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Abstract 

The Zika virus (ZIKV) is classified within the Flavivirus genus of the Flaviviridae family and is categorized as an arbo-
virus. The virus was initially identified in a rhesus monkey in Uganda in 1947 and later in a human in Nigeria in 1952. 
Since 2007, the prevalence of the virus has been on the rise, culminating in a major outbreak in the United States 
(US) in 2015. During this outbreak, the adult population was severely impacted, experiencing a range of symptoms, 
including organ failure, microcephaly, fetal death, and Guillain-Barré syndrome (GBS). Additionally, skin rash, limb 
swelling, fever, headache, and heightened sensitivity are found in most adults with Zika syndrome. Although the virus 
can be transmitted through blood, vertical transmission from mother to child, and sexual contact, the primary way 
of transmission of the virus is through the Aedes mosquito. Cells such as neurons, macrophages, peripheral dendritic 
cells, and placental cells are among the target cells that the virus can infect. The TAM AXL receptor plays a crucial role 
in infection. After the virus enters the body through the bloodstream, it spreads in the body with a latent period of 3 
to 12 days. Currently, there is no specific treatment or publicly available vaccine for the ZIKV. Limited laboratory testing 
has been conducted, and existing drugs originally designed for other pathogens have been repurposed for treatment. 
Given the Aedes mosquito’s role as a vector and the wide geographical impact of the virus, this study aims to compre-
hensively investigate Zika’s pathogenesis and clinical symptoms based on existing knowledge and research. By doing 
so, we seek to enhance our understanding of the virus and inform future prevention and treatment strategies.
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Introduction
The Zika virus (ZIKV) is a member of the Flaviviridae 
family and falls under the Flavivirus genus. Within this 
genus, other viruses like yellow fever (YFV), tick-borne 
encephalitis (TBEV), dengue hemorrhagic fever (DENV), 
and West Nile fever (WNV) viruses are also included 
[1]. This virus is one of the arboviruses and is transmit-
ted by mosquitoes [2]. Structurally, it is an 11 kilobases 
(kb) long positive-sense single-stranded RNA virus. The 
genome of this virus initially encodes a polyprotein, 
which is finally converted into three structural proteins 
and seven non-structural proteins by viral and cellular 
proteases. The structural protein C forms the icosahe-
dral capsid of the virus and finally, the virus is enclosed 
by a lipid envelope that comes from the host cell [3–5]. 
The virus was primarily separated from a rhesus mon-
key in Uganda in 1947 [6], its first isolation from humans 
occurred in 1954 in Nigeria [7]. Although ZIKV preva-
lence has increased since 2007, it was initially discovered 
according to the evidence in the American continent in 
2015 as an epidemic in adults, with symptoms including 
Guillain-Barré syndrome (GBS), multiple organ failure, 
and birth defects, such as the birth of babies with neuro-
logical disorders, microcephaly, and the death of the fetus 
[8–10].

Based on phylogenetic analysis, the virus is divided 
into two lineages: Asian and African. According to the 
research, Asian lineages exhibit more genetic diversity 
and a greater number of single nucleotide variants in 
the viral genome compared to African lineages [11]. 
Although transmission by the Aedes mosquito is the 
main route of ZIKV transmission, the virus can also be 
transmitted through blood, vertical mother-to-child, 
and sexual contact [12–16]. Furthermore, according to 
studies, this virus also exists in biological body fluids 
such as breast milk, saliva, urine, and semen [17–20]. 
Different cells including peripheral dendritic cells, mac-
rophages, various types of neurons, and placental cells 
are considered as ZIKV target cells [9]. After enter-
ing the body, the virus is disseminated to other parts 
of the body through the bloodstream [21]. According 
to studies, the latent period of the virus is between 3 
and 12  days. However, in pregnant women, the infec-
tion may persist longer, leading to viral multiplication 
in the brain due to its teratogenic effects [22]. A mac-
ulopapular rash accompanied by limb edema, head-
ache, and fever has been seen in most adults infected 
with the ZIKV. Also, symptoms such as thrombocyto-
penia, encephalitis, and meningitis are rarely seen in 
adults with severe disease. In addition, the ZIKV can 
be associated with neurological complications such as 
GBS [23–26]. According to the studies, no vaccine has 
been developed to be used by the general public. It is 

crucial to emphasize that, based on previous studies, 
no new drug has been specifically created for this virus. 
Instead, the treatments used have mainly been repur-
posed from medications originally designed for other 
pathogens. In addition to these drugs, antibodies are 
also employed as part of the treatment [27].

This study seeks to conduct an in-depth examina-
tion of ZIKV pathogenesis and its clinical manifesta-
tions by drawing on current knowledge and existing 
research. The objective is to not only provide a thor-
ough understanding of the mechanisms through which 
ZIKV causes disease but also to analyze the range of 
symptoms associated with infection. By consolidating 
and expanding on this information, we aim to contrib-
ute valuable insights that can guide the development 
of more effective prevention measures and treatment 
strategies, ultimately improving public health responses 
to future ZIKV outbreaks.

Genome structure and tropism
The ZIKV is characterized as an enveloped, single-
stranded RNA virus. Its genetic material contains an 
ORF encoding a polyprotein, which is subsequently 
cleaved into ten distinct proteins by both cellular and 
viral proteases. Among these proteins, three function 
as structural components: envelope (E), membrane pre-
cursor (prM), and capsid (C) proteins. The remaining 
seven proteins, known as nonstructural proteins (NS1, 
NS2A, NS2B, NS3, NS4A, NS4B, and NS5), play essen-
tial roles in the replication and assembly of the virus 
[3–5, 28]. Figure  1 provides a complete illustration of 
the virus genome and its associated proteins.

Moreover, several well-established ZIKV receptor 
candidates include receptors typically linked to other 
flaviviruses, such as Dendritic Cell-Specific Intercellu-
lar adhesion molecule-3-Grabbing Non-integrin (DC-
SIGN). Two other receptors, T-cell immunoglobulin 
and mucin domain 1 (TIM-1) and the Tyro3, Axl, and 
Mer receptors (TAM family), are also involved. These 
receptors belong to the phosphatidylserine receptor 
family [29]. Among these receptors, TAM receptor 
AXL plays a major role [30]. The presence of Non-
structural protein 1 (NS1) antigenemia is instrumen-
tal in the ingestion of flaviviruses by mosquitoes [31]. 
Based on the findings of Yang Liu et  al., the existence 
of NS1 in the bloodstream of the infected host affects 
ZIKV infection in Aedes aegypti mosquitoes. They 
found that an alanine-to-valine amino acid substitution 
at residue 188 in NS1 increased NS1 antigenicity, which 
in turn increased ZIKV’s ability to be transmitted from 
hosts to vectors, which could facilitate ZIKV transmis-
sion [32].
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Transmission routes
Vector‑borne transmission
The ZIKV can be transmitted through various ways 
(Fig.  2). This virus is primarily spread by mosquitoes, 
especially those belonging to the Aedes genus [33–35]. 
Various species of Aedes mosquitoes have been identified 
as potential carriers, including Aedes africanus, Aedes 
albopictus, Aedes hensilli, and Aedes aegypti [36]. How-
ever, Aedes aegypti and Aedes albopictus are regarded as 
significant transmitters of ZIKV [37]. ZIKV circulates in 
an enzootic cycle among non-human primates through 
mosquitoes in sylvatic environments. These infected 
mosquitoes can then transmit the virus to humans, cre-
ating an epidemic cycle. Additionally, the virus may 
enter human populations via bites from infected Aedes 
mosquitoes that come from regions experiencing ZIKV 
outbreaks or spillover from sylvatic habitats [38]. Aedes 
africanus is believed to be the sylvatic vector of ZIKV, 
while Aedes henselli has been associated with the out-
break on Yap Island. However, Aedes aegypti is consid-
ered the primary vector for outbreaks in the Americas, 
the Pacific, and Asia [39].

Non‑vector‑borne transmission
There are several non-vector modes of transmission for 
ZIKV, such as through sexual intercourse [40–43], and 

from a mother to her fetus during pregnancy [44–50]. 
ZIKV might infect children through several ways, includ-
ing intrauterine, intrapartum, and postnatal routes [46, 
51, 52]. Instances of perinatal transmission of the ZIKV 
from mothers infected during childbirth have been docu-
mented, with two such cases identified. In one case, the 
infant showed no symptoms, while in the other case, 
the infant presented with a maculopapular rash and 
thrombocytopenia [44]. The clinical manifestations of 
the illness in children are strikingly like to those seen in 
infected adults [53]. Identifying arthralgia in newborns 
and young children can be challenging. Symptoms may 
include limping (among ambulatory children), trouble 
moving or reluctance to move an extremity, discomfort 
when moving the affected joint actively or passively, irri-
tability, or ache upon palpation [53].

As well, the presence of ZIKV in semen and its poten-
tial for transmission through sexual contact have raised 
questions about its ability to breach the blood-testis bar-
rier (BTB) or the Sertoli cell barrier (SCB). The E protein, 
a key antigenic component of ZIKV, is significant for its 
crucial role in receptor binding and membrane fusion. 
Numerous investigations have highlighted the signifi-
cance of the E protein in the virulence and pathogenicity 
of ZIKV. Investigations have revealed that ZIKV infection 
leads to a rearrangement of actin filaments, a process in 

Fig. 1 ZIKV has a single-strand positive sense RNA genome, as well as an icosahedral capsid. The figure shows the polyprotein structure which 
is encoded by the ZIKV genome, in Endoplasmic Reticulum (ER) membrane [14, 118, 119]
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which the E protein is believed to be involved. This dis-
ruption of actin filament dynamics is a contributing 
factor to the ZIKV infection. In summary, the interplay 

between the ZIKV E protein and F-actin results in a rear-
rangement of the F-actin network, ultimately compro-
mising the integrity of the BTB [54]. During the gestation 

Fig. 2 ZIKV is an arthropod-born (arbovirus) that can be transmitted through other patterns such as sexual transmission, blood transmission, etc. 
The vector transmission consists of two cycles: A Enzootic or sylvatic cycle; and B Human or urban cycle. ZIKV can remain stable in urine for a long 
time. Therefore, urine can play a role in the urban cycle [12, 38, 120–123]
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period in mammals, the placenta mainly performs as a 
barrier, offering both physical and immunological pro-
tection between the mother and the developing fetus. 
Within the placenta, primary human trophoblasts 
(PHTs), comprising cytotrophoblasts and syncytiotroph-
oblasts, play a crucial role as barrier cells. Syncytiotroph-
oblasts are particularly significant as they are in straight 
interaction with maternal blood. In cases involving full-
term placentas, PHTs are generally resistant to ZIKV 
infection because they continually release antiviral inter-
feron lambda 1 (IFNλ1). Additionally, it was noted that 
the medium derived from uninfected PHT cells exhibited 
a protective influence against ZIKV infection in non-
placental cells. PHT cells themselves displayed elevated 
levels of interferon-stimulated genes (ISGs), signifying 
that IFNλ1 operates both in a paracrine manner (protect-
ing neighboring cells) and an autocrine manner (protect-
ing trophoblast and non-trophoblast cells) to safeguard 
against ZIKV infection [55]. It has also been shown that 
trophoblast cell lines obtained from choriocarcinoma 
explants and early human villous explants were found to 
be susceptible to ZIKV infection [56]. However, placen-
tas from later stages of pregnancy, which possess a more 
mature placental barrier, showed heightened resilience 
against infection. For ZIKV to effectively infect syncy-
tiotrophoblasts, it likely needs to evade the protective 
mechanisms established by IFNλ1 produced by tropho-
blasts, along with other antiviral factors that are spe-
cific to trophoblasts. Alternatively, the virus may need 
to find alternative routes to enter the fetal compartment 
by breaching the placental barrier. This scenario is par-
ticularly relevant during the second half of pregnancy, 
which corresponds to the stage when PHT cells are most 
abundant. These alternative pathways might involve 
non-trophoblast infection routes, for instance infecting 
immune cells or using transcytosis to transport virions 
complex with maternal antibodies through the neonatal 
Fc receptor (FcRn) [57]. Recently, it has been observed 
that human placental macrophages, identified as Hof-
bauer cells (HCs), are susceptible to the virus infection 
[58–60].

In the context of immune cells, innate immune cells are 
probably to be targeted by ZIKV once they breach the 
trophoblast layer in the placenta. Upon infection, HCs 
manufactured IFN-α, pro-inflammatory cytokines, and 
also stimulated genes that are associated with antiviral 
responses, although it did not significantly induce cell 
death. ZIKV replication was also observed in human pla-
cental cytotrophoblasts, albeit with deferred kinetics and 
ISG expression. This suggests that ZIKV may replicate 
within cytotrophoblasts and HCs, potentially facilitating 
vertical transmission. However, syncytiotrophoblasts are 
resistant to ZIKV infection, leaving us with the question 

of how the virus penetrates the cytotrophoblast layer and 
HCs. Considering that significant morphological changes 
occur in the human placenta during the first and sec-
ond half of pregnancy, including the absence of mater-
nal blood interaction with the syncytiotrophoblast layer 
in the earliest trimester of pregnancy and a substantial 
reduction in the cytotrophoblast cell layer during preg-
nancy, the methods for vertical transmission of ZIKV 
are likely to differ in any stages of pregnancy [57]. Also, 
The ZIKV may be transmitted via blood transfusions and 
organ transplants, although the associated risks are not 
completely understood [61, 62].

Pathogenesis in rhesus monkey (RM)
The ZIKV was initially isolated from a febrile rhesus 
monkey (RM) [63], indicating that studying virus repli-
cation, immune responses, and certain characteristics of 
disease progression can be effectively modeled in RMs. 
In one particular experiment, RMs were inoculated sub-
cutaneously to simulate a mosquito bite, which induced 
transient viremia and fever [64]. Moreover, another study 
expanded its scope by examining the tissue tropism 
throughout the infection. Groups of RMs were necrop-
sied on days 7, 28, or 35 post-inoculations. Seven days 
following inoculation, viral RNA was found in various 
tissues. This included lymphoid tissues such as widely 
distributed lymph nodes and the spleen, joints (especially 
those proximal to the inoculation site, but also in some 
distal joint tissues), and peripheral nervous tissues, exclu-
sively the brachial plexus, trigeminal ganglion, and sciatic 
nerve. Concurrently, the RNA of the virus was linked to 
the spinal cord (cervical, lumbar, and thoracic regions), 
although it was not present in the brain and cerebro-
spinal fluid (CSF). This could suggest a predilection for 
nervous tissues but a limitation in the retrograde trans-
portation of the infectious virus into the central nerv-
ous system (CNS), or it might imply that CNS infection 
requires a longer incubation period. RNA from the ZIKV 
was also identified in the kidneys and bladder of the 
male RM, but not in the testes or prostate. Collectively, 
these observations signify that ZIKV spreads rapidly 
to various tissues in the body, containing lymph nodes, 
spleen, peripheral nerves, skin, and the genital and uri-
nary tracts. Furthermore, in the female RM, the pres-
ence of viral RNA was identified in reproductive organs 
for example the uterus and vagina. This indicates that 
these tissues can be infected by the virus and maintain 
the infection for a minimum of four weeks. This finding 
could have profound consequences for the transmis-
sion of ZIKV and the potential for fetal infections dur-
ing pregnancy. Additionally, the seeding of the virus into 
semen via the urethra could represent another possible 
route of transmission [65].
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Clinical observations and laboratory findings
Clinical manifestations
The ZIKV is the causative agent of Zika fever, a syndrome 
characterized by fever, rash, and joint pain that bears a 
striking resemblance to dengue fever [66]. A significant 
portion of individuals infected with ZIKV, especially 
in the period from the 1960s to the 1980s, have exhib-
ited either no symptoms or only mild clinical signs [38]. 
Notably, severe illness and case fatality rates associated 
with ZIKV infection are remarkably low, and the symp-
toms of the illness typically abate within a relatively short 
timeframe of 2–7  days [67]. The incubation period of 
ZIKV infection in humans is estimated to span from 3 to 
14 days [68]. Furthermore, the viremic period, character-
ized by the virus’s existence in the bloodstream, is gen-
erally observed within 3 to 4 days after symptoms onset 
[69].

Evidence has indicated a connection between ZIKV 
infection and optical/neurological disorders, includ-
ing optic nerve pallor, chorioretinal scarring, increased 
intraocular pressure, and corneal clouding at birth 
[70, 71]. It is estimated that 20–25% of people infected 
with ZIKV exhibit noticeable symptoms [38]. They 
exhibit the following symptoms: fatigue [72], arthralgia 
[73–75], temporary and moderate fever [75], accom-
panied by maculopapular, itchy rashes (that typically 
progress descendingly from the face to the extremities) 

[76], non-purulent conjunctivitis [77–80], and in some 
cases, redness of the eyes, loss of appetite, vomiting 
and edema [23, 38], as well as, sore throat, and cough 
[72, 81]. Clinical signs frequently associated with acute 
ZIKV infection encompass transient hearing loss [66], 
subcutaneous haematomas [82], myalgia, asthenia [83], 
headache, retro-orbital pain [23, 83, 84], and hemato-
spermia [15, 85]. Other uncommon manifestations of 
ZIKV infection include mucous membrane ulceration, 
abdominal pain, diarrhea, nausea, and thrombocytopenia 
[86]. Figure 3 provides a detailed overview of the clinical 
manifestations of ZIKV and their associated neurological 
complications.

Neurological complications
ZIKV is also linked to neurological complications, 
including GBS, microcephaly [38], and neurological 
complications such as acute myelitis [87], and menin-
goencephalitis [88]. Microcephaly is a prenatal condition 
characterized by underdeveloped brain growth, lead-
ing to reduced head size in affected infants, while GBS 
manifests as muscle weakness stemming from immune-
mediated harm to the peripheral nervous system [89]. 
During a ZIKV outbreak in Bangladesh, patients with 
ZIKV-associated GBS exhibited involvement of cranial, 
autonomic, and sensory nerves. Although electrophysi-
ological studies predominantly confirmed most cases 

Fig. 3 Clinical symptoms of ZIKV and their neurological complications include acute myelitis, ocular hypertension, microcephaly, 
meningoencephalitis, and Guillain–Barré syndrome [15, 38, 66, 73, 75, 76, 80, 82, 87, 88, 93, 96, 97, 110, 124, 125]
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as acute inflammatory demyelinating polyneuropa-
thy (AIDP) [90]. In Brazil, ZIKV contributed to nearly 
equivalent incidences of acute motor axonal neuropa-
thy (AMAN) and AIDP [91]. ZIKV-associated GBS is 
correlated with increased morbidity in the acute phase, 
frequently presenting with prevalent deficits in cranial 
nerves and acute neuropathy [92]. Research on fetuses 
exposed to the ZIKV has revealed occurrences of micro-
cephaly, retardation of intrauterine growth, and CNS 
damage [46, 47] (Fig. 3).

Laboratory findings
During ZIKV infection, laboratory values regarding 
biochemistry and hematology typically remain within 
normal limits. Nevertheless, during the viremic phase, 
a subset of patients may exhibit temporary and moder-
ate lymphopenia, leucopenia, or activated lymphocytes. 
They may also experience monocytosis, thrombocytope-
nia, neutropenia, and increased serum levels of aspartate 
aminotransferase, C-reactive protein, lactate dehydroge-
nase, gamma-glutamyl transferase, fibrinogen, and ferri-
tin [83, 84, 93–95]. Cases of cardiac complications related 
to ZIKV infection include myocarditis, pericarditis, 
Arrhythmias, and heart failure [96–98]. Addition-
ally, incidence rates of ZIKV infection are observed to 
be higher in females than males, and it is more com-
mon in older individuals than in younger ones [23, 99]. 
Due to the overlapping signs, the clinical diagnosis of 
Zika persists challenging in tropical settings, especially 
in regions with concurrent transmission of dengue and 
chikungunya viruses [100]. Unlike Chikungunya and 
Dengue fever, ZIKV is characterized by more notice-
able edema of the extremities and conjunctivitis and the 
ZIKV does not exhibit thrombocytopenia and leukope-
nia as seen in Chikungunya and Dengue cases [23, 76]. 
Additionally, malaise and headache in ZIKV fever tend 
to be less severe, while the maculopapular rash is more 
pronounced [23]. Table  1 provides a comparison of the 
clinical symptoms associated with Zika, Dengue, and 
Chikungunya infections.

Neural dysfunction
The ZIKV disrupts the natural cell cycle and transcrip-
tion processes in human neural progenitor cells (hNPC) 
[101]. Experimental studies have indicated that ZIKV 
infection leads to significant alterations in neuronal pro-
liferation and migration. Specifically, Asian ZIKV isolates 
have been found to impede the growth and movement of 
hNP cells with less cell death. The cerebral cortex’s struc-
tural development largely relies on the growth and move-
ment of hNP cells. Subsequently, neurons in the cerebral 
cortex mature by extending neurites and forming synap-
tic connections. The cohesion of the neurite structure is 

crucial for the proper operation of the central nervous 
system (CNS). However, ZIKV infection can disrupt this 
process, affecting the cytoskeletal organization, micro-
tubule dynamics, and neurite outgrowth. To assess the 
effect of ZIKV on neurons, researchers measured the rate 
of neurite growth and ramification. The High multiplic-
ity of infections of the Asian SPH isolate of ZIKV signifi-
cantly reduces neurite numbers, neurite length, and the 
number of branch points. Based on medical documenta-
tion of congenital ZIKV infection, ocular abnormalities, 
and seizures have also been documented. The observed 
impairment in neurite proliferation and migration is 
associated with seizures and cognitive deficits [102].

As well, distinct interactions between ZIKV and human 
proteins related to brain development contribute to the 
virus’s influence on the nervous system. One of these 
interactions involves NS4A binding with Ankyrin Repeat 
and LEM Domain-Containing Protein 2 (ANKLE2), 
which is particularly intriguing [103]. Notably, muta-
tions in ANKLE2 have been linked to autosomal reces-
sive microcephaly in humans, as documented in previous 
studies [104]. These discoveries collectively imply that 
the expression of NS4A may hinder critical functions of 
ANKLE2 during brain development [103]. Although the 
ANKLE2 pathway plays a role in ZIKV-induced micro-
cephaly, several developmental pathways likely collabo-
rate to promote this condition following ZIKV infection. 
As an example, ZIKV RNA binds to MSI1 (Musashi-1), 
an RNA-binding protein responsible for regulating the 
microcephaly gene MCPH1, thus aiding virus replica-
tion in neural stem cells [105]. Moreover, ZIKV NS2A 
can impede brain development in mice by breaking down 
adheren junction proteins disorders in the ZIKV capsid-
mediated decay pathway may also affect brain growth. 
Additionally, as a result of the studies that have demon-
strated ZIKV NS4A and NS4B’s inhibition of neural stem 
cells (NSC) division through the Akt-mTOR pathway, it’s 
plausible that NS4A contributes to neuropathogenesis via 
several mechanisms [106].

Table 1 Comparison of Zika, Dengue, and Chikungunya clinical 
symptoms [76]

* −Don’t have/ +Have

Symptoms Zika Dengue Chikungunya

Fever +++ ++++ +++

Maculopapular rash +++ ++ ++

Hepatomegaly − − +++

Conjunctivitis +++ − +

Arthralgia/Myalgia ++ +++ ++++

Edema of extremities ++ − −

Retro-orbital pain ++ ++  + 
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GBS is one of the common reasons for acute neuro-
muscular paralysis worldwide [107]. This syndrome is an 
acute polyradiculoneuropathy with an immune-mediated 
origin and usually appears due to a preceding infection, 
particularly an infection caused by Campylobacter jejuni. 
The disease often involves sensory and cranial nerves. 
Respiratory failure can occur in 20–30% of GBS cases, 
which have severe and general manifestations [108]. The 
incidence of GBS varies between 0.81 and 1.89 cases per 
100,000 people per year [109]. The classic form of GBS is 
characterized by rapid and progressive symmetric weak-
ness in the limbs, accompanied by sensory symptoms 
and hyporeflexia or areflexia [110]. Various subtypes of 
GBS have been identified through electrophysiologi-
cal studies, including Acute Motor Axonal Neuropathy 
(AMAN), Acute Motor and Sensory Axonal Neuropathy 
(AMSAN), and Acute Inflammatory Demyelinating Poly-
radiculoneuropathy (AIDP) [111]. In 2014, the first report 
of a link between GBS and ZIKV was published, concern-
ing a female patient with GBS in French Polynesia. Initial 
symptoms included distal limb paresthesia, which pro-
gressed dominant tetraparesis in the lower limbs. Other 
clinical symptoms included bilateral facial palsy, diffuse 
myalgia, and sustained ventricular tachycardia [112]. Fur-
ther studies investigating ZIKV-associated GBS revealed 
common neurological findings such as any limb paresis 
(97%), areflexia or hyporeflexia (96%), tetraparesis (64%), 
facial palsy (51%), sensory deficits (49%), and bulbar palsy 
(25%) [113]. Several hypotheses exist regarding ZIKV-
associated GBS. One hypothesis suggests molecular 
mimicry as a potential pathogenic mechanism. Accord-
ing to this hypothesis, the ZIKV polyprotein resembles 
human proteins involved in axon function, myelination, 
and neurodevelopment. Consequently, neutralizing anti-
bodies induced by ZIKV may cross-react with peripheral 
nerve proteins, leading to immune-mediated damage 
[114]. Another hypothesis involves T cell responses stim-
ulated by ZIKV, which may target neural, axonal, myelin, 
or Schwann cell antigens. This hypothesis is supported by 
the observation of perineural T-cell infiltration in nerve 
tissues from autopsies of GBS cases associated with other 
pathogens [115].

Moreover, human astrocytes, pivotal in providing sup-
port and protection to neurons, are vulnerable to ZIKV 
infection. Following infection, a gradual demise of human 
astrocytes is evident. Notably, there is an absence of indi-
cations of apoptosis or pyroptosis, effectively excluding 
these pathways of cell demise. Nevertheless, heightened 
levels of serine/threonine-protein kinase-1 (RIPK1), 
RIPK3, and receptor-phosphorylated protein lineage 
kinase-like domain (MLKL) signal the onset of planned 
necrosis or necroptosis in infected astrocytes [116]. 
Recent findings indicate that elements of the necroptosis 

cell death pathway might serve to constrain ZIKV neuro-
infection. In particular, the activation of Z-DNA-binding 
protein 1 (ZBP1) and RIPK1/RIPK3 in cortical neurons 
can initiate a series of reactions that regulate the expres-
sion of the immune response gene 1 (IRG1) and the 
metabolite itaconate. Itaconate exerts a suppressive effect 
on viral genome replication by impeding the formation of 
succinate dehydrogenase (SDH) [117].
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