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ABSTRACT

Long noncoding RNAs (lncRNAs) are key regulators
of diverse cellular processes. Recent advances in
high-throughput sequencing have allowed for an un-
precedented discovery of novel lncRNAs. To identify
functional lncRNAs from thousands of candidates
for further functional validation is still a challeng-
ing task. Here, we present a novel computational
framework, lncFunNet (lncRNA Functional inference
through integrated Network) that integrates ChIP-
seq, CLIP-seq and RNA-seq data to predict, prioritize
and annotate lncRNA functions. In mouse embryonic
stem cells (mESCs), using lncFunNet we not only
recovered most of the functional lncRNAs known
to maintain mESC pluripotency but also predicted
a plethora of novel functional lncRNAs. Similarly, in
mouse myoblast C2C12 cells, applying lncFunNet led
to prediction of reservoirs of functional lncRNAs in
both proliferating myoblasts (MBs) and differentiat-
ing myotubes (MTs). Further analyses demonstrated
that these lncRNAs are frequently bound by key tran-
scription factors, interact with miRNAs and consti-
tute key nodes in biological network motifs. Further
experimentations validated their dynamic expression
profiles and functionality during myoblast differentia-
tion. Collectively, our studies demonstrate the use of
lncFunNet to annotate and identify functional lncR-
NAs in a given biological system.

INTRODUCTION

Long noncoding RNAs (lncRNAs) are non-protein cod-
ing transcripts >200 nucleotides (1,2). They have gained
widespread attention in recent years as crucial components
of gene regulatory networks and have been revealed to play
key roles in many biological processes such as cell differen-
tiation (3–5), imprinting control (6), immune responses, hu-
man diseases, tumorigenesis etc. (7–9). The advancement of
high-throughput genomic technologies such as next gener-
ation sequencing (NGS) has resulted in an unprecedented
ability to detect thousands of novel lncRNA transcripts
from direct assembling of transcriptome sequencing data
(10). Intensive efforts from many groups (11–13) have fo-
cused on functional exploration of these lncRNAs, how-
ever, the functional studies require direct perturbation ex-
periments, such as loss-of-function and gain-of-function as-
says that are very time consuming. Therefore, only a few
lncRNAs have been clearly characterized so far while the
function of the vast majority is still an enigma (14). This
situation is exemplified in the system of skeletal muscle cell
differentiation during which proliferating myoblasts (MBs)
exit cell cycle and are fused into multi-myonucleotided my-
otubes (MTs). At the transcriptional level, the process is or-
chestrated by a complex networks intertwining transcrip-
tion factors, epigenetic regulators, miRNAs and lncRNAs.
Using a murine myoblast cell line, C2C12, we have iden-
tified thousands of lncRNAs through de novo assembly of
the transcriptome sequencing data that expressed in MBs
or MTs (3,5). Despite the intensive efforts during the past
few years, we and others were only able to characterize a few
of them (3–5,12,15); we are thus in need of a high confidence
computational approach which can systematically identify
and prioritize potentially functional lncRNAs from large
reservoirs of novel lncRNAs before we dive into time and

*To whom correspondence should be addressed. Tel: +852 37636048; Fax: +852 37636333; Email: haosun@cuhk.edu.hk
Correspondence may also be addressed to Huating Wang. Tel: +852 37636047; Fax: +852 37636333; Email: huating.wang@cuhk.edu.hk
†These authors contributed equally to this work as first authors.

C© The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc/4.0/), which
permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact
journals.permissions@oup.com



e108 Nucleic Acids Research, 2017, Vol. 45, No. 12 PAGE 2 OF 15

labor consuming experimental testing for their functional
studies.

However, this type of computational prediction of
lncRNA function is still at its early stage. As the sequences
and secondary structures of lncRNAs are generally not con-
served, functional prediction of lncRNAs using the com-
parative genomic approach is limited (8,14). Recent stud-
ies revealed that lncRNAs mainly execute their functions
through interacting with other types of molecules such as
chromatin modifiers, transcription factors (TFs) (3–5), mi-
croRNAs (miRNAs) (11,12), protein complexes (4,13,16)
and DNAs (17) in an integrated gene network. These ob-
servations open the possibilities that the functions of lncR-
NAs can be inferred through their interactions with other
molecules within the interaction networks (i.e. lncRNA in-
teractome). In fact, co-expressed gene network approaches
have been commonly used for the functional prediction
using gene expression data only (18) or combined with
protein–protein interaction (PPI) data (19). This approach
however is based on the interactions (mostly indirect inter-
actions) inferred by gene expression correlations and PPI
networks, thus, can only catch the tip of the iceberg of the
entire interactome among a particular lncRNA and its part-
ners. For example, emerging evidence demonstrates the in-
timate connection between lncRNAs and TFs. Similar to
mRNAs, the transcription process of a lncRNA can be
regulated by TFs through binding to its promoter (3,5); a
lncRNA can also regulate the transcriptional activity of a
TF through physically interacting with the TF (5,13). In
addition, lncRNA–miRNA interaction has become an in-
creasingly accepted phenomenon existing in cells (20,21);
the most well-known mode of the interaction is the ceRNA
model, i.e. lncRNAs acting as sponges for miRNAs com-
peting for their binding to bona fide mRNA targets but in-
creasing evidence also shows that miRNAs can bind and
degrade lncRNAs post-transcriptionally. Luckily, the de-
velopment of CLIP-seq (cross-linked immunoprecipitation
followed by next generation sequencing) has allowed the
mapping of lncRNA–miRNA interactions genome-wide;
several databases are now available to obtain the CLIP-seq
data for inferring miRNA–lncRNA interactome (22,23).
Taking together, we reason that integration of lncRNAs
into gene networks based on different types of lncRNA
interactions will gain greater prediction power for reliable
functional outcomes.

Here, we developed lncFunNet, a computational frame-
work to predict, prioritize, and annotate functional lncR-
NAs by systematically exploring gene networks established
on the lncRNA interactomes. It integrates a number of in-
teractions (i.e. TF–lncRNA, miRNA–lncRNA, lncRNA–
PCG (protein coding gene)) and provides a trained scor-
ing scheme to calculate the functional information score
(FIS) for each evaluated lncRNA, thus helps to elucidate
and evaluate the functional importance of newly discov-
ered lncRNAs in different biological systems. When ap-
plied in mouse embryonic stem cells (mESCs), the evalua-
tion demonstrated a high accuracy of lncFunNet in identi-
fying known functional lncRNAs. When further applying to
skeletal muscle C2C12 cells lncRNAs with potential func-
tions were identified in MBs or MTs and display distinct
genomic features compared to non-functional lncRNAs. In

addition, we showed that lncRNAs are key motif compo-
nents in the integrative gene networks which in turn can be
further used to infer the functional mechanisms. Lastly, wet-
lab experiments were conducted to validate the functional-
ity of the selected lncRNAs during C2C12 cell differentia-
tion. Altogether lncFunNet provides a new tool for identifi-
cation of functional lncRNAs in a given biological system.

MATERIALS AND METHODS

Identification of TF–gene interactome through chromatin im-
munoprecipitation with massively parallel DNA sequencing
(ChIP-seq) data analysis

To establish the TF–gene interactions, we downloaded
ChIP-seq data from Gene Expression Omnibus (GEO)
database (Supplementary Tables S1 and S2) (24). The raw
reads were processed with the protocols described in our
previous publication (5). Briefly, the adapter and low qual-
ity sequences were trimmed from 3′ to 5′ ends. After trim-
ming, reads shorter than 36 bp were discarded and the pre-
processed reads were aligned to mouse reference genome
(mm9) using SOAP2 (25). Model-based Analysis for ChIP-
seq (MACS v 2.1.0) (26) was then used to detect TF binding
peaks with either input DNA or IgG sample as the con-
trol. During the peak calling, the q-value cutoff was set to
0.05 for all ChIP-seq datasets to identify the positive bind-
ing peaks. We associated TF with its target gene by search-
ing if there is at least one peak within the regulatory region
(10 kb upstream and 5 kb downstream of the transcription
start site (TSS)). The interactions between TF and its di-
rected target genes (including lncRNAs) form the TF–gene
interactome and were used for network construction.

Establishing miRNA–gene interactome through CLIP-Seq
data analysis

To establish miRNA–gene interactions, the Argonaute 2
(Ago2) CLIP-seq data sets were downloaded from GEO
(24) (Supplementary Tables S1 and S2). Raw reads were pre-
processed with the same protocols used in processing ChIP-
seq data to trim adaptors and low quality reads; duplicated
reads and short reads (<17 bp) were then discarded. Next,
the preprocessed reads were aligned to mm9 using bowtie2
(version 2.2.3) (27) following the procedure in (28) with
adjusted parameters (–very-sensitive –rdg 5, 2 –score-min
L, -0.6, -0.7); Ago2 binding peaks within the gene locus
were then identified with Pirhana (-bin size reponse 200, -
p threshold 0.01) (29). To further establish the interactions
between miRNA and lncRNA or miRNA and PCG, we
used miRanda (default parameters) (30) to predict miRNA
binding sites within the peaks. MiRNA–gene interactions
were established if there is at least one binding site within
the corresponding Ago2 binding peaks.

Constructing gene–gene interactions through co-expression
gene analysis

To establish the interacting relationship among genes
(mostly PCGs), we used a series of RNA-seq data across
the cell lineage progression for both mESCs (31) and C2C12
cells (32) (Supplementary Figures S1 and S2). RNA-seq
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raw data was converted into FASTQ file using ‘fastq-dump’
from the SRA Toolkit (https://github.com/ncbi/sratoolkit),
then filtered using FASTX Toolkit (http://hannonlab.cshl.
edu/fastx toolkit/), and aligned by commonly used software
Tophat2 using default settings (33). Reads mapped to multi-
ple locations within the genome were discarded. The expres-
sion level of each gene was quantified by fragment per kilo-
base exon model per million sequencing reads (FPKM) us-
ing Cufflinks (32). Pearson correlation coefficients (PCCs)
of a gene pair was calculated by using the gene expression
levels at different time points across the lineage progression
for both mESCs and C2C12 (Supplementary Figures S1
and S2). The interaction between a pair of genes was es-
tablished through the co-expression analysis if (i) their gene
expression patterns are highly correlated across the time
course (i.e. PCC > 0.95); (ii) both of them are expressed at
any given time point (i.e. FPKM > 0.5).

Network integration

The integrated network was constructed through com-
bining the above inferred three sub-networks of TF–
gene, miRNA–gene and co-expression interactions using
an in-house Perl script. We first merged the TF–gene and
miRNA–gene interactions to obtain a core sub-network
controlled by key TFs and functional miRNAs and then
merged the co-expression interactions, during which steps
we only included the edges in co-expression network with
shared nodes in the aforementioned core sub-network es-
tablished from TF–gene and miRNA–gene interactions.

Calculating functional information score (FIS) for identify-
ing and prioritizing functional lncRNAs

To identify functional lncRNAs from thousands of known
and de novo assembled lncRNA transcripts in a given bi-
ological system, we implemented a scoring system FIS to
evaluate the functional importance of each lncRNA based
on the assumption that, in the integrated network, the im-
portance of a specific lncRNA is associated with the type
and strength of the interactions between the lncRNA and
its neighboring genes. Specifically, the FIS is calculated us-
ing the following equations:

F I S = Wt f × Nt f + Wmir × Nmir + Wpcg × Npcg (1)

where Wtf, Wmir and Wpcg are weights (contributions) of
each type of network edge (i.e. lncRNA–TF, lncRNA–
miRNA and lncRNA–PCG interaction edge) toward the
FIS of a specific lncRNA. Nt f , Nmir , and Npcg are the
normalized numbers of network edges connecting lncRNA
node with TF, miRNA and PCG nodes, respectively; they
are calculated by the following equations:

Nt f = Nt f real − Nt f min

Nt f max − Nt f min
(2)

where Ntf real, is the total number of lncRNA–TF edges
for a lncRNA under the evaluation; Ntf min and Ntf max are
the minimal and maximal numbers of lncRNA–TF edges
among all lncRNA nodes within the network.

Nmir = Nmir real − Nmir min

Nmir max − Nmir min
(3)

where Nmir real, is the total number of lncRNA–miRNA
edges for a lncRNA under the evaluation; Nmir min and
Nmir max are the minimal and maximal numbers of lncRNA–
miRNA interaction edges among all lncRNA nodes within
the network.

Npcg = Npcg real − Npcg min

Npcg max − Npcg min
(4)

where Npcg real, is the total number of lncRNA–PCG edges
for a lncRNA under the evaluation; Npcg min and Npcg max are
the minimal and maximal numbers of lncRNA–PCG inter-
action edges among all lncRNA nodes within the network.

Inferring the network edge weight for FIS calculation

A machine learning approach using logistic regression
model was employed to determine the weight for each kind
of lncRNA–gene interaction edge:

yi ∼
∑

j
a j ∗ Ni j + a0 (5)

Here, yi is the indicator of whether a lncRNA is
functional ( yi = 1) or nonfunctional ( yi = 0). a j is the
vector of regression coefficients, which represents the weight
of different type of interaction edge, Ni j is the normalized
number of network edges connecting lncRNA node with
TF, miRNA or PCG node, which represents the interaction
strength between lncRNA i and type j neighboring nodes
(i.e. Nt f , Nmir , Npcg in Equation 1) and a0 is the bias vec-
tor, which was defined as empty. The weight was inferred by
using logistic model with a defined training dataset.

Generating randomized network for FIS cutoff calculation

Randomized networks for estimating FIS background dis-
tribution were generated by a Python library named Net-
workX (https://networkx.github.io/). Briefly, 100 random-
ized networks with the same nodes used in the original net-
work were generated by ‘powerlaw cluster graph’ function
in NetworkX python package. Then, these randomized net-
works were used as background to calculate false discovery
rate (FDR) in order to determine FIS cutoff for functional
lncRNA prediction and prioritization.

Histone ChIP-seq analysis

H3K27ac (GSE37525) and H3K4me3 (GSE25308) ChIP-
seq data were downloaded from Gene Expression Omnibus
(GEO) database (Supplementary Tables S1 and S2) (24).
The raw reads were processed with the protocols described
in our previous publication (5). Briefly, the adapter and low
quality sequences were trimmed from 3′ to 5′ ends. After
trimming, reads shorter than 36 bp were discarded. Sub-
sequently, the preprocessed reads were aligned to mouse
reference genome (mm9) using a popular software SOAP2
(25). Following alignment, the aligned reads were converted
to bed format using Samtools (34) and duplicates were
removed by Picard (http://broadinstitute.github.io/picard).
Read density over the defined TSS proximal regions of
lncRNAs was calculated using homer (35) and plotted by
R (36).

https://github.com/ncbi/sratoolkit
http://hannonlab.cshl.edu/fastx_toolkit/
https://networkx.github.io/
http://broadinstitute.github.io/picard
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Cell cultures

Mouse C2C12 myoblasts (MB) were obtained from ATCC
(American Type Culture Collection, Cat. No. CRL-1772)
and cultured in DMEM medium supplemented with 10%
fetal bovine serum (FBS), 2 mM L-glutamine, 100 U ml–1

penicillin and 100 �g of streptomycin at 37 ◦C in 5% CO2.
For obtaining differentiating myotubes (MTs), cells were
seeded in 60- or 100-mm plates and shifted to DMEM con-
taining 2% horse serum (HS) when 90% confluent to induce
differentiation.

Plasmids

For constructing the Snhg1 reporters, a 250 bp region
encompassing the 50 bp predicted Yy1 binding site was
cloned into the promoter region of a pGL3-Basic-vector
between KpnI and HindIII. And a 240 bp region encom-
passing the 17 bp predicted miR-200b binding site was
cloned into the 3′end region of a pMIR-REPORT Lu-
ciferase vector between HindIII and SpeI. For construct-
ing the 9530072K05Rik reporters, a 389 bp region encom-
passing the 259 bp MyoD binding site was cloned into
the promoter region of a pGL3-Basic-vector between KpnI
and HindIII. And a 377bp region encompassing the 22bp
miR-29b binding site was cloned into the 3′end region of
a pMIR-REPORT Luciferase vector between HindIII and
SpeI.

Transient transfection

All the mature miRNA oligos and siRNAs for lncRNAs
were purchased from GenePharma. The sequences of siR-
NAs are listed in Supplementary Table S9). For the transfec-
tion of miRNA and siRNA oligos, C2C12 cells were seeded
into six-well plates with Lipofectamine 2000 reagent as sug-
gested by the manufacturer (Invitrogen). For luciferase re-
porter assays, C2C12 cells were transfected with various lu-
ciferase reporters in six-well plates. Cell extracts were pre-
pared 48 h after transfection and luciferase activity was
monitored as previously described (5,37,38) using Dual-
Luciferase kit (Promega).

RNA extraction and qRT-PCR

Total RNAs from cells were extracted using TRIzol reagent
(Life Technologies) according to the manufacturer’s in-
structions. For the lncRNAs, cDNAs were prepared using
M-MLV (Moloney murine leukemia virus) Reverse Tran-
scriptase (Life Technologies) and Oligo(dT)20 primer. Ex-
pression of mRNA analysis was performed with SYBR
Green Master Mix (Life Technologies) as described (39,40)
on an ABI PRISM 7900HT Sequence Detection System
(Life Technologies) using glyceraldehydes 3-phosphate de-
hydrogenase for normalization. Expression of mature miR-
NAs were determined using the miRNA-specific Taqman
microRNA probe and assay kit (Applied Biosystem) in a
7900HT system (Applied Biosystem) using U6 as a normal-
ization control.

Figure 1. Schematic view of lncFunNet. The lncFunNet composes of
three consecutive modules: network integration, lncRNA functionality
prediction, and lncRNA functional annotation modules. (A) Inferring TF–
lncRNA, TF–miRNA and TF–PCG interactions using ChIP-seq data. (B)
Establishing miRNA mediated interactions among miRNAs, lncRNAs,
TFs and PCGs. (C) Using gene expression correlation from RNA-seq to
infer interactions among lncRNAs and other network components. (D)
Constructing a gene regulatory network by integrating the above three sub-
networks. (E) Optimizing the weights for the above three types of nodes by
logistic regression and calculating a functional information score (FIS) for
each lncRNA based on its network interactions (left panel) and selecting
functional lncRNAs by calculating false discovery rate (FDR) obtained
through comparing to the randomized networks (right panel). (F) Anno-
tating lncRNA functions using GO terms or KEGG pathways associated
with its interacting partners.

RESULTS

LncFunNet: a computational framework to identify func-
tional lncRNAs

To identify functional lncRNAs from a variety of biologi-
cal systems, we implemented lncFunNet, a computational
framework by systematically exploring gene network con-
structed by utilizing high-throughput sequencing data. It
has three key consecutive modules: (i) network integration;
(ii) lncRNA functionality prediction and (iii) lncRNA func-
tional annotation (Figure 1).
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Network integration module. To construct the integrated
network through network integration module, three types
of sub-gene networks are included: (a) TF regulatory
network; (b) miRNA regulatory network; (c) gene co-
expression network. In these subnetworks, key TFs, lncR-
NAs, miRNAs and PCGs act as nodes; and the interac-
tions among them form the edges (Figure 1). First, to con-
struct the TF regulatory subnetworks formed by key TFs
and their target genes (i.e. lncRNAs, miRNAs, PCGs), we
selected a list of key TFs based on their biological impor-
tance and the availability of ChIP-seq data. The binding
peaks of the TFs were defined in the gene regulatory regions
(see Materials and Methods). The interactions (regulatory
relationships) between a key TF and their targets (i.e. other
TFs, lncRNAs, miRNAs and PCGs) can be established if
there are TF binding peaks within the regulatory regions
of the corresponding loci (Figure 1A). Second, to build
the miRNA regulatory sub-networks, we first employed the
data from CLIP-seq that allowed us to map the physical in-
teractions between a miRNA and lncRNA or mRNA. We
then scanned for specific miRNAs that may bind within
those regions using miRanda (30) (Figure 1B, see Materi-
als and Methods). Third, to integrate gene co-expression
network into the framework, RNA-seq data was used to
calculate PCC for each gene pair if both paired genes are
expressed (FPKM > 0.5) (see Materials and Methods). Co-
expression network was constructed by selecting the gene
pairs with PCC higher than 0.95 (Figure 1C). Lastly, we in-
tegrated three sub-networks by merging the shared nodes
and edges to form the integrated gene networks using an
in-house Perl script (Figure 1D).

LncRNA functionality prediction module. The main aims
of this module are: (a) to quantitatively evaluate the func-
tional importance of the tested lncRNA with FIS, a score
that measures the likelihood of a lncRNA to be functional
in a certain biological system and (b) to decide the cutoff
of FIS for ranking and prioritizing functional lncRNAs for
further experimental validation. To this end, briefly, the FIS
is calculated as the sum of the functional contributions from
different lncRNA-Gene interactions (Equation 1, see Ma-
terials and Methods). For example, the contribution of the
TF–lncRNA gene interaction (formed by the TF binding
to the promoter of a lncRNA) is measured by multiplying
the weight of TF–lncRNA interaction with the normalized
total number of the interactions (Equation 2). The normal-
ized edge number is a number from 0 to 1. The higher the
number is, the more interactions are associated with the
tested lncRNA. This number can be obtained by counting
the edge numbers from the constructed network (see Meth-
ods, Equations 2, 3 and 4).

To infer the weight for each type of the network edge,
we took advantage of the machine algorithm using logis-
tic regression model (see Materials and Methods). After
inferring the weight and the normalized edge number for
all lncRNAs tested, we calculated FIS score for each one
using the Equation (1). Next, to estimate the cutoff of
FIS for differentiating functional and non-functional lncR-
NAs, we calculated the false discovery rate (FDR) for each
cutoff level by generating ∼100 randomized networks (see
Method); the FDR was calculated at each FIS cutoff and a

value of <0.05 was used as minimal threshold (Figure 1E,
see Materials and Methods).

LncRNA functional annotation module. To annotate
lncRNA functions, we adopted the approaches used previ-
ously (19,41) that associate the function of a lncRNA with
its directly connected genes with known functions. Briefly,
for a given lncRNA, we obtained a list of directly connected
neighboring genes (i.e. TFs, miRNAs and PCGs) within
the gene regulatory network, and then retrieved the GO
terms annotated to each neighboring node. The most
enriched GO terms (adjusted P-value < 0.05) evaluated
by hyper-geometric test (42) were assigned to the lncRNA
as its annotated functions (Figure 1F). In addition to
using the GO terms, we also used the KEGG pathway
information for the functional annotation. Briefly, the
neighboring genes of the annotated lncRNA were tested
for any enriched KEGG pathways (obtained from KEGG
database via http://www.kegg.jp/kegg/rest/ using REST-
style API). The most enriched KEGG pathways (adjusted
P-value < 0.05) evaluated by hyper-geometric test were
assigned to the lncRNA as its annotated functions.

LncFunNet accurately identified known functional lncRNAs
in mESCs

First, as a proof of concept study, we applied lncFunNet to
mESCs for screening lncRNAs that are functionally impor-
tant to maintain mESC pluripotent considering the avail-
ability of a wealth of lncRNA knowledge as well as many
available high-through sequencing data for network con-
struction. To this end, we collected 12 ChIP-seq data sets
conducted on pluripotent (undifferentiated) mESCs that
correspond to 12 key TFs maintaining pluripotency of
mESCs (i.e., Pou5f, Nanog, Sox2, Tcf3, Brd4, Esrrb, Klf4,
Nr5a2, Prdm14, Smad3, Stat3, Tfcp2l1) (Supplementary
Table S1, Supplementary Figure S1) (43–47), one CLIP-
seq dataset from pluripotent mESCs (48), and a series of
RNA-seq datasets representing four time points of mESC
differentiation toward cardiomyocytes (ES cells, mesoderm,
cardiac precursor cells and cardiomyocytes) (Supplemen-
tary Table S1, Supplementary Figure S1) (31). A list of an-
notated lncRNA genes from RefSeq (49) and assembled
lncRNA transcripts from the published literatures were ob-
tained (1,10,50). To identify functional lncRNAs from the
above list, we first filtered out those with an expression
level lower than 0.01 FPKM in all stages, which resulted
in a list of 2584 lncRNAs for further analyses. To con-
struct the gene network, we first established the interac-
tions between TFs and their target genes (lncRNA, miRNA
and PCGs) by analyzing ChIP-seq, CLIP-seq and RNA-
seq data. As a result, we created a network that consists of
12 TFs, 246 miRNAs, 2584 lncRNAs and 17 947 PCGs as
nodes (Figure 2A, Supplementary Table S3). More than 2
million edges (interactions) were discovered including 8660
TF–lncRNA, 1672 miRNA–lncRNA and 451 372 PCG–
lncRNA interactions. To screen functional lncRNAs from
the above list using FIS approach, it is critical to obtain pos-
itive and negative training datasets for the machine learn-
ing model. This has benefited from the large number of
lncRNAs experimentally tested in mESCs. In a study con-

http://www.kegg.jp/kegg/rest/
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Figure 2. Identification of functional lncRNAs from mESCs. (A) Bird’s view of gene regulatory network in mESCs. The network consists of 12 TFs,
246 miRNAs, 2584 lncRNAs and 17 947 PCGs. (B) Plots of FIS distribution for observed (red) and randomized (black) networks. The cutoff of FIS, to
identify functional lncRNAs, is 0.247 with FDR < 0.05. (C) Boxplots showing gene expression levels of 707 predicted functional lncRNAs across different
stages of mESC lineage progression. ESC: embryonic stem cell; MES: mesoderm; CP: cardiac precursor; CM: cardiomyocyte. (D) Venn diagrams showing
the overlapping between 707 predicted functional lncRNAs and (i) 18 experimentally validated functional lncRNAs that are critical to maintain mESC
pluripotency (top panel); (ii) 81 lncRNAs whose knockdown caused significant global gene expression change in mESCs (bottom panel). Within 707
predicted functional lncRNAs, 658 (94.0%) have not been annotated before. (E) Bar chart representing percentages of lncRNAs assigned to the indicated
GO terms. (F) ROC curves or (G) AUPRC curves for LncFunNet (blue) compared to the model using co-expression only network (green).

ducted by Guttman et al., a set of lncRNAs were sub-
jected to systematic loss of function screening and 137 were
identified to cause significant changes of the global gene
expression upon knockdown, indicating a possible role in
ES cells (13). However, when closely examining this set of
137 lncRNAs by iSeeRNA (51), we found some of them
were now updated as coding genes or with length smaller
than 200 bp, leaving only 81 available as the positive train-
ing dataset. It is even more difficult to obtain a negative
training dataset due to the lack of definitive experimen-
tal evidence. To overcome the problem, we reasoned that
a lncRNA is not expressed in ESC could not be possibly
functional in the state. Accordingly, we selected 215 lncR-
NAs showing no expression (FPKM < 0.01) and also neg-
ative for GRO-seq signal in ESC stage, but expressed in
differentiated stage (i.e. mesoderm, cardiac precursor cells
or cardiomyocytes; FPKM > 0.01) (Supplementary Fig-
ure S3A). We then used logistic regression model to learn
the weight for different type of Gene-lncRNA interaction
by 5-fold cross validation inside the training dataset (see
Materials and Methods). As a result, we obtained the op-

timized weights as 0.57, 0.21 and 0.22 for TF–lncRNA,
PCG–lncRNA and miRNA–lncRNA interactions, respec-
tively, which yielded the maximal AUC performance from
the regression model (Supplementary Figure S3B). To cal-
culate the FIS cutoff, we used the randomized scale-free
network as background (see Materials and Methods) and
obtained a cutoff as 0.247 (FDR < 0.05) to determine the
functionality of a lncRNA (Figure 2B). As a result, 0.247%
(707/2, 584) lncRNAs within the network were predicted
as functional. Further analysis showed that the expression
levels of these lncRNAs are higher those non-functional
lncRNAs in pluripotent stage, which is consistent with the
expected roles of these lncRNAs in maintaining pluripo-
tency and suggested the accuracy of our prediction (Fig-
ure 2C). To further validate our findings, we compared the
functional lncRNAs predicted by our approach with lncR-
NAs that have been experimentally validated (13). The first
set of lncRNAs included 18 lncRNAs (Supplementary Ta-
ble S4) whose functions are to maintain mESC pluripo-
tency as validated using Nanog luciferase reporter as a
read out in a loss-of-function screening (13). Among 18
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validated lncRNAs, 14 were computationally predicted as
functional in maintaining mESC pluripotency by our ap-
proach (77.8%), suggesting the high accuracy of the lncFun-
Net approach (Figure 2D, top panel). The second valida-
tion data set contains 81 lncRNAs affecting mESC global
gene expression assessed by loss-of-function assays using
lentiviral-based short hairpin RNAs (shRNAs) (13). Our
results showed that lncFunNet successfully predicted 60.5%
(49/81) of these lncRNAs (Figure 2D bottom panel). Col-
lectively, these results demonstrate that our integrated com-
putational framework can indeed predict the functional-
ity of lncRNAs with high accuracy. In addition, among
707 predicted functional lncRNAs, 94.0% (658/707) are
previously uncharacterized. Using lncFunNet to annotate
their functions with the statistically significant GO terms,
we found that the majority of these lncRNAs are related
to stem cell maintenance (30.7%), others were annotated
as endodermal cell fate specification, or somatic stem cell
maintenance, suggesting that most of the predicted func-
tional lncRNAs are indeed associated with mESC main-
tenance and fate specification (Figure 2E, Supplementary
Table S5). In addition, we also applied KEGG pathway
database, consistent with the GO analysis, we found that
many of the lncRNAs are assigned to signaling pathways
regulating pluripotency of stem cells (29.5%) (Supplemen-
tary Figure S4).

To test whether LncFunNet gives rise to a higher ac-
curacy in predicting the functionality of lncRNAs com-
pared with the commonly used co-expression network ap-
proach (18,19), we built a co-expression network by using
the RNA-seq datasets from the mESC differentiation to-
ward cardiomyocytes. A co-expression edge was defined if
the PCC for the co-expressed gene pairs is >0.95 or <–0.95.
The normalized number of interactions between lncRNA
and other genes was used to evaluate the functionality of
each lncRNA. For comparison purpose, we performed re-
ceiver operator characteristic curves (ROCs) and the area
under the precision and recall curves (AUPRCs) analysis by
a python library named scikit-learn (52), respectively. We
found that the accuracy using LncFunNet is much higher
than the model using co-expression only network in terms
of both sensitivity and specificity (Figure 2F and G).

LncFunNet uncovers functional lncRNAs in skeletal muscle
cells

To test whether lncFunNet with the trained weights can be
adopted to other biological systems, next, we applied lnc-
FunNet to skeletal muscle cells (C2C12) that go through
myogenic differentiation process in which, upon serum
withdraw, proliferating myoblast (MB) exit cell cycle and
is fuse to form multinucleated myotube (MT) (3–5). To this
end, we started from a lncRNA gene list that was collected
from RefSeq (49) and de novo assembled lncRNA tran-
scripts from our previous study (5). After passing the ex-
pression filter (FPKM > 0.01), we obtained 2164 and 2538
lncRNAs expressed in MB and MT, respectively. To build
the integrated gene networks, a collection of 11 and 14 TF
ChIP-seq binding profiles were obtained from ENCODE
(53) and other published studies (Supplementary Table S2)
to infer TF–gene interactome in MB and MT, respectively.

Figure 3. Identification of functional lncRNAs in MB and MT. (A, B)
Bird’s view of gene regulatory networks in MB (A) and MT (B). In MB,
the network consists of 11 TFs, 163 miRNAs, 2164 lncRNAs and 11 240
PCGs; while in MT, the network consists of 14 TFs, 173 miRNAs, 2538
lncRNAs and 11 966 PCGs. (C, D) FIS distributions in MB (C) and MT
(D). Using FDR < 0.05, the cutoff of FISs for MB and MT are 0.242 and
0.259, respectively. (E) Venn diagram showing the overlapping of predicted
functional lncRNAs in MB and MT. 752 lncRNAs was predicted as func-
tional in MB. Within them, 42.2% (317/752) are MB specific, and 57.8%
(435/752) are found shared in both MB and MT. In MT, a total of 860
lncRNAs were predicted functional, among which 49.4% (425/860) is MT
specific. (F) Functional annotation of lncRNAs in MB by GO analysis. (G)
Functional annotation of lncRNAs in MT by GO analysis.

To identify lncRNA–miRNA interactions, CLIP-seq data
in MB and MT was downloaded to define the interac-
tion site (28); specific lncRNA–miRNA interactions were
then predicted using miRNA target prediction program mi-
Randa (30) within the Ago2 binding sites (see Materials
and Methods); Lastly, RNA-seq data from the muscle cells
corresponding to four time points along the differentiation
course, i.e. –24 h (MB), 60, 120 and 168 h MT, were also
collected (10) (Supplementary Figure S2 and Supplemen-
tary Table S2). Using these data, two integrated gene net-
works were constructed separately in MB and MT. The MB
gene network contains 11 TFs, 2164 lncRNAs, 173 miR-
NAs and 11 204 PCG nodes, as well as 1 399 951 edges (in-
teractions) (Figure 3A, Supplementary Table S3). Similarly,
in MT gene network, there are 14 TFs, 2538 lncRNAs, 173
miRNAs and 11 966 PCG nodes and 2 096 061 edges (Fig-
ure 3B, Supplementary Table S3). To further identify func-
tional lncRNAs, we calculated FIS for each lncRNA node
in the gene networks and used FIS of 0.242 (MB, Figure 3C)
and 0.259 (MT, Figure 3D) as cutoffs to predict the func-
tional lncRNAs (FDR < 0.05). As a result, we obtained 752
and 860 functional lncRNAs in MB and MT, respectively
(Figure 3E). Next, comparing the two sets, we classified
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the lncRNAs into three categories: (i) MB-specific (317),
(ii) MT-specific (435) and (iii) constitutive lncRNAs (425),
which were shared in both MB and MT (Figure 3E). To fur-
ther annotate the functionality of the identified functional
lncRNAs using lncFunNet, we found that the majority of
the predicted MB-specific lncRNAs are associated with reg-
ulation of transcription (Figure 3F), while in MT, they are
related to transcription from RNA polymerase II promoter
and muscle contraction (Figure 3G), suggesting stage spe-
cific functions of lncRNAs during myogenesis (Supplemen-
tary Tables S6 and S7).

To further explore the genomic characteristics of the pre-
dicted functional lncRNAs in C2C12 cells, we first investi-
gated the expression patterns of MB and MT-specific, and
the constitutive sets of lncRNAs across four time points of
myogenic differentiation (–24, 60, 120 and 168 h) (Supple-
mentary Figure S2). As expected, MB-specific lncRNAs are
highly expressed in MBs but down-regulated gradually dur-
ing the differentiation (Figure 4A); MT-specific lncRNAs
are expressed significantly lower in MBs than in MTs (Fig-
ure 4A); and expectedly, the expression levels of the consti-
tutive lncRNAs during myogenesis are comparatively stable
(Figure 4A). In addition, as expected, in both MB and MT,
the functional lncRNAs exhibited higher expression levels
than non-functional ones (Figure 4B). It is believed that
multiple TF binding in the promoter of lncRNA or miRNA
binding within lncRNA transcript are important features
for functional lncRNAs in variety of biological systems
(12,13,21,54,55). Indeed, when calculating the total number
of TFs and miRNAs binding to each lncRNA, we found
functional lncRNAs are bound by a much higher number
of TFs compared to non-functional lncRNAs. For exam-
ple, in both MBs and MTs, >90% of function lncRNAs are
bound by at least four TFs, while 50% non-functional lncR-
NAs are bound by less than two TFs (Figure 4C). Simi-
larly, 6% of functional lncRNAs in MBs and 8% in MTs
are bound by more than five miRNAs. In contrast, only
3% of non-functional lncRNAs has more than five miR-
NAs potentially regulating them (Figure 4D). We next ex-
amined the characteristics of histone marks associated with
active transcription such as H3K4me3 (histone 3 lysine 4
trimethylation) and H3K27ac (histone 3 lysine 27 acetyla-
tion) in the promoter region of the lncRNAs by calculat-
ing the tag densities using 20 bp bins within the flanking
regions (±5 kb) of putative TSSs defined by a least one
H3K4me3 peaks at 5′ end. In line with findings from previ-
ous studies (56), we found that the enrichment of these his-
tone marks for functional lncRNAs are much higher com-
pared with non-functional ones (57). Furthermore, the lev-
els of H3K4me3 and H3K27ac sharply decreased within
100 bp upstream of the TSS, nucleosomes are depleted near
the TSS to facilitate binding of transcriptional machineries
including RNA polymerase II and associated TFs (58) (Fig-
ure 4E–H). Taken together, our results demonstrated sig-
nificant differences between functional and non-functional
lncRNAs in terms of associated genomic features.

Functional lncRNAs in muscle cells are key motif components
of integrative gene networks

Previous studies suggest that network motifs, a set of re-
curring and statistically significant sub-graphs or patterns
normally compositing of three or four nodes, are respon-
sible for carrying out specific information-processing func-
tions (59–61). Here, we explored several types of network
motifs in myogenesis. Specifically, we focused on 3- and 4-
node network motifs that are typical TF mediated feed-
forward loops (FFLs) with lncRNA involved. As a result,
we have categorized those FFL network motifs into the five
different types based on their node compositions and reg-
ulatory relationships among the nodes (Figure 5A (I–V)).
Briefly, these are (I) TF–miRNA–lncRNA motif in which
TF regulates lncRNA and miRNA loci, and miRNA reg-
ulates lncRNA; (II) TF–TF–lncRNA motif in which both
TFs regulate lncRNA and one TF can also regulate the
other; (III) TF–lncRNA–lncRNA motif in which one TF
regulates two lncRNA genes; (IV) TF–PCG–lncRNA motif
in which one TF regulates one PCG and one lncRNA gene;
(V) In addition to 3-node motifs, we also identified 4-node,
i.e. TF–TF–lncRNA–lncRNA motif (also called bi-fan mo-
tif) in which two TFs coordinately regulate two lncRNAs
(Figure 5A (V)). We also noticed that the majority of these
bi-fan network motifs tend to contain at least one func-
tional lncRNA node, suggesting that lncRNA is a crucial
component of functional networks; vice versa, the function-
ality of a lncRNA can be inferred from the network motifs it
involves in (Figure 5B). Further analysis revealed that most
of lncRNAs are involved in more than one types of net-
work motif. Among 2164 expressed lncRNAs in MBs, 57
(2.6%) formed type I network motifs, 2045 (94.5%) formed
type II network motifs, 712 (32.9%) formed type III mo-
tifs, 714 (33.0%) formed type IV motifs and 1931 (89.2%)
formed type V network motifs (Figure 5C). Similarly, in
MTs, among 2538 lncRNAs, 97 (3.8%), 2474 (97.5%), 790
(31.1%), 792 (31.2%) and 2436 (96.0%) formed types I to
V network motifs, respectively (Figure 5C). In addition, we
also found that many functional lncRNAs are shared by
3-node and 4-node network motifs in both MB and MT
(Supplementary Figure S5A and B). Taken together, our
results suggest that functional lncRNAs predicated by lnc-
FunNet are key players in the biological network motifs in
C2C12 cells. Interestingly, within the gene networks, some
well-studied network motifs can be found. Linc-md1 is an
outstanding example which was found to act as sponge for
miR-133a (12). As shown in Figure 5D, in MBs, Linc-md1
interacts with a few TFs/miRNAs and the interaction is
much stronger in MTs where it connects to many miR-
NAs including miR-133a, miR-19b, miR-152 and miR-324
and TFs such as MyoD, Myog and Rest (Figure 5D and
E). Such lncRNA mediated motifs were commonly seen in
the networks as illustrated in two other examples lncRNAs
C130080G10Rik and CUFF.35670 (Supplementary Figure
S5C and D). Altogether the above analyses demonstrate
that the integrated network approach is not only useful for
identification of functional lncRNAs, but also for further
inferring their functional mechanisms.
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Figure 4. Integrative analysis of functional lncRNAs in MB and MT. (A) Box plots showing the global gene expression patterns for MB and MT specific
lncRNAs, and those shared in both MB and MT across four time points from proliferation (–24 h) to differentiation (60, 120 and 168 h). MB specific
lncRNAs (green) are expressed higher in MB (–24 h); MT specific lncRNAs (red) are expressed higher in MT. The shared lncRNAs (blue) are constitutively
expressed high in both stages. (B) Gene expression patterns for functional and non-functional lncRNAs in MB (left) and MT (right). In both stages,
functional lncRNAs are expressed higher than non-functional lncRNAs. (C) The total number of interacting TFs for functional and non-functional
lncRNAs. The data indicates that functional lncRNAs are more likely to be bound by TFs comparing to non-functional lncRNAs. (D) Comparison of the
total number of interacting miRNAs for functional and non-functional lncRNAs. (E) Enrichment of H3K4me3 mark around TSSs of lncRNAs in MB.
(F) Enrichment of H3K27ac mark around TSSs of lncRNAs in MB. (G) Enrichment of H3K4me3 histone mark around TSSs of lncRNAs in MT. (H)
Enrichment of H3K27ac histone mark around TSSs of lncRNAs in MT.

Experimental validation of functional lncRNAs in MB and
MT

The ultimate approach for testing the accuracy of our re-
sults is to experimentally validate the functionality of the
identified lncRNAs and the associated interactions. To this
end, we selected 10 predicted functional lncRNAs in both
MB and MT with two criteria: (i) comparatively higher FIS
(Supplementary Figure S6) and (ii) the ability to form in-
teractions with miRNAs because miRNA binding appears
to confer a higher FIS (Supplementary Figure S6). First,
we confirmed their expression profiles. All 10 of the se-

lected lncRNAs (Supplementary Table S8) were readily de-
tected by quantitative qRT-PCR during muscle cell differ-
entiation. Some were highly induced during the course of
differentiation whereas others were repressed. The differ-
ential expression dynamics of these lncRNAs indicate their
diverse roles in myogenesis, for example, the lncRNAs with
increasing expression during differentiation may play a pro-
moting role in the process (Figure 6A). Indeed, when five
of such lncRNAs were knocked down by a siRNA oligo
(Figure 6B), C2C12 differentiation was inhibited as assessed
by a Myogenin luciferase reporter assay (Figure 6C). To
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Figure 5. Analysis of network motifs in lncRNA involved gene regulatory
networks. (A) Five types of lncRNA involved network motifs. Types I to
IV are three-node motifs that form the feed-forward loop (FFL) circuitries.
Type V motif is a four-node bi-fan motif. The network motif nodes are TF
(orange), lncRNA (purple), miRNA (green) and PCG (blue). (B) In each
of the above motif types the percentage of motifs with functional lncRNA
as a node is higher than those with non-functional lncRNA as a node. (C)
Venn diagrams show the overlapping of functional lncRNAs in type I to
type IV motifs in MB (left) and MT (right). The majority of lncRNAs
involve in type II network motif in which two TFs regulate one lncRNA
node. In addition, many lncRNAs can be found in more than one type of
network motifs. (D) Gene regulatory sub-networks involving Linc-md1 in
MB (left) and MT (right). Linc-md1 displays stronger interaction with a
higher number of TFs and miRNAs in MT than in MB, thus a large size
of the node. (E) Illustration of type I network motif (left) involves Linc-
md1. TFs (orange) regulate both Linc-md1 (purple) and miRNAs (green);
MiRNA negatively regulates Linc-md1. Right panel shows the tracks of a
list of TFs binding to the Linc-md1 promoter from ChIP-seq data and the
binding of miRNAs to Linc-md1 in the identified CLIP-seq peak in MB
(top) and MT (bottom).

further validate the involvement of functional lncRNAs in
three-node network motifs and their interactions, we se-
lected Snhg1 (small nucleolar RNA host gene 1) for further
experimentation. It has been reported to promote cell pro-
liferation in non-small cell lung cancer and hepatocellular
carcinoma tumorigenesis (62,63) but with unexplored func-
tion in skeletal myogenesis. By our prediction, Snhg1 inter-
acts with YY1 and miR-200b through direct binding with
them to form a type I three-node FFL network motif. An
YY1 binding site was identified upstream of Snhg1 TSS (6.5
kb upstream of TSS) by analyzing YY1 ChIP-seq; an Ago2
binding peak was found and four binding sites for miR-
200b were predicted (Figure 7A). Indeed, by ChIP-PCR,
an enrichment of YY1 on Snhg1 promoter was detected
(Figure 7B). Furthermore, overexpression of YY1 in C2C12
increased its expression (Figure 7C) while knockdown of
YY1 repressed it (Figure 7D), suggesting YY1 binding to
Snhg1 causes the increase of its transcription. This was fur-
ther confirmed by cloning a 250 bp fragment of Snhg1 pro-
moter encompassing the YY1 binding site into a luciferase
reporter; results from the reporter assay showed that YY1
positively regulates Snhg1 expression (Figure 7E and F).
To dissect miR-200b-Snhg1 regulation, as expected, over-
expression of miR-200b inhibited Snhg1 expression (Fig-
ure 7G). To further demonstrate the possibility of post-
transcriptional degradation by miR-200b through direct
binding, we selected the predicted binding site that resides
within the Snhg1 exon 10. A 240 bp fragment encompass-
ing the site was fused with luciferase gene; when transfected
into C2C12 cells with miR-200b mimic oligos, a significant
decrease of the reporter activity was observed. (Figure 7H).
These experimental evidences demonstrate that Snhg1, a
pro-myogenic lncRNA, is regulated by YY1 and miR-200b.

To strengthen the findings, we further tested another
lncRNA, 9530072K05Rik which was predicted to form type
I network motif by interacting with MyoD and miR-29b
through direct binding (Figure 7I) but its function in mus-
cle cells remains unknown. Interestingly, MyoD binding
on its promoter (350 bp upstream of TSS) was found to
suppress its expression (Figure 6J–L); miR-29b was also
found to decrease its level through binding to the 3′ end of
9530072K05Rik (Figure 7O and P). Altogether these results
strengthened the reliability of our network approach in in-
ferring the lncRNA functional mechanisms. It also demon-
strated the previously underappreciated complexity of inter-
actions that lncRNAs are involved in through binding with
TFs and miRNAs during the process of myogenic differen-
tiation.

DISCUSSION

With the tremendous increasing of the transcriptome se-
quencing data from different cell/tissue types, thousands
of lncRNAs have been identified through de novo assem-
bling the data. To develop computational framework that
can be used to systematically identify potentially functional
lncRNAs and lead towards the understanding of their func-
tions provides a huge impetus in the field, but remains a
challenging task (8,14). Increasing studies demonstrate the
multi-potency of lncRNAs as interacting hubs with other
macromolecules including proteins, DNAs and RNAs (3–
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Figure 6. Experimental validation of the predicted functional lncRNAs in C2C12 myogenic differentiation. (A) Gene expression levels of 10 predicted
functional lncRNAs were measured by qRT-PCR at various time points during C2C12 differentiation. All PCR data were normalized to GAPDH mRNA
and represent the average of three independent experiments ± S.D. (B and C) siRNA oligos targeting each of the selected lncRNAs were transfected
into C2C12 cells together with a Myogenin luciferase reporter, 48 h after differentiation, Luciferase activities were determined and normalized to Renilla
protein. Relative Luciferase Unit (RLU) is shown with respect to wild type and negative control oligos (siNC) transfection where luciferase activities were
set to a value of 1. The results suggested promoting functions of the lncRNAs in myogenic differentiation. All luciferase data represent the average of three
independent experiments ± S.D. The P-value was determined by Student’s t-test: *P < 0.05, **P < 0.01, ***P < 0.001.

5,12,13,16,17,45); inferring lncRNA functions through its
interacting partners has thus been made possible by the ad-
vancement in detecting these interactions through a vari-
ety of high-throughput sequencing methodologies such as
ChIP-seq, RNA-seq and CLIP-seq (21,22). In this study,
we described a robust and accurate computational frame-
work lncFunNet to predict and prioritize functional lncR-
NAs and further annotate their functions in a specific bio-
logical system based on the integrated gene networks con-
structed by harnessing the molecular interaction data. By
applying lncFunNet to mESCs, we have accurately recov-
ered more than 60% functional lncRNAs that were previ-
ously identified by different experimental assays. In addi-
tion, we also identified ∼700 novel lncRNAs that have not
been annotated previously, which opened new avenues for
future research investigation. When applying lncFunNet to
C2C12 muscle cells, we also identified 1177 novel lncRNAs
with distinct genomic features. For the selected 10 novel
lncRNAs with high FISs and high FPKM value, we success-
fully validated their expression by RT-PCR and functions in
myogenesis using loss of function assays, demonstrating the
reliability of lncFunNet; this effort thus has filled the gap of
knowledge in the lncRNA involved regulation of myogene-
sis.

The unique features of lncFunNet are multiple folds.
First, it is the first attempt to systematically integrate multi-
ple genomic data to predict and prioritize functional lncR-
NAs. The commonly used co-expression network approach

uses only the correlations among lncRNAs and their co-
expressed genes to annotate lncRNA functions, thus is
limited by the fact that (i) some lncRNAs do not have
co-expressed genes; (ii) co-expression does not always in-
fer co-function. LncFunNet, on the other hand, expands
the network construction by including TF–lncRNA and
miRNA–lncRNA interactions derived from ChIP-seq and
CLIP-seq data. Indeed, ROC and AURPC analyses showed
that LncFunNet yielded a much higher accuracy than co-
expression analysis alone. In mESCs, lncFunNet yielded a
very low (6%) false positive rate, while the false negative
rate is high (35.8%). The integration of a greater number of
high-throughput sequencing datasets in particularly the TF
ChIP-seq data in the network construction is expected to in-
crease the likelihood of predicting the true functional lncR-
NAs and decrease the false negative rate. Second, advanced
machine learning algorithm using logistic regression model
was implemented in lncFunNet to allow us to calculate FIS
and thus stands as the first framework to provide a systemic
scoring system for quantitative evaluation of the function-
ality of lncRNAs. Indeed, the optimized weight, when ap-
plying in mESCs has significantly increased the prediction
accuracy of lncFunNet as compared to the model relying
only on the co-expression network.

Thirdly, not only our approach can answer whether an
lncRNA is functional or not, but also can provide in-
sights into how an lncRNA functions through identify-
ing the interacting partners i.e. the binding TFs and miR-
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Figure 7. Experimental validation of two lncRNA mediated network motifs in C2C12 cells. (A) A TF–miRNA–lncRNA network motif involving lncRNA,
Snhg1 (left). A Snapshot of genomic features (Pol 2, YY1 and MyoD1 ChIP-seq as well as CLIP-seq in separate tracks) on Snhg1 transcript (red track
on top) in MB. (B) Validation of the binding of YY1 on the Snhg1 promoter by ChIP-PCR. Enrichment fold was calculated as percentage of enrichment
of total input. (C) Overexpression of YY1 in C2C12 increased Snhg1 expression by RT-qPCR. (D) Knockdown of YY1 by shYY1 plasmid repressed
Snhg1 expression by RT-qPCR. (E) C2C12 cells were transfected with a Luciferase reporter encompassing the binding site of YY1 from Snhg1 promoter
and together with an YY1 expression plasmid and Renilla luciferase reporter plasmid. Luciferase activities were determined at 48 h post-transfection and
normalized to Renilla protein. Relative luciferase unit (RLU) is shown with respect to wild type and vector control transfection where luciferase activities
were set to a value of 1. The result showed that overexpression of YY1 increased the reporter activity. (F) Knockdown of YY1 inhibited the above reporter
activity. (G) miR-200b mimic or negative control oligos were transfected into C2C12 cells and its overexpression inhibited Snhg1 expression. (H) A luciferase
reporter encompassing the miR-200b binding site on Snhg1 (the last exon of 3′ end) were transfected into C2C12 cells together with the miR-200b mimic
oligos and Renilla luciferase reporter plasmid. Luciferase activities were determined at 48 h post-transfection and normalized to Renilla protein. The result
showed that overexpression of miR-200b decreased the reporter activity. (I) A TF–miRNA–lncRNA network motif mediated by MyoD1 (left). A Snapshot
of genomic features (Pol II, MyoD and MyoG ChIP-seq as well as CLIP-seq in separate tracks) around lncRNA 9530072K05Rik transcript (red track on
top) in MB. (J) Validation of MyoD binding on lncRNA 9530072K05Rik’s promoter by ChIP-PCR. (K) Overexpression of MyoD in C2C12 cells repressed
9530072K05Rik expression. (L) Knocking down of MyoD increased 9530072K05Rik expression. (M, N) C2C12 cells were transfected with a Luciferase
reporter encompassing the binding site of MyoD from 9530072K05Rik promoter and together with a MyoD expression plasmid and Renilla luciferase
reporter plasmid. Luciferase activities were determined at 48h post-transfection and normalized to Renilla protein. The result showed that overexpression
of MyoD decreased the reporter activity. (O) Overexpression of miR-29 by transfecting mimic oligos inhibited 9530072K05Rik expression as compared to
negative control oligos. All PCR data were normalized to GAPDH mRNA or U6 (for miRNA expression) and represent the average of three independent
experiments ± S.D. All luciferase data were normalized to Renillia protein and represent the average of three independent experiments ± S.D. The P-value
was determined by Student’s t-test: *P < 0.05, **P < 0.01, ***P < 0.001.

NAs in network motifs. As a result, in C2C12, Snhg1, an
lncRNA with previously unknown function was identified
to promote myogenic differentiation. Moreover, we veri-
fied that Snhg1 is bound by YY1 on its promoter and
positively regulated in myoblast cells. It is also bound by
miR-200b and down-regulated. Interestingly, transfection
of miR-200b could maintain C2C12 cells in an undifferenti-
ated stage. The functional antagonization further suggested
that miR-200b probably binds and down-regulates Snhg1
expression, supporting the lncRNA–miRNA interaction in

a non-ceRNA manner. Similarly, we also validated another
predicted network motif, 9530072k05Rik-miR-29b-MyoD.
Interestingly, in contrast to the known transcriptional acti-
vating effect, MyoD binding to 9530072k05Rik, appeared
to down-regulate its expression, which needs to be further
investigated. MiR-29b, a previously known myogenic regu-
lator repressed its level, again supporting that miRNA bind-
ing lncRNA can down-regulate their expression transcrip-
tionally or post-transcriptionally. These two examples illus-
trated the predicting power of our approach and opened the
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door for further mechanistic investigations for many novel
lncRNAs.

Several studies have established comprehensive databases
to collect the miRNA-lncRNA interactions in various
species and tissue/cell types, thus provide useful resources
for lncRNA functional prediction (22,23). In our study,
combining Ago2 CLIP-seq data and in silico predictions is
proven to be an effective way of defining miRNA-lncRNA
binding and significantly reduced the false positive rate
compared to using the in silico prediction alone. Subse-
quently, we identified 1.78% (46/2584), 3.79% (82/2164)
and 5.08% (127/2538) lncRNAs interacting with miRNAs
in mESC, MB and MT, respectively. These observations
are in line with the numbers of miRNA–lncRNA interac-
tions reported by Li et al. and others in their databases
for different cell types (22,23). With the improving sensi-
tivity in detecting RNA–protein interaction, we believe a
higher number of such interactions can be detected. Even
though only ∼3–5% lncRNAs were predicted to interact
with miRNAs in C2C12 cells, these lncRNAs showed much
stronger functional potential comparing to those without
interacting miRNAs, suggesting the important contribu-
tion of miRNA–lncRNA interactions to lncRNA functions
(Supplementary Figure S7).

We should also point out that the integration of the com-
prehensive TF–lncRNA interactions from multiple ChIP-
seq data in lncFunNet significantly increased the prediction
accuracy, however, it also constraints the usage of lncFun-
Net in cells/tissues where such comprehensive TF ChIP-
seq data is lacking. To solve the problem, emerging stud-
ies demonstrated that the genome-wide TF and gene inter-
actions can be accurately predicted using the open chro-
matin regions identified through DNase-seq (64) or ATAC-
seq (65), thus providing an alternative way to establish the
TF–lncRNA interactome without ChIP-seq.

Finally, although in this study three types of genomic
data including ChIP-seq, RNA-seq and CLIP-seq were em-
ployed, in the future the network approach can be expanded
to include many other types of genomic interaction data
such as RNA-DNA interactions obtained from Chromatin
Isolation by RNA Purification (CHIRP) (66) or Capture
Hybridization Analysis of RNA Targets (CHART) (67)
data. More complex networks can be built to not only un-
derstand the functionality of lncRNAs but also to better
study the complex molecular interactomes in a given cellu-
lar system.
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