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To what extent general intelligence mechanisms are associated with causal thinking is
unclear. There has been little work done experimentally to determine which developing
cognitive capacities help to integrate causal knowledge into explicit systems. To
investigate this neglected aspect of development, 138 children aged 5–11 studying
at mainstream primary schools completed a battery of three intelligence tests: one
investigating verbal ability (WASI vocabulary), another looking at verbal analogical
(Verbal Analogies subset of the WRIT), and a third assessing non-verbal/fluid reasoning
(WASI block design). Children were also interviewed over the course of three
causal tasks (sinking, absorption, and solution), with the results showing that the
developmental paths exhibited uneven profiles across the three causal phenomena.
Children consistently found that explaining solution, where substances disappeared
toward the end of the process, was more challenging. The confirmatory factor analyses
suggested that the impact of cognitive ability factor in explicitly identifying causal
relations was large. The proportion of the direct effect of general intelligence was
66% and it subsumed the variances of both verbal measures. Of this, 37% was the
indirect effect of age. Fluid reasoning explained a further 28% of the variance, playing a
unique role in causal explanation. The results suggested that, overall, cognitive abilities
are substantially related to causal reasoning, but not entirely due to developmental
differences in “g” during the age periods studied.

Keywords: causal reasoning, explanation, development, domain-specific knowledge, general intelligence, fluid
reasoning

INTRODUCTION

Any credible form of human thinking corresponds one way or another to causal reasoning. We
have a tendency to explore what causes an effect, and whether the same effect consistently follows
the same cause (Woodward, 2003)—when it does, we can therefore establish a link between the two
events that can be legitimately explained.

Causal explanations typically offer a mechanism that connects an effect to its cause in a lawlike
relation. For instance, in order to hold the view that “Gravity causes objects to rest on the ground,”
we would potentially rule out all other non-causal influences and fit the best explanandum into
a causal nexus that is hard to vary in different situations. Several forms of cognitive activity
are involved in the identification of such relations, whether in academic settings, such as when
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investigating a phenomenon in a school science lesson, or at
a fundamental level when simply trying to understand events
in everyday life.

Despite its importance, how our capacity for such survival
reasoning evolves is largely unknown. In particular, which
developing cognitive abilities help to represent and build causal
knowledge into explicit systems is unclear. This leaves us with
a major question in mind: do developmental paths vary solely
due to individuals’ general cognitive abilities, or are there
other factors at play in explicitly defining causal relations? For
instance, although evidence is robust that by their third birthday
the majority of children can formulate some sort of causal
explanation as to why a cause produces the observed effect
(e.g., Callanan and Oakes, 1992); and that explanatory capacities
develop over the course of childhood (Carey, 1985; Legare and
Clegg, 2014; Lombrozo and Vasilyeva, 2017; Busch et al., 2018),
which aspects of intelligence develop and contribute to such
thinking is largely unknown.

The aim of the present study is to explore the sources of
variation in causal explanatory thinking. We ask how strong
the relationships between cognitive ability systems and causal
explanatory performances are across the development. For such
investigation, two epistemological routes examining the nature
of change in reasoning and better handling are relevant: the
psychometric (/differential) and the developmental route (see
Demetriou et al., 2010). The psychometric theories analyze the
aspects of variation in mental abilities and expound the ways
in which the processes underlying individual differences are
reliably understood and measured (see Spearman, 1927; Eysenck,
1967; Sternberg, 1977a, 1978; Kyllonen and Christal, 1990). In
contrast, developmental theories take an expansive approach to
the study of the notion of change in cognitive, behavioral, and
societal contexts. Unlike the psychometric route, the impacts of
variation in causal thinking have been investigated broadly by
developmental work as discussed below.

The Psychometric Route
Psychometric theories concede that intelligence is an open-ended
category for several cognitive mental operations and steers most
core competencies, including perception, attention, learning, and
memory. Although there is no widespread consensus as to what
intelligence is, most cognitive tests tend to cluster in a number of
broad ability factors, such as fluid (gf ) and crystallized intelligence
(gc) and hence, studies from diverse strands commonly employ
well-known standardized psychometric measures for evaluation.
The crystallized form of intelligence is commonly captured
by verbal comprehension and vocabulary measures, whilst the
fluid form is usually measured via non-verbal and procedural
reasoning tasks. The interrelation between these broad abilities
also points to the existence of a higher order common factor that
Spearman (1904) named g. The present study takes into account
this hierarchical structure, as discussed below, where g stands
as a latent variable, existing as a summative index linking these
ability factors.

When Spearman (1904) realized that most cognitive tests
correlate with each other, he devised a technique, called
factor analysis to analyze the sources of variation common to
performance in all cognitive tests. This analysis revealed two

types of factor, namely the general (g) and specific factors (s). He
used the term “positive manifold” to refer to the existence of g
as representing the portion of variance that existing intelligence
tests have in common, proposing that people who score well on
one cognitive task are likely to do well in others. Since then, the
psychometric g has been used as an index or a score factor derived
from cognitive tests, standing for a latent variable—a sum total of
an individual’s scores (Scarr, 1997; Jensen, 1998, 2002).

Cattell (1943, 1971) and Horn (Cattell and Horn, 1978)
analyzed the nature of g by breaking it down into two
major cognitive constructs, namely fluid (gf ) and crystallized
intelligence (gc). This approach, for the first-time, theorized g
as composed of more than one factor, where the broad second-
order factors like gf and gc constitute the top stratum and are
based on more than 40 first-order factors that forming the lower
stratum. The first order factors accounted for by specific abilities
(s) refer to diverse and specific cognitive competences (Cattell,
1971; Hunt, 1997; McArdle et al., 2000).

Carroll’s (1993; 1996) three-stratum theory of intelligence
presented these cognitive factors in hierarchical terms and
theorized a multifactorial taxonomy responsible for the
variability in cognitive performance. In this hierarchy, the top
stratum, conceptually equivalent to Spearman’s g, strongly
correlates with eight factors placed at the second level that
are differentially influenced by g. These broad abilities, similar
to Cattell and Horn’s theory, include fluid intelligence (gf ),
crystallized intelligence (gc), analogical reasoning, and working
memory, which are then broken down into a number of specific
abilities within the third stratum (see also Horn and Cattell,
1966; Jensen, 1998; Deary, 2001; Carroll, 2003; Sternberg, 2003).

In addition to these hierarchical models, several studies
have contributed to the diverse analysis of intelligence, with
recent theories dealing with, for instance, biological aspects
of the brain and neural functioning (Reed and Jensen, 1992);
cognitive correlates between laboratory-based cognitive tests
and psychometric intelligence tests (Cronbach, 1957; Hunt
et al., 1973; Sternberg, 1977b); heritability (Loehlin, 1989); and
the bioecological basis of individual differences, taking into
account the environment and context in cognitive performance
(Ceci, 1996).

An integrative model bridging between the psychometric
and developmental routes proposes four types of mental
processes: (1) domain specific (verbal, numerical, etc.), (2)
representation processes (memory, updating, etc.), (3) reasoning
(inductive, causal, etc.), and (4) cognizance (common sense,
morality, etc.). Although all these processes are intertwined
with g, what varies is the strength of the relations between
them and their contributions to the executive processes
over major developmental cycles (see Demetriou et al.,
2017). Such psychometric assessments provide consistent
outcomes for underlying individual differences responsible
for cognition, adaptation to environment, and novel problem
solving (Sternberg, 2003). However, despite the broad range of
cognitive abilities studied in this literature, causal reasoning has
never been a distinct focus, leaving us with a gap in knowledge
around the psychometric aspects pertinent to such reasoning,
particularly the relevance of g factor. Thus, here we ask; to what
extent is g relevant to children’s causal explanations?
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The Developmental Route
Studies examining the link between cognitive development and
causal explanatory thinking are diverse, but can be studied
under three strands. The first strand was pioneered by Piaget
(1930, 1936, 1959, 1974), who studied children’s causal reasoning
about real-world phenomena across a wide range of knowledge
areas, and proposed that causal reasoning is operated by
domain-general knowledge. Such knowledge is accumulated
gradually through progressive equilibration of divergent and
initially specific constructs, during which a cognitive shift in
children’s mental operations occurs, proceeding through an
invariant sequence of stages. In each stage, children integrate
an understanding of the dimensions of causal phenomena. For
instance, if the quality of explanation of phenomena differs
during early years, this occurs largely as a consequence of
the child’s lack of operational thinking and accompanying
language skills; and so it follows that, during the preoperational
stages, children’s explanations are largely pre-causal, until
genuine causal understanding appears around the age of 7/8
(Piaget and Inhelder, 1974).

In line with this Piagetian stage-wise progression approach,
causal graphical models successfully instantiated the ways in
which children develop a succession of different conceptions of
the world, evolving from concrete individual experiences into
abstract knowledge structures, growing increasingly accurate
with time (Spirtes et al., 1993; Gopnik and Wellman, 2012).
Furthermore, probabilistic and Bayesian frameworks made
computational learning ideas available to developmentalists,
with structured models that employ a top-down route in which
causal schema is inferred from observable patterns (e.g., Gopnik
et al., 2004; Griffiths et al., 2010, 2011). Cheng’s (1997) study, for
instance, showed that people can infer causal relations from even
a single event with a high level of abstraction. Developmental
studies correspond with these arguments, as shown by Schulz
and Gopnik’s (2004) study, demonstrating that children cross
the domain boundaries when they need to distinguish between
screening-off trials using patterns of independent and dependent
probabilities across a range of domains, suggesting that formal
causal reasoning mechanisms are general in nature (see also
Gopnik et al., 2001; Tenenbaum and Griffiths, 2001; Sobel et al.,
2004).

Despite the wealth of evidence, a significant question
remained unresolved in this literature: how strongly are
causal explanations linked to general cognitive abilities across
development? In response to this question, the domain-specific
approach gained momentum, with advocators of this strand
arguing that causal knowledge grows via specific learning
mechanisms which operate based on a range of unique inputs
and structural principles, pointing to distinct ways of acquiring
knowledge (e.g., Baillargeon, 2002). Just as the stomach is a
specialized mechanism for the chemical breakdown of food—
distinct from other alimentary canals such as the mouth
and intestine-, specific cognitive abilities aid the handling of
different kinds of information, such as language processing or
visual systems, each of which, to some extent, develops semi-
independently or independently (Keil, 1989; Hirschfeld and
Gelman, 1994; Sobel, 2004).

At a preschool level, young children’s inadequacy with causal
explanatory systems was explained by a lack of domain-specific
knowledge, rather than the maturity of general ability alone. For
instance, a child’s conception of “animal” changes when the child
develops a theory-like biological domain about animals (Carey,
1985; Inagaki and Hatano, 2002). Although children’s theory-like
knowledge systems are immature, these systems seem to provide
them with the required causal devices enabling them to predict
and explain phenomena in their surroundings. From preschool
onward children can utilize these devices more efficiently, as
they develop readily available causal explanations for various
phenomena (e.g., contamination-based), even when unseen
mechanisms (e.g., germs) need to be considered (Wellman and
Gelman, 1998; Keil et al., 1999; Legare et al., 2009).

Further evidence supported the view that domain-specific
knowledge facilitates understanding in folk psychology
(Wellman, 1990), folk physics (Bullock et al., 1982; Vosniadou,
2001), and folk biology (Hatano and Inagaki, 1994; Gelman
and Opfer, 2002; Inagaki and Hatano, 2002), following a
bottom-up route where causal relations are layered and filtered
via their common elements. Furthermore, infant studies
found evidence that young children tend to consider domain
specific mechanisms when they assess causal regularities. For
instance, psychological phenomena occur via different causal
principles (e.g., action at a distance), as opposed to most physical
phenomena, where causal relations are observed from contact
or via transference (Spelke et al., 1992; Carey and Spelke,
1996; Gottfried and Gelman, 2005; see also Leslie and Keeble,
1987). Although these studies argue that even infants can make
inferences about causal events by taking into account basic
physical principles, such as cohesion, continuity, or contact
(Spelke, 1994), we need to bear in mind that these infant studies
largely focused on perceptual processes rather than explanatory.

The third strand of thought offers an analysis beyond domain
generality/specificity, with slightly different ideas, scrutinizing
how children build causal theories about the world (see Gelman
and Kremer, 1991; Karmiloff-Smith, 2015). In this line of
thought, the role of executive function gains momentum,
emphasizing the way in which knowledge is restructured during
development via inhibitory control. Such analysis proposes that
children are natural and active causal explanation-seekers; they
continuously change conceptual structures of their naïve theories
and renew their understanding of phenomena over the course
of development by inhibiting previous misconceptions (Carey,
1985; Legare, 2014; Vosniadou, 2014; Zaitchik et al., 2016).

In line with this argument, recent accounts have
acknowledged the role of executive function—particularly
processing capacity—viewing it as a robust way of explaining
the cognitive growth mediating the stage transitions (see e.g.,
Case, 1991; Demetriou et al., 2010). It is argued that mental
processing mechanisms such as processing speed, executive
control, and working memory, guide cognitive development, and
mature around the 6–10 years period, where rule-based thoughts
emerge and are established (e.g., Kuhn, 2000; Spanoudis et al.,
2015; Demetriou et al., 2017). In contrast, descriptive ability
emerges much earlier, as children can describe causal sequences
without acknowledging the rules and laws involved. However,

Frontiers in Psychology | www.frontiersin.org 3 May 2022 | Volume 13 | Article 692552

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-13-692552 May 13, 2022 Time: 14:1 # 4

Dündar-Coecke Causal Reasoning and Intelligence

the development of causal explanatory competences is boosted
by the emergence of rule-based thoughts, where underlying
causal connections are drawn from seen and unseen aspects of
mechanisms (Demetriou et al., 2010; Kuhn, 2010).

The literature therefore presents several methods of evaluation
via which the development of causal explanatory thinking can
be analyzed. One way of advancing our understanding about
the possible contributors to children’s causal explanations is to
conjecture the developmental trajectories across a number of
phenomena comparatively with general intelligence measures.
The present study aims to explore this avenue as discussed below.

The Present Research
In a broad context, we aim to understand which developing
cognitive factors are affecting the quality of children’s
explanations when they talk about causal phenomena, and
how such cognitive abilities might influence each other as
they advance. Two research questions aim to investigate this
target as below.

(1) Does the kind of phenomena present a greater or lesser
challenge to the children?

(2) If any, which general intelligence mechanisms are
associated with the variance in causal reasoning, specific to
the age period examined?

It is hypothesized that children can construct similar levels
of explanation when faced with different causal tasks. If this is
not the case, to what extent the source of variability in children’s
causal explanations is associated with their psychometric
performance across different causal phenomena is the concern.

Children’s causal judgments were obtained via three causal
tasks—sinking, absorption, solution, analogously representing
physical, biological, and chemical domains. Previous studies
showed that children can acquire causal knowledge from the
observation of such natural phenomena typically studied in
elementary school science and encountered in everyday life. Such
causal tasks require children to engage with mechanism-based
thinking, in which underlying causal mechanisms need to be
inferred from observable and unobservable structures (Dündar-
Coecke et al., 2019, 2020, 2021).

The level of children’s explanation was evaluated using a
robust stratified model, with causal task interview protocols kept
identical in each task as explained in the methodology section.
The procedure followed the general pattern of the predict-
observe-explain (POE) methodology—a pedagogical approach
that is widely used in science teaching (see White and Gunstone,
1992), where participants first predict an outcome, then observe
and explicitly describe what they witness, and then explain why
things occurred the way they were observed.

The purpose of the prediction stage is to capture children’s
counterintuitive ideas about phenomena. In the description stage,
the aim is to capture children’s ability to present a contextual
description of observed phenomena. For instance, in the context
of sinking, children are expected to produce descriptive remarks
about sinking rather than flying. Finally, the purpose of the
explanation stage is to capture children’s interpretations of factors
and variables involved in causal mechanisms. For example,

when explaining sinking, how children infer factors, such as
weight, operating as variables in the determination of sinking
rate (e.g., weight as downward direction; up-thrust as upward
direction) is the concern.

Cognitive ability measures detected different psychometric
properties as verbal, analogical-verbal (i.e., gc), and non-verbal
abilities (i.e., gf ). Associations between each of these constructs
were analyzed using parametric and confirmatory factor analyses
as explained below.

METHODOLOGY

Design
The present study combined the cross-sectional and individual
differences approaches and included 3 year groups spanning the
English elementary school age range, namely Year 1, 3, and 5.

Participants
The initial sample included 140 typically developing children who
volunteered to take part, from two primary schools located in
Oxford, United Kingdom. For the recruitment process, parents
signed a consent letter to allow their children’s participation.
Children’s verbal consent was also obtained before each session
following the UCL Institute of Education Research Ethics
Committee’s ethical requirements. Two children’s data were
excluded from the analyses due to lack of interest after the start
of testing. Therefore, analyses included 138 children covering a
wide range of socioeconomic backgrounds [67 girls and 71 boys;
47 Year 1 (Y1), mean age = 6.1, sd = 3.7 months; 45 Year 3
(Y3), mean age = 8.3, sd = 4.6 months; and 46 Year 5 (Y5),
mean age = 10.01, sd = 6.2 months]. As the parents’ questionnaire
showed, 37.6% children came from bilingual/trilingual homes,
which can be taken as an indicator that the sample included a
moderate ethnic and linguistic variety.

Measures
Standardized Cognitive Measures
The expressive vocabulary subtest from the Wechsler Abbreviated
Scale of Intelligence (WASI-vocabulary) (Wechsler, 2011) was
used to provide measures of verbal (crystalized) intelligence.
WASI vocabulary is a measure of expressive language, word
knowledge, and verbal concept formation. Each word was read
aloud by the experimenter and children were asked to describe
and explain the words with their meanings. Administration and
scoring followed standard procedures.

The WASI Block Design is a subtest to explore children’s
non-verbal intelligence (Wechsler, 2011). Children were shown
nine red and white square blocks and a spiral booklet of
cards showing different patterns, and the children were asked
to imitate the patterns using the blocks, with the exercises
increasing in difficulty at each stage. The Block Design
aimed to measure children’s fluid reasoning and ability to
analyze/synthesize abstract stimuli within a specified time limit.
Again, administration and scoring followed standard procedures.

The Verbal Analogies is a subset of the Wide Range
Intelligence test (WRIT). It is a brief measure of verbal
intelligence designed to evaluate children’s and adults’ verbal
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reasoning, and receptive language ability, as well as short-
term memory, between the age range spanning from 4 to 85
(Glutting et al., 2000). This test requires participants to provide an
appropriate word/concept to complete an analogy sentence (e.g.,
“The sky is to blue as snow is to . . .”). Administration and scoring
followed standard procedures.

Causal Tasks
Each task involved the demonstration of two contrasting
examples to make causal processes more salient to observers.
Confirmatory, past research found that contrast demonstrations
could significantly improve children’s conception of causal
mechanisms (e.g., Namy and Gentner, 2002; Dündar-Coecke
et al., Submitted).

For sinking, children saw a stone and a grape of similar size and
color but of different densities, which sank at different rates in a
50-cm-high transparent jar of water. Initially, children inspected
the contrast materials by touching and lifting, and (1) were
asked to predict what they thought would happen if the items
were dropped into the water together (prediction). They then (2)
watched the focal events and were asked to describe what they had
noticed during the demonstration (description), and (3) explain
why they thought things had happened in the way that they had
seen (see Supplementary Appendix 1 causal task scripts).

For absorption, children saw water rising from a petri dish
through two strips of paper: a piece of tissue paper, through which
the water rises faster due to the empty spaces between its cellulose
fibers; and the same length and width of blotting paper, which
has smaller empty spaces thus relatively reducing its absorbency.
This task had the same three-stage structure as sinking, in which
children: (1) predicted; (2) described; and (3) explained the causal
relations (see Supplementary Appendix 1 causal task scripts).

For solution, children saw the same small quantities of table
and rock salt dissolve in warm water. The greater surface area to
volume of the table salt led to more rapid solution. Similar to the
sinking and absorption protocols, children needed to (1) predict
outcomes before witnessing simultaneous demonstrations of the
two instances. They were asked (2) to describe the process they
witnessed, and (3) explain the outcomes (see Supplementary
Appendix 1 causal task scripts).

Procedure and Analysis
Testing started with the administration of the WASI expressive
vocabulary measure, followed by the Verbal Analogies (WRIT),
and the WASI non-verbal Block Design tests. Administration
of the cognitive tasks was followed by the three causal tasks,
in the order of sinking, absorption, and solution. The initial
start with cognitive ability measures aimed to warm up and
encourage children to be more expressive in their explanations.
Children were told that they could take a break or withdraw any
time they wanted.

Each child saw two contrasting instances for each
phenomenon, following the same administration protocol
within a single one-to-one session. Children were not given any
clues about the variables. There were no practice trials, and they
did not receive feedback during the sessions, in order to minimize
the learning effect and maximize reasoning competences with

or without reliance on prior knowledge. Testing took place
in a private room, or out of class in a quiet area within the
schools. Each child took an average of approximately 33 min
to test and complete the battery (min = 25; max = 47 min). All
responses were recorded manually on the relevant score sheets
for later analyses.

The data were analyzed using R and EQS structural equation
modeling software. For the parametric tests, the reliability of
the composite causal measures was tested using Cronbach’s α.
The developmental trajectories were initially examined using
ANOVAs. Since there was a significant skew on scores for
non-verbal block design measure, the Welch robust index
was used to test statistics for the cognitive measures. Main
effects and differences between each age group were also
assessed using Bonferroni corrections. The correlations were
assessed using Pearson and partial correlations. To test the
presence of possible multivariate outliers, Mahalanobis distance
statistics were calculated for each variable. No data surpassed
the p > 0.01 criterion, indicating that none of the variable
values influenced relations among other variables. Estimates
of the unique variance in each causal measure accounted for
by each of the predictors were examined using hierarchical
linear regression, with adjusted R2 values reported for the
variance explained in each model. All tests were two-sided, with
p < 0.05 observed power for ANOVA was 0.99, for regression
analyses was 0.98, which were calculated using G-Power 3.1.9.2
(Erdfelder et al., 2007).

The EQS structural equation modeling software was used
to test the relational magnitudes between cognitive and causal
measures. In search of the best model, six models were examined.
In the best model shown in Figure 2, a latent factor was built
for each of the three causal reasoning measures standing for
causal reasoning. The relation between this measure and each
corresponding factor was fixed to 1; the error variance was left
free to be estimated. Similarly, each dummy cognitive measure
was regressed on a latent variable—a common factor standing
for g, while the three causal measures were regressed on causal
reasoning factor. Age was regressed on g and causal factors,
and the causal factor was regressed on the residual of g rather
than on g itself. Regressing causal factor on the residuals of the
factors and g, rather than the factors themselves, allowed us to
capture how, if at all, each reasoning process is uniquely related
with causal reasoning in addition to their common components
captured by g.

This model was based on Tucker-Drob’s (2009) standardized
solution model, which is constructed based on an integration of
Cattell-Horn’s approach, where g and broad abilities, such as gf
and gc, were presented in a hierarchical structure. The Tucker-
Drob model investigates the relations between the second stratum
abilities and the higher order common (g) factor which associates
largely with various abilities.

To test the goodness-of-fit, the following indices were used: (1)
the χ2 goodness of fit: the fitness of the model improved as the χ2

value lowered. (2) Bentler’s AIC value: the model with the smallest
AIC value provided the best fit. (3) The comparative fit index
(CFI): compared the fitness of the model with the hypothetical
one in which none of the variables are correlated. A model with
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the CFI value of 0.90 or higher means that the tested model fits
the data well (Bentler, 2006). (4) The root mean square error of
approximation (RMSEA) was used to test whether the data fitted
the hypothesized model, with smaller values indicating better
model fit. The recommended cutoff value is suggested usually to
be smaller than 0.06 (Hu and Bentler, 1999).

Scoring of Causal Tasks
Two kinds of scoring system were computed as below.

1. Individual scores for prediction, description, explanation:
predictions (0–2) and descriptions (0–2) were scored for
accuracy in reporting different sinking/absorption/solution
rates for each phenomenon. The measures of prior
knowledge and description made it possible to assess to
what extent the level of explanation was a function of prior
knowledge vs. a result of current observation. Therefore,
the score given to prediction is in relation to whether
children can present a reasonable estimation from prior
knowledge. The score given to description is to capture
the relevance of the description, i.e., how well it fits with
the observation.

Explanations were scored using a stratified model, with
responses given incremental scores between 0 and 3 as
exemplified in the Supplementary Appendix (see causal task
scoring system and examples for the level of explanations).
This began with 0 for no explanation. Children who identified
only one relevant factor (e.g., weight for sinking, softness for
absorption, and size for solution) without comparisons received
a score of 1 (e.g., “They are heavy, they sank to the bottom”).
Children who identified the plural items and compared their
variation received a score of 2 (e.g., “The stone was heavier than
the grape, it sank to the bottom faster”). Children who identified
any intervening factor relevant to the causal mechanism beyond
the comparison score of 2 received a score of 3 (e.g., “Both stone
and grape are heavy that water cannot push them up.” “But the
stone is denser than the grape, it sinks faster”).

In this stratified system, scoring was blind to the children’s
age. The criteria for judging a good explanation were not the
number of sentences or the length of the sentences; rather,
the methodology was guided by the level of the explanation.
For instance, after observing sinking patterns of a stone and a
grape, if a 5-year-old says, “The stone is heavier, has more stuff
in it that makes it more compact, but the grape is not,” this
was counted as corresponding to the highest-level explanation
without use of the word density. Qualitatively, this explanation
differs from the one concluding, for instance, “stone is heavier
than the grape.” The former reflects the understanding and
coordination of observables with the variants, even in the absence
of scientific word knowledge of density. This relaxed scoring
system meant that young children were not disqualified due to
their developing scientific word knowledge; instead, the focus
was on their reasoning and use of variables to think about
causal phenomena, as previously used in Dündar-Coecke et al.
(2019, 2020). The inter-judge reliability was further assessed
via a colleague peer review, who scored six randomly chosen
anonymized and age-blind scoresheets from each year group,
resulting in a 100% agreement rate.

2. A composite score for each causal domain was computed
to be used in the EQS model (shown in Figure 2). Children’s
prediction (0–2), description (0–2), and explanation (0–3) scores
were computed for sinking, absorption, and solution. Scores for
each domain varied between 0 and 7.

RESULTS

Does the Kind of Phenomena (Sinking,
Absorption, and Solution) Present a
Greater or Lesser Challenge to the
Children?
Causal Tasks
Figure 1 shows the response profiles for each age group on
sinking, absorption and solution. All measures were normally
distributed. Performance was consistently best on sinking across
age groups, and worse for solution, indicating that sinking was
easier for children from all age groups whilst solution was most
difficult. However, absorption and solution means were similar in
Y3 and Y5 groups.

A two-way mixed ANOVA (task within-subjects, age between-
subjects) found a significant main effect of task, F(2, 90) = 15.74,
p < 0.001, ηp

2 = 0.146. Bonferroni comparison showed a
significant difference between scores on sinking, absorption and
solution: sinking scores were significantly higher than absorption,
and both were significantly higher than solution (p < 0.001
for all). Significant task by age interaction, F(2, 135) = 3.693,
p = 0.045, ηp

2 = 0.035, showed that the growth in solution
from Y1 toward Y3 was greater than the growth observed in
sinking and absorption for the same age groups. There was
also a main effect of age group in all tasks, F(2, 135) = 4.107,
p < 0.05, ηp

2 = 0.057. For sinking, scores for Y1 were significantly
lower than Y5, but no difference between Y1 and Y3. For
absorption, Y1 scores were significantly lower than Y3 and Y5,
with significant difference between Y3 and Y5. For solution, Y1
scores were significantly lower than Y3 and Y5; Y3 scores were
also significantly lower than Y5.

FIGURE 1 | Response profile means for each causal measure by year groups,
with standard deviations in parenthesis.
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TABLE 1 | Percentages of children obtaining minimum and maximum scores on causal phenomena at each level.

Sinking
prediction

Absorption
prediction

Solution
prediction

Sinking
description

Absorption
description

Solution
description

Sinking
explanation

Absorption
explanation

Solution
explanation

%

Minimum 18.8 39.9 26.8 8.7 13.1 26.1 8.7 16.7 32.6

Maximum 61.6 37.7 38.4 50.1 40.6 31.2 9.4 10.1 8.7

TABLE 2 | Zero-order (above diagonal) and partial correlations (below diagonal) between causal measures and cognitive ability measures (significant associations in bold).

Sinking Absorption Solution Vocabulary (Log)Block design Verbal analogies

Sinking 0.491*** 0.197* 0.350*** 0.439*** 0.439***

Absorption 0.459** 0.295*** 0.292** 0.438** 0.342**

Solution 0.114 0.216* 0.453*** 0.387*** 0.468***

Vocabulary 0.267** 0.166 0.262** 0.637*** 0.838***

(Log) Block design 0.382*** 0.367*** 0.200* 0.339*** 0.809***

Verbal analogies 0.407*** 0.234** 0.269** 0.674*** 0.688***

*p < 0.05, **p < 0.01, ***p < 0.001.

One-way ANOVAs were used to test the differences between
age groups on each prediction, description, and explanation
score. Regarding sinking, there was a main effect of age on
explanation, F(2, 135) = 4.367, p = 0.015, ηp

2 = 0.061, but only
Y1 scores were significantly lower than Y5. There was no main
effect of age on prediction or description, indicating that only Y1
and Y5 children differed in their explanations; the prediction and
description profiles were similar across all age groups. Regarding
absorption, there was a main effect of age on prediction F(2,
135) = 3.541, p = 0.032, ηp

2 = 0.050, and explanation, F(2,
135) = 7.143, p = 0.001, ηp

2 = 0.096, Y1 scores were significantly
lower than both Y3 and Y5 for both, with no differences between
Y3 and Y5. Regarding solution, there was a main effect of age on
all scores: for prediction F(2, 135) = 5.205, p = 0.007, ηp

2 = 0.072,
Y1 scores being significantly lower than Y5; for description, F(2,
135) = 6.784, p = 0.002, ηp

2 = 0.091, Y1 scores being significantly
lower than Y3 and Y5 but no significant difference between Y3
and Y5; and for explanation, F(2, 135) = 10.838, p = 0.000,
ηp

2 = 0.138, Y1 scores being significantly lower than Y3 and Y5,
but no significant difference between Y3 and Y5.

Table 1 compares the highest and lowest scores of each
component and shows that children’s prediction and description
scores were consistently highest for sinking. However,
explanation scores were generally lower. A significant number
of children (32.6%) did not provide any explanation for solution
and therefore were scored as zero.

Looking at children’s total prediction, description, and
explanation scores separately, 27.5% of children got scores of five
or higher in prediction (max = 6 across three phenomena), 52.1%
got scores of four or higher in description (max = 6 across three
phenomena), but only 18.1% of them got scores of seven or higher
in explanation (max = 9 across three phenomena), indicating
that description responses were much better, but this did not
guarantee a high level of explanation. Consistent with this,
the majority of children mentioned weight in sinking (91.2%);
softness in absorption (79.8%), and size in solution (86.1%),
with some of them distinguishing between the differences

in weight/softness/size as portrayed in the above table. The
progress in description and explanation was largely attributable
to differences between Y1 and Y5 children’s performances, as
one-way ANOVAs found significant increases between those
two groups, with Welch robust statistic for description = 5.075
(df = 2,89.446, p = 0.008); for explanation = 14.586 (df = 2,
89.110, p = 0.000). ANOVAs did not find a significant difference
between the scores of Y3 and Y5 children. This implies that better
explanation production is achieved sometime after Y1.

General Cognitive Measures
Both verbal tasks—WASI vocabulary and verbal analogies were
normally distributed, whereas non-verbal Block design positively
skewed due to Y1 and Y3 age groups having a longer tail,
with skewness of 0.82 (SE = 0.20), indicating later growth in
non-verbal competences (p < 0.05). One-way ANOVAs found
significant increases with age on all tasks. For WASI vocabulary,
Welch robust statistic was = 73.314 (df = 2, 88.992); for Verbal
Analogies, it was 101.730 (df = 2, 88.048); for block design, it was
37.261 (df = 2, 85.254), with significant differences between all
three age groups on both measures (p < 0.001 for all). Variance
did not particularly decrease for any measure: for vocabulary,
overall mean was 30.11 (sd = 6.76), for verbal analogies, it was
91.36 (sd = 12.77), and for block design, overall mean was 19.08
(sd = 10.73).

Correlations
The shape of the relations between the two verbal measures
and the three phenomena was linear, but the scores on block
design exhibited logarithmic relationship, explaining greater
variance (with R2 for linear fit = 0.839; R2 for logarithmic
fit = 0.935). Therefore, further analyses included the logarithmic
transformation of block design.

Zero-order correlations demonstrated that general cognitive
measures correlated with all variables (Table 2). Cognitive
measures highly correlated to each other. The correlation
between sinking and solution was weaker, and it became
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TABLE 3 | Hierarchical regression models of the relationships between cognitive ability and causal measures as dependent variables (N = 138).

Step 1 Step 2 Step 3 Step 4

F(df 1, 136) 1R2 F(df 2, 135) 1R2 F(df 3, 134) 1R2 F(4, 133) 1R2

Age (β) Vocabulary (β) Verbal analogies (β) Log Block design (β)

Sinking 7.97**
0.235**

0.055** 9.42***
0.355**

0.067** 12.12***
0.610***

0.090*** 9.965***
0.233

0.019

Absorption 9.548**
0.256**

0.066** 6.791**
0.220

0.026 5.923***
0.327**

0.026* 8.005***
0.476***

0.077***

Solution 27.029***
0.407***

0.166*** 19.361***
0.328**

0.057** 13.799***
0.234

0.013 10.327***
0.053

0.001

Prediction 11.228***
0.276***

0.076*** 6.235**
0.125

0.008 10.859***
0.679***

0.111*** 11.522***
0.426***

0.062***

Description 9.939**
0.248**

0.062** 6.796**
0.237*

0.030* 5.183**
0.228

0.013 4.864***
0.264

0.024

Explanation 27.797***
0.412***

0.170*** 30.830***
0.520***

0.144*** 22.715***
0.313*

0.024* 17.310***
0.124

0.005

*p < 0.05, **p < 0.01, ***p < 0.001.
Hierarchical regressions were run for each causal indices separately (i.e., sinking, absorption, etc.). The first value at the top shows the F values followed by the Beta
values of the predictors underneath (i.e., age, vocabulary, verbal analogies, etc.). Adjusted R2 values for each association were shown under the 1R2 column. So that
readers can see the significant and non-significant models in a holistic fashion.

non-significant when age was controlled for. When age in
months was controlled for, non-verbal (log) block design
showed a stronger correlation with the three phenomena
than vocabulary, except for solution. Solution consistently
correlated better with the WASI vocabulary and Verbal
Analogies, as opposed to non-verbal (log) block design.
Schools did not correlate with any of the measures and
were therefore excluded from the further analyses. Verbal
Analogies and sinking highly correlated even when age
was controlled for.

Regression Models
Hierarchical regression models examined the unique variance
accounted for by verbal and non-verbal ability measures (see
Table 3). Taking each causal component, age in months was
entered in the first, WASI vocabulary in the second, Verbal
Analogies in the third, and block design at the fourth stage to
assess whether their effects were distinct from each other. F and
Adjusted R2 change (1R2) values for each step was shown in
Table 3.

This analysis produced significant models and final
adjusted R-squares. For sinking, only verbal measures were
significant predictors, while the non-verbal (log) block
design was the strongest predictor for absorption. For
solution, only WASI vocabulary measure was a significant
predictor at the second stage, but the inclusion of block
design consistently dropped the beta (β) values of all
other variables. Age was consistently a significant predictor
for all components.

Verbal Analogies explained the highest variance for prediction
(β = 0.679; ηp

2 = 34.8); and another verbal measure WASI
vocabulary explained the second highest variance for explanation
(β = 0.520; ηp

2 = 41.6) scores. Otherwise, the predictive
power of verbal and non-verbal cognitive measures altered
across the domains.

The same analyses were conducted by using a composite
measure involving both verbal ability tasks. The significances did
not change, but the beta values of the composite verbal measure
were slightly higher for each component.

Which General Intelligence Mechanisms
Are Associated With the Variance in
Causal Reasoning, Specific to the Age
Period Examined?
The goodness-of-fits for complex relationships between causal
and cognitive ability measures were tested using the EQS model
as shown in Figure 2. The rationale for best-fitting function

FIGURE 2 | The EQS model investigating the patterns for causal explanatory
thinking and general cognitive abilities (path coefficients are shown with
numbers on each arrow; straight arrows show direct effects, dotted arrow
shows the indirect effect).
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TABLE 4 | Fit indices for the EQS model.

N χ2 df AIC CFI RMSEA

Model 138 13.470 10 −6.530 1.00 0.050

χ2, chi-squared; df, degrees of freedom; AIC, Akaike’s information criterion; CFI,
comparative fit index; RMSEA, root mean-square error of approximation.

was based on the factor analytic model, where remaining free
parameters were estimated using maximum likelihood solution.
In the diagram, variables are represented by cycles, as they are
residual factors, not observed measures [see e.g., Demetriou et al.
(2017), for a similar paradigm using a structural equation model
allowing testing of the possible differentiation of abilities with
increasing g and age].

In the model, the three cognitive ability measures were
regressed on the second-order g factor, as well as their residuals.
This was to reveal the variance in each ability that is not
accounted for by general ability (g) factor. This analysis showed
that causal reasoning-g relations were high (0.814), and therefore
g factor explained around 66% of the variance. Only non-
verbal block design related significantly with causal reasoning,
additionally to general ability (0.537) and explained a further 28%
of the variance.

Goodness-of-fit indexes reflected a very good fit as shown
in Table 4 (model Cronbach α = 0.769). Overall, the model
suggested that the direct effect of g is 66% in causal reasoning. Of
this, 37% was the indirect effect of age. The effect of gf captured
by Block design was high, suggesting an additional 28%. The
indirect effect of age suggested that relation between g and causal
reasoning factors was age dependent, to a medium extent. In
other words, more than half of the variance accounted for by the
g factor was due to developmental differences in g.

DISCUSSION

Does the Kind of Phenomena (Sinking,
Absorption, and Solution) Present a
Greater or Lesser Challenge to the
Children?
This question challenged analyses in three broad contexts;
namely age effect, the involvement of domain-specific knowledge,
and the variability in general cognitive abilities. Regarding
the first, the data suggested a medium level of age effect
on children’s causal explanation performances. This finding
is partly in accordance with the literature, explained by
both Piagetian and Vygotskian terms, where developmental
mechanisms are driven by maturation and possibly via
environmental interactions.

However, chronological and mental age may not always
synchronize in mathematical terms. Several factors seem to
play a role in the development of causal explanatory thinking.
The data here showed that although the majority of children
were able to predict and describe the phenomena relatively
well, the qualitative aspects of their explanations differed
significantly, particularly for sinking and solution. Overall,

sinking was easier, while solution was most difficult for all
age groups. Analyses of response levels for each phenomenon
showed that the effect of a child’s age on his/her prediction
or description performance in sinking was not significant.
On the other hand, age had a significant effect on how
children predicted and explained absorption, and at all levels
of performance in solution. As discussed below, it is crucial to
gain a full insight into this relatively early maturation in thinking
about sinking, but later growth in solution, with absorption
falling in the middle.

Distinct characteristics of the phenomena seem to matter,
particularly the level of transparency in portraying visional
and locational qualities in a more or less available manner
to the observers, as also acknowledged in Rosen and Rozin’s
(1993) study. Sinking portrayed the causal process in a more
salient manner, because participants were able to observe the
stone, grape, and water from the beginning to the end in
an observable spatial-temporal layout. None of the objects
disappeared, but their sinking rate evoked the involvement
of intervening factors, such as gravity (and buoyancy for
advanced thinkers). Unlike sinking, not all aspects of absorption
were spatiotemporally laid out because although children
were able to observe the rising water level, the mechanism
behind upward motion required reasoning. For solution, spatial-
temporal layout was least observable. The observed properties
in the salt solution did not retain their quantities or qualities
toward the end of the illustration, making it likely that
either children’s anticipation of spatial-temporal layout became
discordant with their common-sense, or it was harder for
them to conceptualize the unobservable interactions as explicit
forms. This finding supports the view discussed in the literature
that causal explanatory systems are affected by certain kinds
of foundational entities specific to each domain (Carey and
Spelke, 1996; Sobel, 2004; Legare et al., 2009) and hence
the nature of causal explanations can differ depending on
domain characteristics (Wellman and Gelman, 1998; Keil et al.,
2008). However, further qualitative investigations are needed
to compare and clarify what children found difficult specific
to each process.

Explanation competences evolved into higher maturity
around the age of 7. The data showed that while the majority
of Year 1 children relied largely on visual components when
explaining causal phenomena, most Year 3 children were able
to articulate abstract concepts and consider invisible factors
at play. This ability became crucial for less transparent
causal processes, like solution, which required children
to shift from observable-dependent thinking to abstract
conception. This would fall in line with the findings of
Piaget and Inhelder’s (1974) study, looking at children’s
understanding of the dissolution of sugar, which also suggested
that children moved from pre-atomist to atomist thinking
around a similar age.

It is not clear whether developmental changes in executive
function and the emergence of rule-based thinking affected
children’s causal explanation (as discussed Vosniadou and
Brewer, 1987; Demetriou et al., 2010). Similarly, the effect
of uneven conceptual development in different domains
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(Case, 1985; Demetriou et al., 1993, 2002; Carey, 2011), or
slowly developing abilities playing a role in scientific reasoning
(Dunbar and Klahr, 1988; Kuhn et al., 1988; Klahr, 2000;
Klahr and Nigam, 2004; Dean and Kuhn, 2007; Kuhn, 2007;
Zimmerman, 2007) warrant further exploration. Although the
argument cannot be taken further on these points, the data
here suggest that children’s ability to coordinate observed
variables with unobserved variants in natural phenomena
develops toward late childhood as an important component
of the quality of their causal explanations. Notably, despite
the large body of literature on executive function, to our
knowledge no study to date has provided a developmental
account exploring the link between executive function and
causal reasoning. Further studies can investigate the relevance
of this relationship, particularly the effect of maturation to
executive function.

Which General Intelligence Mechanisms
Are Associated With the Variance in
Causal Reasoning, Specific to the Age
Period Examined?
As shown by hierarchical regression models, verbal measures
were the only predictors for sinking and solution, while
the non-verbal (block design) measure uniquely predicted
absorption. However, these analyses suggested that none of the
psychometric ability measures were independent, but instead
the predictive power of verbal and non-verbal competences
altered in each causal task. Given that verbal measures
represented conceptual knowledge (know-what), while non-
verbal measures corresponded to procedural knowledge (know-
how), the high correlations between these measures can be
explained using Karmiloff-Smith’s (1992) argument, proposing
that words and their representations may be procedurally
encoded, which highlights the link between conceptual and
procedural understanding. In line with this argument, the
alterations in the predictive power of these cognitive measures
were weakly captured by the regressions, which suggested a
mixed pattern, pointing to the possibility of multimodal parallel
cognitive structures co-developing across the age range studied.
This result is consistent with the proposal that cognitive systems
are tuned to each other in multistructural and multisystemic
ways, so that any change in one of the systems can affect the
dynamics and help with co-processing amongst all of them across
development (see Demetriou, 1993, for a review). Moreover, this
result also complies with Spearman’s (1904) “positive manifold,”
as discussed earlier.

On the other hand, the attempts to disentangle g from specific
ability factors on causal understanding, as shown by the EQS
model in Figure 2 indicated that, overall, there was a large
psychometric ability factor in children’s causal explanations, with
g impacting at a medium level, and gf, measured by block
design, standing out as a unique factor beyond the g factor. Note
that the psychometric g subsumed the variances of both verbal
measures—vocabulary and verbal analogies. Despite this, the
psychometric g is regarded as being a factor that is responsible for
the positive correlations between all cognitive tests, and posited as

a driving mechanism for reasoning, problem solving and here for
causal explanatory thinking; gf as a non-verbal ability measure
remained as a unique factor. Altogether, the psychometric g
and gf explained 57% of the variance in causal thinking. Age—
as an indirect effect- accounted for about 37% of the variance
which highlighted the developmental differences affecting causal
explanatory competences beyond general cognitive factors.

Spearman postulates that increasing g allows for increasing
differentiation of specific cognitive systems, and therefore
it might be the case here that higher mental power invests
more variance in strengthening relations between specific
cognitive abilities in causal reasoning. The data indeed
showed how the contribution of verbal and non-verbal
systems varied, and that their relation to the g gradually
increased with age, and in turn causal inference qualitatively
improved with age. Note that causal reasoning requires
awareness of missing information and motivates a search
for the unknown, indicating that there are phase-specific
and ability-specific changes in this process, reflecting
higher flexibility of the g (see Demetriou et al., 1993 for a
similar outcome).

A counter argument could see age as a part of domain-
specific mechanisms. However, the data show that this may
not be so straightforward, as changes in the developmental
processes tended to synchronize with changes in general ability,
resulting in qualitative and quantitative changes in children’s
causal explanations, enabling them to devise more abstract
constructs in their causal thinking as they grow. There is also
a possibility that abilities may become more/less closely related
with childhood age as explained by the age differentiation-
dedifferentiation hypothesis This hypothesis examines why
abilities are differentially related across ages (age differentiation-
dedifferentiation) and across levels of functioning (ability
differentiation). Another hypothesis takes into account the
diversity in neural sources mediating growth and considers age-
related changes in the efficiency of neurotransmission as leading
to age-related increases in ability dependence during childhood,
while opposite patterns are observed during adulthood, where
age-related decline in ability levels as associated with ability
interrelations (see Tucker-Drob, 2009). The present study is
limited to cross-sectional data, however, further studies could
aim to overcome methodological shortcomings with samples
containing participants from a wide range of age groups.

CONCLUSION

Children’s causal explanations were associated with different
cognitive ability factors dissimilarly across the year groups.
Each task brought into focus unique conceptual and procedural
representations that needed to be understood via intertwined
routes, where psychometric abilities predicted causal reasoning
substantially, but not entirely during the age periods studied.
Demands from general ability factor increased or decreased
depending on the task requirements. For instance, when the
causal phenomenon included more abstract representations, as
experienced in solution, mental operations were verbally more
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demanding. Confirmatory factor analyses showed that cognitive
abilities matter to a large extent independently of age, with
fluid reasoning standing out as a unique factor. However, this is
the first study to explore the patterns between causal reasoning
and types of cognitive ability. Further research can advance
our understanding of whether there are other factors at play
that can explain the nature of causal reasoning and uneven
domain profiles.
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