiological

data of the German Federal Statistical Office 2017 of forearm fractures and isolated ulna shaft fractures

https://doi.org/10.1371/journal.pone.0232988.t001

Fig 1. Morphometric measurements. a: Measurements of the proximal ulna varus angulation and apex of varus angulation; b: Proximal

ulna dorsal angulation (PUDA) and apex of PUDA; c: Coronoid and olecranon heights; d: Diameter of the medullary canal in a 2d-slice

with a maximum Hounsfield unit of 647.

https://doi.org/10.1371/journal.pone.0232988.g001
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the distal surface of the ulna (Fig 1D). With the ROI tool (region of interest) the greatest possi-

ble circle was placed into the medullary canal in the axial slice without exceeding the circle

into bone with a density over 700 Hounsfield units. The first 10% of the patient cohort were

measured by two authors. No significant differences were found between both researchers.

The following measurements were done only by one researcher. On a random basis values

were double-checked by both authors. Again, no relevant differences were found.

Statistical analysis

For all statistical calculations, R version 3.3.0 (R Foundation for Statistical Computing, Vienna,

Austria) was used and all diagrams were created using R or the ggplot2-package (H. Wickham

et al., Springer, New York) within R. Univariate means, standard deviations and quantiles

were calculated to assess the central tendency and spread of all measurements. Estimated Nor-

mal Distribution density functions were added to histograms for easier visual assessment of

the empirical distribution. Linear regression lines with 95% confidence intervals were added to

scatterplots for the visual assessment of linear relationships. Bivariate relationships were

assessed by calculating Pearson’s and Spearman’s Rank Correlation Coefficient or by fitting

simple linear regression models for pairs of variables. For correlation coefficients, a

value� 0.7 was considered a strong correlation;� 0.3 was considered a moderate correlation;

� 0.1 a weak correlation; and< 0.1 no correlation [24]. For exploratory hypothesis tests based

on linear regression models, p-values < 0.05 were considered as significant.

Fig 2. PUDA histogram. Histogram of the proximal ulna dorsal angulation (PUDA) of our patient cohort.

https://doi.org/10.1371/journal.pone.0232988.g002
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Ethics statement

The analysed data was fully anonymized before data assessment. No informed consent was

needed for the execution of this study. The analysed data in this study is part of the doctoral

thesis of A. Jaehnig.

Results

Proximal ulna

The average proximal ulna dorsal angulation (PUDA) was 6.4˚ (SD 2.8˚), the apex located at

58.9 mm (SD 20.2 mm) from the olecranon tip (Fig 2). The proximal ulna varus angulation

was 12.4˚ (SD 3.3˚), the apex at 47.8 mm (SD 10.3 mm) from the olecranon tip (Fig 3). The

mean coronoid height was 36.1 mm (SD 3.9 mm), while the mean olecranon height amounts

23.6 mm (SD 3.2 mm).

Ulna diaphysis

The smallest diameter of the medullary canal was 4.2 mm (SD 1.1 mm) located at 141.3 mm

(SD 19.7 mm) from the olecranon tip (Fig 4). 56% of the patient cohort had a minimum diam-

eter larger than 40mm, 21% of the patients larger than 50mm. The mean length of the ulna

was 253.6 mm (SD 19.9 mm). Our analyses showed a weak correlation (Pearson r = 0.26) of

the apex of the PUDA and the length of the ulna. The apex was approximately normally dis-

tributed with the median at 23.2% (SD 0.1) of the total length of the ulna (Fig 5). The mean

Fig 3. Varus angulation histogram. Histogram of the proximal ulna varus angulation of our patient cohort.

https://doi.org/10.1371/journal.pone.0232988.g003
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Fig 4. Diameter of medullary canal. Distribution of the maximum diameter of the medullary canal depending on the distance from the

olecranon tip in boxplots.

https://doi.org/10.1371/journal.pone.0232988.g004

Fig 5. PUDA in relation to ulnar length. Histogram of the PUDA apex in relation to the total length of the ulna.

https://doi.org/10.1371/journal.pone.0232988.g005
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relative position of the apex of the varus angulation was at 18.9% (SD 0.1) of the length of the

ulna without a correlation of both parameters (Pearson r = 0.1).

The minimal diameter of the medullary canal correlated weakly with increasing age (Spear-

man r = 0.3; Fig 6). The position of the minimum diameter of the medullary canal showed a

moderate negative correlation with increasing age (Spearman r = -0.4; Fig 7). Also, the length

of the ulna showed a moderate negative correlation with increasing age (Spearman r = 0.41).

PUDA and apex of PUDA, varus angulation and apex of varus angulation, the coronoid and

olecranon height showed no correlation with age.

In our subgroup analysis PUDA and varus angulation were independent of sex. Other mea-

surements like ulnar showed a significant difference in both sexes (Table 2).

Discussion

We described the anatomy of the ulna with special attention to the configuration of the proxi-

mal ulna using a large cohort of 100 individual bones based on CT scans. Information about

the relevant angles and proportions of the proximal ulna as well as the diameter of the medul-

lary canal of the ulna shaft were provided and statistically analysed.

The intention of this study was to generate an anatomical base for the development of a

new ulna nail for fixation of shaft fractures. Especially in comminuted fractures or open frac-

tures of the ulna, a load-bearing intramedullary implant may be advantageous [18,19]. Intra-

medullary implants have to adapt to the complex anatomy of the proximal ulna with a varus

configuration and a dorsal angulation. Even anatomically preshaped plates have to be bent

Fig 6. Diameter of medullary canal and age. Scatterplot of the correlation of minimum diameter of the medullary canal and age in our

patient cohort with regression line and estimated confidence interval.

https://doi.org/10.1371/journal.pone.0232988.g006
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often intraoperatively to match the anatomy of the proximal ulna [14]. Morphological proper-

ties of the proximal ulna and the entry point chosen at the olecranon have a high impact on

the fit of the nail in the ulna bone, especially for non-anatomic shaped nails [25]. Geometrical

characteristics of a newly designed short ulna nail for the treatment of proximal ulna fractures

were described in detail in a recent biomechanical study [20].

Our measurements of the ulnar length and the angulations of the proximal ulna are consis-

tent to existing cadaveric and computed tomography studies of the ulna [5,8,13–15]. The mean

PUDA is more consistent (4.3˚ - 8.5˚) than the proximal varus angulation (8.5˚ - 17.5˚), which

shows a larger range in the literature (Table 3). Also the results of the coronoid height and olec-

ranon height are similar to existing studies, which used the same measurement method [6]

(Table 3). The apex of the varus angulation in our study is more proximal compared to the exist-

ing literature (Table 3). This could be due to a lack of standardisation of the measurement meth-

ods. We found an average ratio of the PUDA apex to the total ulnar length of 23.2% which is

comparable to the CT-analysis from Yong et al (26.4%) [5]. Two recent studies investigated the

anterior-posterior and lateral bow of the ulna bone and published slightly different results com-

pared to the existing literature [26,27]. Especially the location of the ulna bows were described

to be more distally than presumed previously [26,27]. It must be noted, that the comparison

between different studies are impeded because of the different measurement methods.

The diameter of the medullary canal is difficult to compare with existing studies due to the

different measurement methods [3,28]. We demonstrated the narrowest medullary canal

being at 14.1 cm with enlarging thereafter again. The increasing minimal diameter with age

Fig 7. Position of minimum diameter and age. Scatterplot of the correlation of the position of the minimum diameter of the medullary

canal and age in our patient cohort with regression line and estimated confidence interval.

https://doi.org/10.1371/journal.pone.0232988.g007
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may be explained by increasing inner cortical porosity with decreasing cortical thickness due

to osteoporosis [29]. In patients with rheumatoid arthritis, the canal was non-significantly

smaller in this area compared to cadaveric bone [28].

The dimensions of the ulna were smaller in females than in males. However, as the body

height was not available, we cannot conclude if they depend on gender or on body

dimensions.

The methods we used with manual measurement of 2- and 3-dimensional reformations of

forearm CT scans may be vulnerable to examiner-related variances. Other morphometric anal-

yses of ulna measurements were done automatically using a computer-aided-design software,

aiming to a higher reproducibility [3,5]. However, yet published studies based on CT data of

cadaveric bones used considerably smaller sample sizes [3,5,7]. As we aimed to describe ana-

tomic variables to develop an implant for fracture fixation, our collective represented the gen-

der and age distribution of the fracture cohort.

To reduce examiner-related differences, the research method was defined precisely and

measurements performed by only one researcher. Still, the manual data acquisition and the

assessment by one observer only can be considered as a limitation of our study. The use of

Table 2. Subgroup analysis.

Parameters Gender Mean SD Min Max p-value (t-test)

PUDA [˚] Male 6.4 2.7 0 10.9 0.89

Female 6.4 3.0 0 15.1

Total 6.4 2.8 0 15.1

Apex of PUDA [mm] Male 63 21.9 0 140.1 0.01�

Female 52.6 15.5 0 78.6

Total 58.9 20.2 0 140.1

Varus angulation [˚] Male 12.5 3.3 7 21 0.76

Female 12.3 3.2 6.8 21

Total 12.4 3.3 6.8 21

Apex of varus angulation [mm] Male 47.8 10.2 23.7 71 0.99

Female 47.9 10.6 29.3 70

Total 47.8 10.3 23.7 71

Minimal diameter of medullary canal [mm] Male 4.2 1 2 6.3 0.66

Female 4.1 1.2 2 6.7

Total 4.2 1.1 2 6.7

Position of minimal diameter [mm] Male 146.8 20 95 220 < 0.01�

Female 133.2 16.3 90 160

Total 141.3 19.7 90 220

Coronoid height [mm] Male 37.7 3.2 28.3 44 < 0.01�

Female 33.6 3.5 24.9 44

Total 36.1 3.9 24.9 44

Olecranon height [mm] Male 24.8 2.8 17.2 30.6 < 0.01�

Female 21.9 3.0 17.1 33

Total 23.6 3.2 17.1 33

Ulnar length [mm] Male 264.9 14.3 217.8 295 < 0.01�

Female 236.7 14.2 202.4 257.2

Total 253.6 19.9 202.4 295

Subgroup analysis of the CT-based measurements of the ulna

� p<0.05 was considered as statistically significant

https://doi.org/10.1371/journal.pone.0232988.t002
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computed tomography for image acquisition may lead to discrepancies compared to cadaveric

bone morphometrics due to image processing errors. The threshold of 700 Hounsfield units

for the corticocancellous interface is an empirical chosen value, which may not exactly corre-

late with the density of cortical bone in living humans [22].

An anatomic analysis of the same patient collective with statistical shape modeling as

described for other bones is planned to validate our manually acquired results [30–32]. Based

on the acquired data, a novel intramedullary anatomically preshaped implant could be devel-

oped and successfully tested in a biomechanical study and on cadaveric bones. When design-

ing an implant for the ulna shaft, especially the higher varus angulation has to be considered.

As the inner cortical diameter can be as small as 2mm, reaming would be necessary prior to

nail insertion. Biomechanically, the developed nail can be regarded as an alternative implant to

plate fixation especially for the stabilisation of comminuted fractures [20].

We conclude, that knowledge of the relevant anatomic parameters of the ulna is important

for exact restoration of the anatomy and fracture fixation. Our study provides a novel descrip-

tion of the complex anatomy of the ulna bone in a representative patient cohort. Also, correla-

tion between the measurements and age and sex could be evaluated. The knowledge of these

anatomic parameters can lead to an improvement of implant design for the fixation of proxi-

mal and diaphyseal ulna fractures.
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