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Abstract: A combined experimental and numerical study on titanium porous microstructures in-
tended to interface the bone tissue and the solid homogeneous part of a modern dental implant is
presented. A specific class of trabecular geometries is compared to a gyroid structure. Limitations
associated with the application of the adopted selective laser melting technology to small microstruc-
tures with a pore size of 500µm are first examined experimentally. The measured effective elastic
properties of trabecular structures made of Ti6Al4V material support the computational framework
based on homogenization with the difference between the measured and predicted Young’s moduli
of the Dode Thick structure being less than 5%. In this regard, the extended finite element method is
promoted, particularly in light of the complex sheet gyroid studied next. While for plastic material-
based structures a close match between experiments and simulations was observed, an order of
magnitude difference was encountered for titanium specimens. This calls for further study and we
expect to reconcile this inconsistency with the help of computational microtomography.

Keywords: porous material; titanium trabecular and gyroid structures; selective laser melting;
mechanical properties; homogenization; FEM; X-FEM; dental implant

1. Introduction

Reducing high interface stresses (possibly causing interface debonding and eventual
implant loosening) and minimizing the effect of stress shielding (a generally accepted factor
of bone mass reduction) are two factors that drive the research efforts in the development
of novel, more reliable implants [1–3]. While promoting more flexible implants to reduce
stress shielding and consequently long-term bone loss seems reasonable, their applica-
tion may generate inadmissible interface stresses at some locations of the bone–implant
interface [2,4]. It is therefore the implant stiffness to bone stiffness ratio which deserves
particular attention [5]. In this regard, an application of porous microstructures on the outer
part of a stiff implant as a stabilizing element for relatively compliant human bone has
attracted considerable interest, particularly when potentially designing implants tailored to
patient-specific conditions [6] thus complying with the current trend in bioengineering [7,8].

A rapid boom in the design and modeling of porous microstructures, focusing on
bone implants [9–11], has been observed with a recently developed additive manufacturing
(AM) technique allowing for the production of porous titanium microstructures via 3D
printing [12]. Either selective electron beam melting (SEBM) [10,13,14] or selective laser
melting (SLM) [15,16] is typically adopted to fabricate microstructures of variable complex-
ity, including both trabecular [10,17,18] and gyroid [9,11,14] types of cellular structures.
The latter technique has been selected in this study owing to a fruitful collaboration with
ProSpon, Ltd. which has successfully exploited SLM in a variety of biomedical areas,
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including production of implants and medical devices in orthopedics, traumatology, and
surgery applications.

An overarching objective is to allow for an adequate osseointegration and tissue regen-
eration not only on the implant surface but also inside the porous scaffold, thus improving
the bone–implant bonding properties and overall implant stability [19]. However, identify-
ing an optimum pore size to facilitate the ingrowth of bone cells [20] while maintaining
the desired mechanical properties remains a challenge. Considering the tissue growth
only, it was observed in [21] that the maximum bond strength between the implant porous
structure and the bone corresponds to a pore size in the range of 50–400µm [12,22]. A series
of in vitro tests on titanium implants with drilled cylindrical channels performed in [23]
suggested a pore size of 600µm to yield the highest rate of bone cell ingrowth. It was noted
in [12] that this quantity evolves over time, promoting small pores up to 500µm at an early
stage of bone tissue ingrowth, while there is a higher bone cell density in bigger pores of
800–1000µm for longer intervals. This issue deserves particular attention in applications of
small dental implants where limitations of 3D printing to produce stable microstructures
free of solid phase discontinuities [18] play a crucial role.

An extensive experimental campaign appears to be a natural way of assessing the
mechanical properties of intended porous microstructures both within and beyond the
elastic limits. A well-designed parametric study can be carried out to identify sensitivity
of the selected microstructural details, including the shape and size of pores, various
geometrical details of the solid phase, and the load and boundary conditions in the overall
response both at the level of a cellular structure and an implant [24]. Although eventually
irreplaceable, purely experimental research may prove expensive when searching for opti-
mal or even patient-specific designs. To this goal, a computational approach is a suitable
alternative [25,26]. In the framework of trabecular or gyroid structures, the interested
reader is referred to [9–11,17,27], to cite a few. In this regard, triply periodic minimal sur-
face (TPMS) structures have often been examined owing to their extraordinary mechanical
properties that are easily tailored, through simple geometrical adjustments, to those of
human trabecular bone [28]. As they possess periodicity in three mutually perpendicular di-
rections [29] they represent a suitable candidate for computational homogenization [30–34]
and multiscale modeling [35–37].

Both aspects of this research will be addressed herein, aiming at potential applications
of porous microstructures to dental implants [1,38]. We intend to:

• Propose, design, and experimentally examine titanium porous specimens manufac-
tured via the SLM 3D printing technique to acquire the basic mechanical properties in
tension and compression of both trabecular and gyroid microstructures. We turn our
attention to the production of specimens with a minimum number of internal flaws of
both types of microstructures. This step exposes potential limitations of 3D printing
of small dental implants.

• Examine the standard homogenization approach presented in the framework of 1st
order computational homogenization to replace an expensive full-scale analysis of
actual specimens. Limiting our attention to elasticity, several periodic unit cells
corresponding to experimentally tested specimens are analyzed to identify the ac-
tual material symmetry of a given microstructure. Proving the applicability of this
approach by comparing experimental measurements and numerical predictions rep-
resents an important step towards advanced nonlinear multiscale analyses of these
complex microstructures.

2. Materials and Methods

Several trabecular and gyroid morphologies were examined, both experimentally
(Sections 2.1 and 3.1) and computationally (Sections 2.2 and 3.2). The production feasibility
with emphasis on dental implants was examined first. The resulting microstructures were
mechanically tested to acquire basic data exploited in the validation step of the adopted
computational homogenization. This latter technique is expected to provide an efficient
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tool when searching for optimal, patient-specific microstructures without performing time-
consuming and expensive laboratory measurements, at least at the initial stage of design of
a particular implant.

2.1. Experimental Program

Both trabecular and gyroid specimens were produced using the SLM technique (see also [6]
for similar applications). The raw material adopted was a Ti6Al4V powder (Rematitan CL)
with a maximum grain size of 63µm supplied by the Dentaurum medical technology man-
ufacturer. All specimens were manufactured in cooperation with ProSpon, Ltd. ( Kladno,
Czech Republic) employing the M2 Cusing machine. The 3D printing was carried out in argon
atmosphere with 0.5% oxygen maintained in a welding chamber. The printed specimens were
then heat treated (gradual heating up to 840 ◦C in 4 h—maintained at 840 ◦C for 2 h—cooled
down to room temperature) in vacuum to relieve internal tension.

Prior to mechanical testing, the specimens’ load-bearing elements (struts and walls in
trabecular and gyroid microstructures, respectively) were subjected to nanoindentation to
obtain the Young’s modulus of the bulk material. The tested specimen was embedded into
an epoxy resin and upon curing the indented surface was ground and polished to obtain as
smooth a surface as possible. A sufficiently dense indentation map was used to explore an
expected variability in stiffness depending on the location and loading directions potentially
attributed to a layerwise process of 3D printing. However, the resulting variation in
the reduced modulus [39,40] confirmed an essentially isotropic response independent
of the location with the values of Er in the range of 114–128 GPa which is considered
sufficiently close to the value of 115 GPa provided by the manufacturer and comparable to
the values observed for conventionally made Ti6Al4V-based implants [41]. Additionally,
the measured microhardness, found in the range of 3.9–4.7 GPa, matches quite well with
the values reported in the literature (see, e.g., [6] and the references therein) and does not
vary much throughout the wall thickness, as seen in Figure 1. These observations suggest
that the SLM-based 3D printing does not alter the expected mechanical properties of the
bulk material, thus promoting advancement towards mechanical characterization of actual
porous microstructures.
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Figure 1. Variation in microhardness throughout the wall thickness.

2.1.1. Fabrication of Trabecular and Gyroid Specimens

The reliability of experimental results depends considerably on the quality of speci-
mens. This issue is partially addressed here, starting with seemingly less complex mor-
phologies of trabecular structures. Favoring production simplicity, we limit our attention
to three basic cells (building blocks) plotted in Figure 2.
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(a) (b) (c)

Figure 2. Basic cells of trabecular structures: (a) diamond (D30), relative density 30%, (b) Dode Thick
(DT), (c) rhombic dodecahedron (RD30, relative density 30%).

As the rate of osseointegration and consequently the required implant stability de-
pend on the size of pores (d), we produced six types of specimens with the pore sizes
ranging from 350 to 800µm. Limitations of the available printing device did not allow for
manufacturing specimens with a strut thickness (δs) less than 200µm. Although not the
primary objective, we kept the overall porosity (nm, nV), given the desired pore size, of the
specimens comparable by conveniently adjusting the strut thickness thus arriving at basic
units of a variable size (L). The basic data are listed in Table 1. Therein, we introduce two
types of porosities representing a theoretical porosity nV derived from the original CAD
models and the actual one denoted as nm and derived for a printed specimen from

nm = 1− m−Vρm

Ahρm
, (1)

where m, V, A, h are the specimen mass, volume, top and bottom face area, and height,
respectively, and ρm represents the density of the matrix (titanium) phase. Significant
differences can be observed, suggesting a severe deviation of as-built samples from the
original CAD models. This can be attributed to various internal impurities, such as
remnants of powder or clusters of slag (Figure 4a). Variability in the strut thickness and
its deviation from the theoretical models (Figure 4b) is another source contributing to
this inconsistency.

Table 1. Types and geometry of basic trabecular cell units (D30—diamond, relative density 30%,
DT—Dode Thick, RD30—rhombic dodecahedron, relative density 30%).

Unit Type L [µm] δs [µm] d [µm] nm [-] nV [-] NofCellsEdge

D30-1 750 200 350 0.37 0.70 18
D30-2 1000 260 450 0.38 0.70 14
DT-1 1000 200 500 0.37 0.75 14
DT-2 1250 250 630 0.41 0.75 11.5
RD30-1 1250 230 640 0.26 0.70 11.5
RD30-2 1500 290 800 0.49 0.70 9.5

The trabecular part of each specimen, whether for compression or tension tests, was
assumed to be a cube of 14× 14× 14 mm. This resulted in a variable number of basic units
along the specimen edge (NofCellsEdge in Table 1). The resulting specimens intended for
the compression tests appear in Figure 3. As seen, 1 mm thick bottom and top homogeneous
bases were printed along with the trabecular part to allow for a uniform transmission of
the applied load onto the porous structure.
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(a) (b) (c)

Figure 3. Examples of trabecular specimens made for compression tests: (a) D30-2, (b) DT-2, (c) RD30-
2 (Table 1).

It is worth mentioning that the specimens were printed gradually from the bottom
to the top base. This becomes relevant when considering the major defects observed at
the trabecular section–top base interface in Figure 4c. The most simple explanation is the
rate of cooling of small trabeculae which considerably exceeds the one of a homogeneous
part, causing detachment of struts from the base because of thermal shrinkage. This issue
may seem less important in the production of the implant itself, providing the inner solid
part is printed first, as no such discontinuities were observed at the bottom base–trabecular
section interface. As well as interfacial debonding, other types of flaws may occur inside
the porous structure, as demonstrated in Figure 4. It is our belief that these flaws are
associated with the limitations of the used printing device and would not be observed for
larger units with thicker struts. Therefore, application of trabecular structures is expected
in the area of large joint replacement.

(a) (b) (c)

Figure 4. Defects of trabecular specimens: (a) clusters of slag inside trabecular structure, (b) disconti-
nuities within trabecular structure and variability in strut thickness, (c) discontinuities (debonding)
at interface between trabecular and homogeneous part (photographs provided by high-resolution
camera Canon 6D Mark II).

While not as vital for compression tests, the specimen homogeneity plays a crucial
role when loading the specimen in tension. A considerable effort has been invested into the
preparation of specimens for tensile loading with emphasis on the elimination of interface
flaws. The main concern when designing the specimen was to allow for quick heat escape
when printing the clamping part while ensuring a sufficient strength and stiffness for
this part to sustain the clamping pressure and allow for loading the trabecular part in
pure tension. The process of development of individual variants is shown in Figure 5
identifying both unsuccessful (Figure 5a,b,d,e) and successful (Figure 5c,f) designs. Only
the 3rd variant, TT-V3, with no visible interfacial defects was eventually tested.
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(a) (b) (c)

(d) (e) (f)

Figure 5. Trabecular specimens made for tension tests: (a) variant 1 (TT-V1), (b) variant 2 (TT-V2),
(c) variant 3 (TT-V3), (d) visible interface defects TT-V1, (e) visible interface defects TT-V2, (f) no
visible interface defects TT-V3.

Emerging limitations of 3D printing when applied to trabecular structures outweighed
our interest towards gyroid microstructures. The arrival of TPMS structures considerably
broadened the area of applications of cellular microstructures. Moving from sharp edges
and corners typical of trabecular structures to smooth shells, forming the matrix of a
cellular structure with opened mutually interconnected system of pores, which positively
influences osseointegration and increases the inner structural stability, makes gyroids
particularly attractive. Through mathematical formulation of a level set function (single
gyroid) in terms of spatial coordinates x, y, z and edge length l of a cubic cell

sin
(

2πx
l

)
cos
(

2πy
l

)
+ sin

(
2πy

l

)
cos
(

2πz
l

)
+ sin

(
2πz

l

)
cos
(

2πx
l

)
= t, (2)

which permits a significant variation in microstructure morphology by suitably adjusting
the isovalue t [9,42], the gyroid structures are poised for a major impact on future implant
designs [1] regarding patient-specific needs. Furthermore, reasonable accuracy has been
demonstrated between the original CAD designs and SLM-built Ti6Al4V structures [6],
proving the good manufacturability of these structures. This is supported by our own
observations suggesting that these structures are less prone to internal defects, as indicated
in Figure 6a for illustration. To explain the presence of residuum particles, we mention
the used sintering temperature of 1880 ◦C and a chamber temperature of around 20 ◦C.
This represents a significant difference between the sintered and surrounding powder,
causing the unsintered particles to weakly bond to a sintered surface. This effect may be
reduced by decreasing the sintering temperature but at the expense of the quality of the
printed specimen. Chemically removing these particles is another option but unnecessarily
expensive, particularly for the performed mechanical tests.
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(a) (b)

(c) (d)

Figure 6. (a) Printed gyroid structure with no visible internal defects (left—photograph provided by
high-resolution camera Canon 6D Mark II, right—microscopic image provided by electron microscope
SEM Phenom XL), (b) example of one-cell gyroid surface with t = 0, (c) matrix phase gyroid with
finite wall thickness δw = 400µm, (d) inverted matrix phase gyroid assuming δw = 400µm ((b–d)
were generated using Autodesk Netfabb software).

An illustrative example of a one-cell single gyroid isosurface with t = 0 is presented
in Figure 6b while a two-cell matrix phase gyroid [9] with a finite, a priori defined wall
thickness (δw) appears in Figure 6c. Note that an inverted matrix phase gyroid in Figure 6d
more or less resembles the trabecular structure. Note also that the parameter t can be used
directly to generate a wall system of a gyroid structure with a finite thickness of the wall,
providing a double gyroid system represented by two single gyroids with an opposite
orientation of the curvature of their surfaces [43]. However, this approach was not pursued
in this study.

We mentioned in the introductory part that an optimal pore size for efficient bone
ingrowth ensuring a sufficient bone–implant bond is found in the range of 350–800µm [20].
With this in mind, we first investigated the influence of pore size (Phase I) by considering
four types of basic cells of variable size, and similarly for trabecular structures, adjusting
both the pore size and the wall thickness while keeping comparable porosity. The wall
thickness was about half the pore size. The corresponding data are available in Table 2.
The specimen dimensions were assumed to be the same, both for compression and tension,
as for the trabecular specimens, i.e., a 14× 14× 14 mm cube of a porous microstructure
with 1 mm thick homogeneous bases. A graphical representation can be seen in Figure 7.
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(a) (b) (c) (d)

Figure 7. Basic cells of gyroid structures—Phase I: (a) G1-I, (b) G2-I, (c) G3-I, (d) G4-I.

Table 2. Types and geometry of basic gyroid cell units—Phase I.

Unit Type L [µm] d [µm] nm [-] nV [-] NofCellsEdge

GI-1 1400 400 0.41 0.52 10
GI-2 1800 450 0.47 0.52 7.78
GI-3 2400 700 0.50 0.52 5.83
GI-4 3000 800 0.52 0.52 4.67

Next (Phase II), the effect of wall thickness, the parameter we were not able to address
with trabecular structures, was examined. The geometrical details are summarized in
Table 3. What is interesting to see, contrary to trabecular specimens, is that there is only a
slight difference, with the exception of GII-2, between the theoretical porosity nV and the
porosity nm of as-built specimens.

Table 3. Types and geometry of basic gyroid cell units—Phase II.

Unit Type L [µm] δs [µm] d [µm] nm [-] nV [-] NofCellsEdge

GII-1 1800 150 450 0.54 0.62 7.78
GII-2 1800 250 450 0.27 0.48 7.78
GII-3 2700 150 750 0.70 0.70 5.18
GII-4 2700 250 750 0.62 0.63 5.18

2.1.2. Measurement and Evaluation of Selected Mechanical Properties

The compressive and tensile stress measurements were carried out in the displace-
ment control regime with a loading rate of 1 mm/min using electromechanic MTS Alliance
RT30kN and RT50kN loading machines for trabecular and gyroid microstructures, respec-
tively. Given the specimen topology, the loading direction was assumed to be normal
to the layers fabricated via 3D printing. The resulting measurements were visualized in
terms of stress–strain diagrams. More specifically, the engineering strain was defined as
the prescribed displacement divided by the specimen height, and the engineering stress
was calculated by dividing the reaction force by the base area.

The Young’s modulus E, the 2% yield strength in compression σ0.2, and the strength
σf irst,max representing the first maximum stress reached were derived in accordance with
Figure 8a following the ISO 13314:2011 standard [44]. All specimens were loaded until
failure. Figure 8b plots typical loading curves obtained from compression and tensile tests
to highlight their fundamental differences. The Young’s moduli in compression and tension
were derived from a linear part of the stress–strain diagrams as the slope of the tangent
constructed just after passing the first inflex point on the curve. This also set the point of
zero strain ε0 needed to identify a strength σ0.2 as the stress at which the stress–strain curve
deviates by a strain of ε = 0.2% from the linear range. Note that both σ0.2 and σf irst,max
were estimated from the compression tests only.
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Figure 8. Engineering stress vs. engineering strain curve: (a) definition of basic mechanical parame-
ters, (b) illustration of compressive and tensile stress–strain diagrams obtained experimentally.

2.2. Theoretical Formulation of Homogenization

A physical experiment is generally required whenever a new material or a product
is expected to enter the world of engineering practice. However, such experiments are
often expensive which hampers extensive parametric studies. On the contrary, such studies
are inevitable, at least at the initial stage, when striving for new and optimal designs.
A dental implant is a strong example [1]. In this regard, computational mechanics has
proven beneficial.

Concerning the invention of porous microstructures intended for bio-applications,
the simulations are typically directed towards a numerical reproduction of a physical exper-
iment while accounting for all geometrical details of the tested specimen ([9–11,27] to cite a
few). The resulting finite element model then typically calls for fine meshes with a large
number of degrees of freedom which makes the analysis time consuming. Keeping in mind
the periodicity of basic units, an attractive alternative is homogenization [30,32–34,45,46],
often combined with multiscale analysis [47], especially when loading the material beyond
its elastic limit [31,35,37]. We wish to adopt this approach and confirm its applicability in
the context of the studied trabecular and gyroid structures. A brief theoretical background
is provided while limiting attention to linear elasticity.

Given the loading conditions in the physical experiment outlined in Section 2.1.2, we
proceed along the lines of strain-based periodic homogenization. Standard vector matrix
notation is used herein with the boldface lowercase italic letter a representing an N × 1
vector and the boldface capital letter A representing an N×M matrix. To that end, consider
a representative volume element (RVE) in terms of a periodic unit cell Y (PUC). The periodic
unit cell is assumed to be loaded on its external boundary ∂Y by the displacement field
u0(x) which generates a macroscopically uniform strain E in an equivalent homogeneous
medium which has the same overall (effective) properties as the original porous material.
In view of the periodicity of PUC, the displacement and strain fields in PUC allow the
following decomposition [30,34]

u(x) = E · x + u∗(x), ε(x) = E + ε∗(x) in Y. (3)

The fluctuation part u∗ of the displacement field u enters Equation (3) because of
porosity. Note that u∗ is Y-periodic to ensure that

〈ε(x)〉 = E, 〈ε∗(x)〉 = 1
Y

∫
Y

ε∗(x)dx = 0, (4)

where 〈·〉 stands for volume averaging. Next, consider the Hill lemma in the form of
principle virtual work and use the virtual displacement δu(x) = δu∗(x) (E is prescribed so
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that δE = 0) to obtain 〈
(δε∗(x))Tσ(x)

〉
= 〈δε∗(x)〉T〈σ(x)〉 = 0. (5)

since 〈δε∗〉 = 0 by Equation (4). To solve Equation (5), we adopt the standard displacement-
based finite element method (FEM) and discretize the periodic cell Y into Ne disjoint
elements Ye respecting the material interfaces. The searched fluctuation part of the dis-
placement field u∗ and the local strain field ε then assume the form

u∗ = N(x)r (a), ε(x) = E +B(x)r (b), (6)

where N represents the shape functions for a given partition of the unit cell, B is the
corresponding strain–displacement (geometric) matrix, and r is the vector of unknown de-
grees of freedom. Substituting Equation (6b) into Equation (5) yields for any kinematically
admissible strains δε∗ = Bδr the associated system of algebraic equations

Kr = f , (7)

in terms of the stiffness matrix K of the system and the vector of generalized nodal forces f
written as

K =
Ne
A

e=1
Ke, where Ke =

1
Y

∫
Ye
BT

e (x)LeBe dx, (8)

f =
Ne
A

e=1
f e, where f e = −

1
Y

∫
Ye
BT

e (x)LeE dx. (9)

where Le is the material stiffness matrix of the e-th element (σe(x) = Leεe(x)), and the
operator A represents a standard assembly (localization) of contributions from individ-
ual elements.

System (7) can be used to provide the finite element approximation of the coefficients
of the effective stiffness matrix Lhom as volume averages of the local fields derived from the
solution of successive elasticity problems [34]. Considering a three-dimensional body, we
load PUC, in turn, by each component of E while the other components vanish. The volume
stress averages (〈σ(x)〉 = Σ) normalized with respect to E then fill individual columns of
Lhom to obtain the macroscopic constitutive law as

Σ = LhomE. (10)

3. Results

The porous microstructures introduced in Section 2.1.1 are compared both quantita-
tively and qualitatively on the basis of selected mechanical properties. The results from the
proposed experimental program are discussed first in Section 3.1. The measured elastic
response further serves to validate the effective elastic properties predicted numerically in
Section 3.2 on the grounds of computational homogenization (Section 2.2).

3.1. Experimentally Derived Mechanical Properties

In Section 2.1.1, we proposed a route to fabricate specimens we expected to provide
the response of printed microstructures in tension. However, the measurements of both
trabecular and gyroid specimens were highly inconsistent. A number of specimens expe-
rienced failure within the gripping section or in the vicinity of the top base. In general,
the fracture was brittle and the fracture surface revealed a number of internal discontinu-
ities, particularly for trabecular specimens, not observed by initial inspection (Figure 5f).
Figure 9 shows some of the fractured specimens for illustration.
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(a) (b)

Figure 9. Fractured specimens undergoing tension: (a) failure at gripping section (samples 2, 3—porous
structure corresponds to GII-2), (b) location of fracture surfaces near top base (porous structure
corresponds to GII-3, specimens are positioned upside-down from the printing direction point
of view).

Testing the specimens prepared entirely by the SLM printing technique in tension
thus remains a challenge and at the present time we are not able to offer reliable results.
Therefore, the remainder of this section is devoted to compression, concentrating on the
effective Young’s modulus, yield strength σ0.2, and the first maximum stress σf irst,max,
all measured along the printing direction. For each microstructure in Tables 1–3, three
specimens were fabricated and tested following the procedure described in Section 2.1.2.

3.1.1. Trabecular Specimens in Compression

Figure 10 plots the measured stress–strain diagrams. While the consistency of results
pertinent to a given microstructure is evident, we observe a considerable variability across
individual microstructures. Exceeding the maximum allowable reaction force of 30 kN in
the MTS RT30kN loading system terminated the experiment for some microstructures even
prior to reaching σf irst,max (see Figure 10d,e).

It is evident that the response is highly affected by the microstructural details, such
as the pore size and thickness of struts, including the geometry of the basic unit and
not just porosity. This is confirmed by the measured mechanical properties shown in
Table 4. The experimental results presented in Tables 4 and 5 are averages from three
measurements (Figures 10–12). This also applies to actual porosity nm slightly differing
across specimens, compare, for example, the measured Young’s modulus corresponding to
D30-1 and DT-1 or to D30-2 and DT-2 microstructures, with both pairs having comparable
porosity, but differing in geometrical details, pore size, and strut thickness. However, there
was relative difficulty in removing the powder agglomerate residue, resulting in printed
samples deviating quite strongly from the theoretical models, identified by the differences
in nm and nV, which puts the reliability of the measured results into question.

Table 4. Mechanical properties of trabecular structures from experiments.

Unit Type E [GPa] σ0.2 [MPa] σ f irst,max [MPa] nm [-] nV [-]

D30-1 2.88 86.7 88.7 0.37 0.70
D30-2 3.51 126.5 141.9 0.38 0.70

DT-1 2.84 84.7 98.2 0.37 0.75
DT-2 3.71 142.2 - 0.41 0.75

RD30-1 3.82 - - 0.26 0.70
RD30-2 2.63 78.4 90.2 0.49 0.70
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The values of Young’s modulus support the examined microstructures, which are all
found within the range of 2.7–9.1 GPa, typical of spongious bones. If striving for a low
stiffness while maintaining a sufficient strength then the Rhombig RD30-1 system would
be the most effective. What could be the obstacle for applications in the area of small dental
implants is the relatively small thickness of struts below 300µm, being not only at the edge
of production limitations but also causing a large number of capillary defects. These are
unacceptable because they represent a potential source of broken microparticles, causing
necrosis and consequently an aseptic release of implants. Thus, for small implants, the
examined trabecular structures look like a dead end. A different route is therefore needed,
e.g., the use of gyroid systems, as discussed next.
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Figure 10. Engineering stress vs. engineering strain curves: (a) D30-1, (b) D30-2, (c) DT-1, (d) DT-2, (e) RD30-1, (f) RD30-2.
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3.1.2. Gyroid Specimens in Compression

The measured stress–strain curves of both phases of investigation are shown in
Figures 11 and 12. Again, the reproducibility of individual microstructures is confirmed.
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Figure 11. Engineering stress vs. engineering strain curves: (a) GI-1, (b) GI-2, (c) GI-3, (d) GI-4.

Remember that in Phase I, we aimed to create microstructures of a variable pore size
while keeping the same porosity, simply by rescaling the dimensions of the basic unit,
i.e., increasing the pore size generated larger units with thicker walls. The responses of
these microstructures are very similar. This is quantitatively supported by the values of
tracked mechanical properties in Table 5.

Table 5. Mechanical properties of gyroid structures from experiments.

Unit Type E [GPa] σ0.2 [MPa] σ f irst,max [MPa] nm [-] nV [-]

GI-1 3.05 166.9 228.5 0.41 0.52
GI-2 2.87 161.6 214.5 0.47 0.52
GI-3 2.84 157.8 190.7 0.50 0.52
GI-4 2.77 154.1 191.4 0.52 0.52

GII-1 2.67 161.3 - 0.54 0.62
GII-2 3.16 235.8 - 0.27 0.48
GII-3 1.24 31.0 - 0.70 0.70
GII-4 2.86 154.1 199.0 0.62 0.63

Phase II, on the other hand, addressed the impact of variable wall thickness while
keeping the pore size and dimensions of the basic unit the same. Thicker walls thus reduce
the overall porosity with obvious consequences manifested by increased stiffness (mild)
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and strength (significant). This is particularly evident for large pores in Figure 12c,d and
from the corresponding values of mechanical properties in Table 5. As seen in Figure 12b,
the strength properties of the GII-2 microstructure were not determined because of early
termination of the test when the maximum reaction force exceeded the machine limit of
50 kN (MTS RT50kN).
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Figure 12. Engineering stress vs. engineering strain curves: (a) GII-1, (b) GII-2, (c) GII-3, (d) GII-4.

3.1.3. Comparing Trabecular and Gyroid Structures

Some specific differences in the response of trabecular and gyroid structures have
already been put forward here. These are graphically identified in Figure 13. As mentioned,
the properties of the studied trabecular structures strongly depend on the geometry of the
basic unit and, unlike gyroid structures, one can hardly draw a simple correlation with the
porosity only (Figure 13a,b). It can be seen in Figure 13c that a gyroid structure attains a
considerably higher strength compared to a trabecular structure with identical Young’s
modulus. This is advantageous, especially regarding final implant stability. Note that,
with the exception of the GII-3 specimen possessing the highest porosity, the measured
Young’s moduli of gyroid specimens show a relatively mild deviation over a substantial
range of actual porosities, nm = 0.41–0.63.

On the contrary, comparable Young’s moduli of trabecular and gyroid structures may
call these results into question as a much stiffer response would be, in general, expected for
gyroid structures. This issue is examined computationally in Section 3.2.

On top of the superior mechanical response, the gyroid structures possess additional
assets, at least in the context of small dental implants, including smooth transition of the
solid phase, free of sharp corners and edges, which promotes osseointegration. Com-
pared to trabecular structures, the gyroid structure is less prone to internal defects and
enables higher variability in the pore size–wall thickness ratio which is the principal issue
in the construction of strong, stable, and safe implants. The trend in the future devel-



Materials 2021, 14, 4592 15 of 25

opment of trabecular structures is thus seen more in the application of inverse gyroid
microstructures, such as the one in Figure 6d possessing all previously mentioned benefits
of gyroid structures.
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3.2. Effective Elastic Properties Predicted by Homogenization

The experimentally observed behavior of trabecular and gyroid structures in the
linear range is compared here to the results of numerical simulations. We wish to promote
homogenization to save computational time and open the way to an efficient search for
optimal designs which meet the specific conditions of a patient.

Before examining individual morphologies, we present one comparative study on a
Dode Thick type of microstructure. Figure 14a shows a detailed finite element mesh (DM)
of a computational model to reproduce the actual experiment computationally. Because of
symmetry, only one eighth of the test sample with standard symmetry constraints was
eventually considered in simulations. The coarse homogeneous finite element model
(HM) in Figure 14e with assigned effective properties derived from homogenization was
expected to provide an identical response. The effective properties were derived from
homogenization employing Equations (7)–(10) and the finite element model of a periodic
unit cell in Figure 14c,d. Constant strain four-node tetrahedral elements were used in
all simulations. The mesh in Figure 14d is periodic, allowing us to enforce the periodic
boundary conditions, i.e., the same fluctuation displacements on opposite faces, by simply
assigning the same code numbers to corresponding nodes (degrees of freedom). The corner
nodes are fixed. The mesh details, including the computational time, appear in Table 6. All
computations were performed on a powerful computer equipped with four processors,
Intel(R) Xeon(R) CPU E5-2630 v3 2.40 GHz with RAM 128 GB.

Figure 13. Comparing mechanical properties of trabecular and gyroid structures: (a) Young’s modulus vs. actual porosity
nm, (b) Young’s modulus vs. theoretical porosity nV, (c) yield strength in compression vs. Young’s modulus.

3.2. Effective Elastic Properties Predicted by Homogenization

The experimentally observed behavior of trabecular and gyroid structures in the
linear range is compared here to the results of numerical simulations. We wish to promote
homogenization to save computational time and open the way to an efficient search for
optimal designs which meet the specific conditions of a patient.

Before examining individual morphologies, we present one comparative study on a
Dode Thick type of microstructure. Figure 14a shows a detailed finite element mesh (DM)
of a computational model to reproduce the actual experiment computationally. Because of
symmetry, only one eighth of the test sample with standard symmetry constraints was
eventually considered in simulations. The coarse homogeneous finite element model
(HM) in Figure 14e with assigned effective properties derived from homogenization was
expected to provide an identical response. The effective properties were derived from
homogenization employing Equations (7)–(10) and the finite element model of a periodic
unit cell in Figure 14c,d. Constant strain four-node tetrahedral elements were used in
all simulations. The mesh in Figure 14d is periodic, allowing us to enforce the periodic
boundary conditions, i.e., the same fluctuation displacements on opposite faces, by simply
assigning the same code numbers to corresponding nodes (degrees of freedom). The corner
nodes are fixed. The mesh details, including the computational time, appear in Table 6. All
computations were performed on a powerful computer equipped with four processors,
Intel(R) Xeon(R) CPU E5-2630 v3 2.40 GHz with RAM 128 GB.
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Figure 14. (a) Detailed FE model of 1/8 of DT-2 specimen, (b) measured loading curves (x—cross-head displacement),
(c) solid part of DT-2 PUC (recall Figure 2b), (d) PUC finite element mesh, (e) coarse FE model of homogenized specimen.

Table 6. Details of finite element models.

Mesh Details Detailed Model Homogeneous Model PUC

Number of nodes 304,289 3461 25,061
Number of elements 1,016,821 17,285 110,427

Computational time 2 h and 13 min 6 s 34 s

The results of individual simulations, corresponding to the Young’s modulus
E = 118 GPa and the Poisson ratio ν = 0.3 of the solid phase obtained from nanoin-
dentation, are shown in Table 7. The two macromodels in Figure 14a,e were loaded by a
uniform pressure of 50 MPa, well below the elastic limit of all trabecular structures, recall
the values of σ0.2 in Table 4. This is also illustrated in Figure 14b plotting the measured
loading curves. The parameter x0 identifies the starting point to measure the sample
shortening ∆h = x− x0 where d is the applied cross-head displacement. Note that ∆h in
the last row in Table 7 is again averaged over the three measurements.

To arrive at a better agreement of ∆h between DM and the experiment would require
even finer mesh or higher order elements. This would also reduce the model stiffness but
at the expense of an already long computational time. The computational model was built
to acquire the theoretical porosity of nV = 0.75. Comparing the predicted and measured
Young’s moduli suggests that internal impurities within the porous phase are bonded to
the matrix phase only weakly, providing no additional stiffening. From an osseointegra-
tion point of view this is, however, unacceptable, further urging future improvement of
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the current printing capabilities. Nevertheless, the results still indicate reliability of the
proposed homogenization technique which is further validated in the next two sections.

Table 7. Results from initial comparative study on DT-2 geometry.

Model E [GPa] ν [-] ∆h [mm]

Detailed model 4.11 - 0.17
Homogeneous model - - 0.18
PUC 3.56 0.244 -

Experiment 3.71 - 0.19

Prior to that, it is worth mentioning that homogenization, as opposed to running
a single virtual test, allows us to calculate the entire stiffness matrix of the equivalent
homogeneous medium and consequently to disclose the potential anisotropy of a given
microstructure. To support a single value of the Young’s modulus in Table 7, we note in
advance that both the trabecular and gyroid geometries are macroscopically isotropic.

3.2.1. Trabecular Periodic Unit Cell

Table 8 summarizes the results of numerical homogenization, adopting the periodic
unit cells in Figure 2. Sufficiently fine meshes were used to arrive at porosities ñV compa-
rable to their theoretical values nV in Table 4. One particular example for each system is
plotted in Figure 15 for illustration. Because of macroscopic isotropy, we again present only
the Young’s modulus and Poisson ratio. From a theoretical point of view, a single unit cell
for each microstructure would be sufficient, as demonstrated by the homogenized values of
material properties that are almost identical for a given system. The minor differences are
just attributed to an error caused by discretization. This is particularly evident for the DT-1
and DT-2 systems, as a coarser mesh was deliberately used for the DT-2 system to show the
relatively weak dependence on the mesh refinement, at least in the elastic range. In light of
this, the results for different PUCs are reported merely to allow for a direct comparison
with experimental values listed in the 2nd column in Table 8.

(a) (b) (c)

Figure 15. Finite element meshes of basic cells of trabecular structure: (a) D30-1, (b) DT-1, (c) RD30-1.

While the opening paragraphs in Section 3.2 served to validate numerical predictions
via experiments, the results in Table 8 require addressing this issue from the opposite
direction. The numerical predictions fully uncovered previously mentioned shortcomings
of 3D printing when creating trabecular structures of such small sizes. This is particularly
seen for diamond and rhombic structures with smooth cylindrical struts, which were
difficult to manufacture for the assumed thicknesses of struts δS (Table 1 and Figure 4).
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Table 8. Effective elastic properties of trabecular structures from homogenization.

Unit Type
Experiment Homogenization

E [GPa] E [GPa] ν [-] ñV [-] Num. Nodes Num. Elems

D30-1 2.88 4.42 0.296 0.704 50,045 263,404
D30-2 3.51 4.41 0.295 0.705 49,551 260,533

DT-1 2.84 3.39 0.246 0.754 47,573 232,019
DT-2 3.71 3.56 0.244 0.756 25,061 110,427

RD30-1 3.82 5.94 0.296 0.703 61,172 329,417
RD30-2 2.63 5.97 0.277 0.703 60,916 328,003

3.2.2. Gyroid Periodic Unit Cell

After having difficulty in generating periodic meshes for a gyroid type of PUC, we
abandoned the standard FEM formulation and performed the homogenization analysis
in the framework of the extended finite element method (X-FEM) [48]. Because X-FEM
enables an application of regular meshes, e.g., standard brick elements, which do not have
to conform to material boundaries, the analysis of such complex geometries becomes less
problematic [34,49].

In X-FEM, standard approximation of the displacement field in Equation (6a) is
augmented by introducing the enrichment function ψ(x)

u∗(x) = ∑
i∈I

Ni(X)ri + ∑
j∈I∗

Nj(x)ψ(x)aj, (11)

where Ni are the standard shape functions, I represents the total number of finite ele-
ment nodes in the analyzed domain, I∗ ⊂ I gives the number of nodes for which the
support is split by the interface, and aj are the additional degrees of freedom. The present
implementation follows [48] and assumes ψ(x) in the form

ψ(x) = ∑
i∈J

∣∣∣φLS
i

∣∣∣Ni(x)−
∣∣∣∣∣∑i∈J

φLS
i Ni(x)

∣∣∣∣∣, (12)

where φLS
i denotes the level set value in the node i. A one-dimensional format of this

function is plotted in Figure 16a. The nodal values φLS
i represent the signed distance of the

element node to the interface with either a positive or a negative value depending on the
material to which it belongs, as shown in Figure 16b. This function then locates interfaces
implicitly as a union of points for which it attains a zero value (zero-level).

(a) (b)

Figure 16. (a) Modified abs-enrichment for 1D problem, (b) element crossed by two interfaces of the
same material phase.

As it goes beyond the scope of the present study, we do not develop this subject any
further and refer the interested reader to [34] where all details, including the formulation
of a proper integration rule and implementation of periodic boundary conditions for both
standard and additional degrees of freedom, are available.
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Validation and Verification of X-FEM Implementation

To support the numerically predicted Young’s moduli of titanium specimens from
Phase I (GI) and II (GII) examined experimentally in Section 3.1.2, we first present a short
study on specimens made from plastic material as their preparation is both time and cost
effective. To this end, three particular microstructures in Figure 17 were printed using
the Sinterit Lisa Pro printer. It adopts a selective laser sintering (SLS) method to fabricate
samples from a polyamid powder with a tensile strength of about 41 MPa.

(a) (b) (c)

(d) (e) (f)

Figure 17. (a–c) Geometry of specimens tested experimentally in uniaxial compression: (a) DT-2,
(b) GS, (c) GT; (d–f) basic unit cells: (d) DT-2, (e) GS, (f) GT.

The theoretical porosity of all specimens is nV = 0.75. The first microstructure in
Figure 17a corresponds to DT-2 (Dode Thick), while the gyroid structures in Figure 17b,c
were derived from Equation (2) setting t = 0 (sheet gyroid, GS) and t = 0.78 (trabecular
gyroid, GT), respectively. The wall thickness of the sheet gyroid in Figure 17b was assumed
to be δw = 0.5 mm. All specimens consisted of a 4× 4× 4 array of basic units cells, as
shown in Figure 17d–f, each having the dimensions of 6.28× 6.28× 6.28 mm. Such samples
proved sufficient to represent a periodic microstructure.

The results of a uniaxial compression test are plotted in Figure 18. Four specimens
were tested to check reproducibility (only two are shown for the clarity of graphical
presentation). The extracted Young’s moduli obtained from the approach described in
Section 2.1.2 and assuming the elastic parameters of the solid phase E = 850 MPa and
ν = 0.33 are shown in Table 9. These results confirm a considerably higher strength of
a sheet gyroid in comparison to a trabecular structure, as already observed for titanium
specimens in Sections 3.1.2 and 3.1.3. Moreover, the sheet gyroid also shows, as one
would expect, a significantly higher stiffness, a feature not experimentally found for
titanium specimens.

The resulting effective elastic moduli derived both experimentally and from numerical
homogenization are shown in Table 9. To arrive at X-FEM predictions, a relatively fine
subdivision of periodic cells into 35× 35× 35 eight-node brick elements was used. The need
for a sufficient refinement to correctly capture the shape and volume of the solid phase is
demonstrated in Figure 19.
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Figure 18. Experimentally derived force×displacement curves for specimens in Figure 17a–c.
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Figure 19. Influence of mesh refinement on approximation of solid phase by X-FEM: (a–c) subdivision
into 10× 10× 10 brick elements, (d–f) subdivision into 15× 15× 15 brick elements, (g–i) subdivision
into 35× 35× 35 brick elements.
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Table 9. Effective elastic properties of structures in Figure 17 from measurements and homogenization.

Unit Type
Experiment Homogenization

E [MPa] E [MPa] (X-FEM) E [MPa] (FEM)

DT-2 27.3 ± 3.8 26.4 25.9
GS 28.7 ± 1.8 33.2 -
GT 72.4 ± 6.1 82.9 -

A relatively good match between measured and predicted effective moduli, given a
non-negligible scatter of experimental data and uncertainty in the value of the Young’s
modulus of sintered powder, validates the X-FEM implementation. This is further verified
by standard FEM analysis carried out for the DT-2 structure. A better match can be expected
if increasing the numbers of cells in tested specimens, thus reducing the edge effect not
present in homogenization.

Titanium Specimens GI and GII

Table 10 compares the results found from experimental measurements (Section 3.1.2)
and X-FEM homogenization considering again the subdivision of PUC into 35× 35× 35
brick elements. It is seen that the volume fraction of pores approximated by X-FEM ñV and
the theoretical value nV are mostly identical, supporting the assumed degree of refinement.
The corresponding total number of degrees of freedom appears in the last column of this
table. While the number of elements is much smaller than in standard FEM analyses
(Table 8) the computational burden is comparable. However, the simplicity in preparing
the finite element mesh with no need to comply with material boundaries is clear.

Table 10. Effective elastic properties of gyroid structures from homogenization.

Unit Type
Experiment Homogenization

E [GPa] E [MPa] ν [-] ñV (nV) [-] Num. Dofs.

GI 2.88 (mean) 28.6 0.29 0.51 (0.52) 191,043
GII-1 2.67 19.6 0.29 0.62 (0.62) 194,436
GII-2 3.16 32.3 0.28 0.47 (0.48) 189,432
GII-3 1.24 14.0 0.31 0.70 (0.70) 195,636
GII-4 2.86 18.2 0.30 0.63 (0.63) 194,724

As expected from the previous study performed on plastic specimens, the homoge-
nization suggests a considerably stiffer response than observed experimentally for this type
of specimen. Whether this can be attributed to the quality of the printed samples is unclear.
We hope to reconcile this discrepancy with the help of micro-CT scanning, enabling us to
uncover potential defects inside the microstructure not visible to the naked eye. This is an
ongoing research effort and the results will be presented elsewhere.

4. Discussion

Research activities in the field of biomedical titanium implants are quite intense.
Developments of novel designs have been stimulated by a rapid increase in 3D printing
capabilities to manufacture implants of desired strength and stiffness [50]. However,
practical applications in some areas are still rather scarce due to the limitations of the
current printing technology and demanding legislation processes for new products on the
market [51]. Small dental implants fall into this category. Therein, the size of a typical
microstructural load-bearing element is the principal obstacle in producing reliable and
patient-safe implants [52]. Some of the issues regarding the needs for both experimental
and theoretical studies are presented in this paper.
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Our attention was devoted to porous microstructures manufactured by the SLM
technique. Limitations of the adopted 3D printing technology were found when examining
a particular class of trabecular structures, which showed a number of internal defects. This
resulted mainly from the need for printing struts of a very small size, at the limit of the
printer’s capabilities, partially influenced by the grain size of the used Ti6Al4V powder.
To eliminate some of the defects, a novel design of specimens, particularly those loaded
in tension, was proposed. However, the results of an extensive experimental program,
which also included an inspection of microstructural details, suggested the application of
trabecular structures for implants of larger sizes than those expected in dental medicine.

Therefore, we turned our attention to a gyroid structure. At first glance, the produced
specimens have shown much less susceptibility to internal defects with final porosity
matching quite well that of a theoretical model. We also observed a better consistency in
the quality of the produced specimens in comparison to trabecular ones, which was also
supported by a smaller variability in the measured mechanical properties. As expected,
the gyroid structures showed a significant increase in strength when compared to values
achieved for trabecular samples with comparable porosities (Tables 4 and 5). It is worth
mentioning that trabecular samples produced as an inverted matrix gyroid (Figure 6d) were
not examined in the present study. What appears less credible is the measured stiffness
being within the range of trabecular specimens. At this point, we should strengthen the
need for the close interaction of experiments and numerical simulations to either support
each other or uncover potential errors of individual research activities. This is in accordance
with what Drucker postulated in [53], “Theory awaits experiment and experiment awaits
theory in a wide variety of fields. Often the two must go hand in hand if significant
progress is to be made.”

In this study, we approached the computational effort in the framework of first-
order computational homogenization [42,54]. This computational strategy has proven
reliable and efficient in many areas of engineering, especially if the material microstructure
is deemed periodic [34]. Standard finite element simulations on trabecular specimens
were performed first to promote their applicability. Difficulty in constructing periodic
meshes for gyroid structures shifted our attention to the extended finite element method
(X-FEM) [55]. A short study on specimens made of plastic material not only confirmed
the correct implementation of the method but suggested a much stiffer elastic response
of the sheet gyroid compared to trabecular structures (see also [42] for similar findings).
That finding conflicted with a relatively low stiffness of titanium specimens offered by
experimental measurements but was aligned with numerical predictions, which suggested
higher stiffness of an order of magnitude. At this point, however, one cannot simply reject
one of the two results and so further research is needed. We believe that computational
microtomography used with loaded specimens [56,57] will shed light on this subject as this
approach has already been successfully used in [58] to inspect the quality of 3D printed
microstructures. For application to polymer-based gyroid structures, see, for example, [54].
This research activity is currently underway, and the results will be presented separately.
On the contrary, it is worth mentioning that a reasonable agreement between experimental
and direct numerical simulations of full-size specimens has been achieved for a number
of sheet gyroid microstructures made of both polymer and titanium material ([9,59] to
cite a few).

With the above points in mind, future research activity is expected to concentrate on
the design and modeling of a sheet gyroid in both pre- and post-failure regimes [59,60].
To reconcile the observed differences in experimental measurements and computational
predictions, computational microtomography will be used. The expected limitation is seen
in the sufficient accuracy to represent the most relevant flaws in the printed geometry and
to allow for the generation of a reliable computational model [61]. The associated computa-
tional modeling based on X-FEM, a tool which proved powerful in the homogenization
of complex microstructures [48,49,62], will then require an efficient C++ implementation
to handle the memory limitations of the present Matlab implementation. Such a direct
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combination of experimental and computational research should help to avoid conceptual,
systematic, or random errors.

5. Conclusions

An extensive experimental and computational program was performed to investigate
the response of small porous microstructures representing the outer section of a dental im-
plant. The specimens were manufactured with the range of pore size (300–800µm) assumed
optimal from the bone cell ingrowth point of view [12,23]. The associated thicknesses of
struts and walls in the range of 150–300µm of trabecular and sheet gyroid specimens,
respectively, revealed limitations of the adopted SLM-based 3D printing technology. This
was illustrated by flows at the porous structure–solid base interface, attributed to a rapid
heat exchange during production (Section 2.1.1). This issue deserves particular attention
as it currently represents a weak point in the development of novel dental implants [1].
However, progress has been made in the design of specimens for tensile loading, which
seems to be unique according to the authors’ knowledge and opens the door to testing this
material in a more general loading regime.

The impact of these flaws on the material response was examined by comparing the
results of laboratory measurements with virtual (computational) experiments performed
on ideal mircostructures. To this end, a powerful X-FEM-based homogenization was
promoted to reduce computational cost and remove obstacles arising when meshing such
complex geometries. This study showed a relatively minor effect of the observed flaws
on the response of trabecular specimens. On the contrary, the considerable difference
between measurements and simulations encountered for gyroid specimens supports the
need for physical experiments, which are much too often substituted by considerably
cheaper numerical analyses [63], which in turn may falsely supplant some physical facts,
e.g., the potential flaws we did not originally expect for the printed gyroid structures.
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