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Abstract

The genetic basis of phenotypic variation can be partially explained by the presence of copy-number variations (CNVs).
Currently available methods for CNV assessment include high-density single-nucleotide polymorphism (SNP) microarrays
that have become an indispensable tool in genome-wide association studies (GWAS). However, insufficient concordance
rates between different CNV assessment methods call for cautious interpretation of results from CNV-based genetic
association studies. Here we provide a cross-population, microarray-based map of copy-number variant regions (CNVRs) to
enable reliable interpretation of CNV association findings. We used the Affymetrix Genome-Wide Human SNP Array 6.0 to
scan the genomes of 1167 individuals from two ethnically distinct populations (Europe, N = 717; Rwanda, N = 450). Three
different CNV-finding algorithms were tested and compared for sensitivity, specificity, and feasibility. Two algorithms were
subsequently used to construct CNVR maps, which were also validated by processing subsamples with additional
microarray platforms (Illumina 1M-Duo BeadChip, Nimblegen 385K aCGH array) and by comparing our data with publicly
available information. Both algorithms detected a total of 42669 CNVs, 74% of which clustered in 385 CNVRs of a cross-
population map. These CNVRs overlap with 862 annotated genes and account for approximately 3.3% of the haploid human
genome. We created comprehensive cross-populational CNVR-maps. They represent an extendable framework that can
leverage the detection of common CNVs and additionally assist in interpreting CNV-based association studies.
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Introduction

Copy Number Variations (CNVs) have been recently receiving

growing attention as a steadily increasing number of CNVs in the

human genome has been identified [1,2] and successfully linked to

a variety of medical conditions [3,4,5,6]. CNVs can cover whole

gene loci and may have dramatic impact on protein expression

levels through altering gene dosage or disrupting coding sequences

[7,8]. Hence it is crucial to investigate copy number states as a

source of genetic variation in genome-wide association studies

(GWAS). In addition, accounting for the presence of CNVs could

also improve SNP genotyping results. Rejection of SNPs in GWAS

due to violation of Hardy-Weinberg-Equilibrium might for

example stem from individuals that are hemizygous for a specific

allele and are wrongly assigned the homozygous genotype call.

Although increasing efforts have been put into the refinement of

methods for the accurate and reliable detection of CNVs

[9,10,11,12], available methods suitable for high-density oligonu-

cleotide SNP arrays still lack sufficient sensitivity and specificity

[13]. In order to improve detection methods for Copy Number

Events, standard maps providing information on genomic regions

that are prone to structural variation are needed. Such maps

containing information about hotspots for CNV-formation can

provide prior knowledge in Bayesian terms about genomic

localization and frequency of occurrence of CNVs. Incorporation

of these priors leads to a considerably reduced marker set that

either facilitates faster detection of common CNVs or allows for a

more precise CNV-analysis.

Like microsatellites and single-nucleotide polymorphisms

(SNPs), CNVs represent a specific form of genetic variation.

Global distribution of CNVs largely accords with population

structure analysis for SNP data sets [14]. Findings from

population genetics show that global human genetic variation is

greatly influenced by geographical migration [15,16] and that

genetic diversity within populations decreases with increasing

geographic distance from Africa [17]. Hence, differences in
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genetic diversity between populations should not be neglected in

CNV analysis.

In this study we provide a cross-population, microarray-based

map of copy-number variant regions (CNVRs) to enable reliable

interpretation of CNV association findings.

To account for differences in variation patterns between

populations, we created two population-specific CNVR-maps

and a cross-populational standard CNVR-map (Figure 1). In order

to decrease the number of false positive findings, we built CNVR-

maps using only convergent CNVs detected by two different

algorithms found in at least two individuals. On the other hand we

investigated hundreds of individuals, thus boosting detection

sensitivity. To corroborate our findings, we also processed two

subsamples with the Illumina 1M-Duo BeadChip and the

Nimblegen 385K aCGH array. Further we checked our CNVR

maps against previously published data.

The CNVR-maps represent an extendable framework that can

leverage the detection of common CNVs and additionally assist in

interpreting CNV-based association studies.

Results

Our goal was to create CNVR maps that can provide references

for population specific frequencies and the genetic localization of

common CNVs as assessed by commonly used SNP arrays.

Therefore we analyzed a Sub-Saharan African population

(N = 450) and a sample of European ancestry (N = 717). We

applied two different copy number finding algorithms (Birdseye

and PennCNV) to data generated by the Affymetrix Genome-

Wide Human SNP Array 6.0, an array that was specifically

designed to assess copy number states throughout the genome

[18].

Gross Validation
For evaluation of CNV-finding algorithms we checked

whether CNAM, PennCNV and Birdseye [9,10,19] would

reliably detect large-scale genomic aberrations. Therefore we

processed three DNA samples with verified large-scale structural

variations using the Affymetrix SNP Chip 6.0. Generally, all

Figure 1. Workflow chart of the map construction procedure.
doi:10.1371/journal.pone.0015246.g001

CNVR-Maps in Two Ethnically Distinct Populations
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three algorithms were able to detect the structural variations

yielding comparable results. A striking difference between

algorithms is the degree of fragmentation of detected CNVs.

Especially, PennCNV and Birdseye, the two algorithms subse-

quently chosen to process the data of the two populations, differ

significantly (Figures 1, 2).

Stage 2 Analysis
We decided not to use CNAM for further analysis because this

algorithm is computationally expensive and dependent on

subjective cut-off values, which have to be defined by the user

after visual inspection of data. Processing a sample with the

CNAM algorithm, which is of equal size to the one used in this

study, would take up to 4 weeks (2x3GHz Quad-Core Intel Xeon,

16 GB RAM), whereas applying PennCNV and Birdseye to this

amount of data is accomplishable in a few days.

Therefore we processed the two populations with the compu-

tationally more efficient algorithms PennCNV and Birdseye.

Interestingly, albeit PennCNV and Birdseye generally report an

unequal amount of copy number events, population differences in

CNV characteristics are well reflected by the data. Both

algorithms consistently report a higher number of CNVs that

are of shorter length in the African sample (Figure 3). This is in

accordance with findings that haplotype blocks in Africans are

significantly smaller and show higher degrees of diversity than in

non-African samples [20]. The finding of higher frequencies of

CNVs in the Rwandese sample is conform with the expected

generally higher genetic diversity in Sub-Saharan African

Figure 2. Detection of large-scale genomic variants with CNAM, PennCNV and Birdseye and the Affymetrix SNP Array 6.0. Schematic
representation of the three samples with large-scale genomic aberrations used for gross validation of methods. Results of the different CNV-Finding
algorithms are shown on a chromosome wide level, black and colored bars indicate CNVs. For B and C a more detailed view of the large-scale
aberration regions (red boxes) is given. Orange bars for the Birdseye algorithm in A and C represent CNVs with opposite direction of effect (gain vs.
loss). A. Trisomy 21. (Due to repetitive and no known coding sequences on the p-arm of chromosome 21, the Affymetrix GeneChip 6.0 lacks markers
in this genomic region. Therefore changes in copy number in this region are not detectable.) B. Well defined familial 14.5 Mb deletion
46,XX,del(13)(q21.1q21.33) with sequenced breakpoints (orange bar) [32]. C. Partial terminal duplication of the short arm of chromosome 16 and
partial terminal deletion of the short arm of the X-chromosome. Conventional karyotyping confirmed an unbalanced translocation
46,X,der(X)t(X;16)(p21.1;p12.1).
doi:10.1371/journal.pone.0015246.g002

CNVR-Maps in Two Ethnically Distinct Populations
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populations as also reflected by the difference in genome-wide

heterozygosity in SNPs (mean_Swiss = 26.24, mean_Rwanda =

28.01, W = 7518, p = 2.2e–157).

Construction of the CNVR-Map
Albeit obvious differences in sensitivity and specificity between

Birdseye and PennCNV, it is possible to use the combination of

both algorithms to identify Copy Number Variable Regions

(CNVRs). For this purpose we first scanned data on an individual

basis for CNVs. The total number of CNVs reported by the

Birdseye algorithm for both samples was 310835 and 60532 for

the PennCNV algorithm, respectively. We analyzed which CNVs

were reported by both algorithms and overlapped, merging these

into one CNV. Also direction of effect (gain vs. loss) had to be

equal for CNVs to be used for CNVR creation. This procedure

was applied to the Swiss and the Rwandese sample and yielded a

total of 42669 CNVs. A more detailed description of this process

can be found in the Figure S1. The cross-populational CNVR

map (CP-map, Figure 4) was constructed using only CNVRs that

were common to both the Rwandese and the Swiss sample. This

CP-map comprises a total of 385 common CNVRs on 22

autosomes (sex chromosomes were excluded from analysis). The

Swiss and the Rwandese CNVR map contain a total of 917 and

1185 CNVRs, respectively. For a detailed description of the map

creation procedures see Methods S1.

Maps were screened for genes that overlap with CNVRs. A total

of 862 genes were affected by CNVRs in the CP-Map (e.g. MAPK1

on chromosome 22: 20443947-20551970, NEGR1 on chromo-

some 1: 71641213-72520993, PARK2 on chromosome 6:

161688580-163068824). Complete lists of genes affected by

CNVRs in all three maps are given in Table S1. A general

overview of CNVR frequencies and number of genes located

within the CNVRs is given in Figure 5.

We also analyzed the percentages of genes that were detected in

both the Sw-map and the Rw-map or that were specific for either

population. A total of 1585 genes have been found to overlap with

CNVRs. Approximately one third (34%) of these genes are found

to map to CNVRs in both populations. One fourth (25%) were

found to be affected by copy number variation in the Rwandese

sample only, whereas 41% of these genes were found to be copy

number variable only in the Swiss population. A detailed overview

and lists of genes are available in Table S1.

Comparison with data downloaded from the Database of

Genomic Variants (DGV – current version: hg18.v7.aug.2009)

revealed substantial overlap between our CP-map and entries of

single CNVs in the DGV. Out of 56497 autosomal copy number

events reported in the DGV, 11545 clustered in CNVRs as

defined by the CP-map. Separate comparisons for the CNVR

maps created on the single population basis (SW-map and RW-

map) resulted in 13773 overlapping CNVs for the Rwandese based

CNVR-map and 14369 for the Swiss based CNVR-map (Table

S1). We restricted our analysis to CNVRs, choosing a conservative

approach, which does not take rare events into account. Since

CNVs reported in the DGV are measured by a variety of methods

Figure 3. Differences in average length and number of CNVs between populations for Birdseye and PennCNV. Upper left: Average
length of CNVs Birdseye Upper right: Average length of CNVs PennCNV Lower left: Average Number of CNVs found per individual Birdseye Lower
right: Average Number of CNVs found per individual PennCNV Boxes represent 25–75% of data points, whiskers indicate 1.5 x the interquartile range,
outliers are depicted by the small circles.
doi:10.1371/journal.pone.0015246.g003

CNVR-Maps in Two Ethnically Distinct Populations
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such as high-density aCGH and direct sequencing in different

populations this finding indicates that a substantial part of copy

number variation is detectable by high density SNP-Chips. Our

CP-map contains only 3 previously undetected CNVR regions

that do not contain any known genes. (chr2:57638382-57684603,

chr2:221793857-221798933 and chr20:16610218-16618759).

The SW-map and the RW-map contain 80 and 191 CNVRs,

respectively, that have not yet been reported to the DGV. We

further compared CN-events that were detected by both

algorithms to a map comprising 229 autosomal CNVRs

constructed through analyzing 700 Chinese individuals with the

Affymetrix 500K processed with the CNAT algorithm [21].

Comparison between CP-Map and the CNVRs detected in the

Chinese sample yielded 98 overlapping regions. We found a total

of 141 CNVRs that overlapped when comparing the Chinese map

to the SW-map and 124 overlapping events when compared to the

RW-map.

We also could observe overlaps between our CP-map and a list

of 161 autosomal CNVRs identified with CNV-seq that used

direct sequencing reads of Dr. C. Venter and Dr. J. Watson [22].

79 out of the 161 CNVRs clustered in the CP-map. Separate

comparisons revealed a total 84 overlapping CNVRs with the SW-

map and 77 overlaps with the RW-map.

For further validation of our CP-map we processed 13

individuals with the Illumina Human 1M-Duo BeadChip, (7

Swiss, 6 RWS) and 9 samples of the Swiss population with the

Nimblegen 385K aCGH array. We detected a total of 930 CNVs

applying PennCNV on the Illumina 1M-Duo BeadChip. Com-

parison of these 930 CNVs to the CP-map showed 501

overlapping copy number events with the CNVRs in the map.

Figure 4. Whole genome view for the three CNVR maps. Depicted are schematic representations and banding patterns of autosomal
chromosomes in single-chromatid formation. The colored tick-marks represent CNVRs (red = Rwandese map, blue = Cross-populational map, green
= Swiss map). Figure was generated using the UCSC genome browser.
doi:10.1371/journal.pone.0015246.g004

CNVR-Maps in Two Ethnically Distinct Populations
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The 385K data from Swiss individuals was analyzed using the

wuHMM algorithm [12]. Results of aCGH analysis for the nine

investigated samples yielded a total of 264 copy number events of

which 180 clustered in the SW-map and 162 in the CP-map.

PennCNV reported a total of 346 CNVs for these nine samples.

Interestingly, when we compared how many CNV events in these

9 individuals were detected by both methods in the same

individual, only a total of 55 CNVs were detected by aCGH that

overlapped with CNVs reported by PennCNV. This is another

hint that current methods for CNV detection lack sensitivity and

need further refinement. A detailed view of overlapping events can

be found in Table S2.

As segmental duplications are known to play an important role

in CNV formation [23,24,25,26], we downloaded the Segmental

Dups Track from UCSC table browser (Mar.2006 assembly,

NCBI36/hg18) and analyzed whether the CNVRs as reported in

our maps overlap with known segmental duplications. Out of

36119 annotated segmental duplications mapping to ‘‘non-

random’’ chromosomal regions, 8911 overlapped with 178

CNVRs comprised in the CP-Map.

Discussion

First, we note that all tested algorithms were able to detect large-

scale genomic aberrations ranging from a 14 Mb deletion to a

whole chromosome triplication. We therefore conclude that the

SNP-Array under study can be used in cytogenetic research. Yet,

as depicted in Figure 1, CNV-finding algorithms may vary

considerably in sensitivity and specificity [13] and therefore we

recommend a combination of different algorithms to facilitate

interpretation of findings. Given this varying accuracy of different

CNV-detection algorithms in large-scale genomic aberrations,

cautiousness is indicated in interpreting findings from whole

genome CNV screenings based on SNP-genotyping data.

Common CNVs can comprise only few markers decreasing

significantly the signal-to-noise ratio as compared to large-scale

genomic aberrations. In order to improve reliability of CNV

detection in single individuals, we suggest that detection

algorithms should be capable of exploiting prior knowledge about

CNV base rates in a given genomic region. To provide

information on localization of CNVRs and probability measures

Figure 5. CNVR-length, gene content and frequency distributions. Plot is depicting CNVR-length, gene content and frequency distributions.
CNVRs are plotted according to CNVR-map (color), length (y-axis), frequency of CNVs per CNVR (x-axis, at least 2 overlapping CNVs had to be present
to form a CNVR in the population specific maps, a CNVR in the CP-Map is constructed of at least 262 CNV events) and number of RefSeq genes
affected (circle size).
doi:10.1371/journal.pone.0015246.g005

CNVR-Maps in Two Ethnically Distinct Populations
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of CNV occurrence contained therein, we set out to create

standard maps of common CNVRs. Given that CNV-formation

rate is considerably higher than the mutation rate for single base

pairs [27], it is advisable to create population-specific priors to

account for varying degrees of genetic diversity.

To decrease the probability that false positive CNV-calls are

used for generating the CNVR-maps, we only took concordant

CNV-calls of two independent algorithms into account that

overlapped in at least two individuals. On the other hand we

screened hundreds of individuals, thus increasing sensitivity.

The maps created this way contain information on CNV

hotspots and frequency distributions of CNVs. They represent first

drafts of population-specific maps as well as a cross-populational

map, probably comprising phylogenetically older CNVRs. We

report a substantial overlap with CNVR-regions created from

previously published data and also were able to validate our maps

using different array types, which vary in resolution and their

mode of operation due to different chip-architectures.

We argue, that detection accuracy of CNVs can benefit from

information on base rates of CNVs in the general population as

provided in our CNVR-maps. Two ways to integrate prior

knowledge about common CNVRs are plausible: On the one

hand, the restriction of CNV-analysis to markers known to be

located in CNVRs allows the use of computationally more

expensive algorithms that could outperform current methods.

On the other hand information gained from CNVR-maps can

serve as prior probabilities in Bayesian terms that can be

incorporated in CNV-detection algorithms. In order to alleviate

assessing how common CNVs relate to variation in phenotypes,

higher sensitivity and specificity rates in CNV-detection are

needed. We suggest that the use of prior knowledge about CNVRs

as provided by our maps, could yield the necessary refinement of

methods. We note that our CNVR-maps do not depict structural

variations on the p-arms of chromosome 13, 14, 15, 21 and 22 due

to lack of markers in these areas on the Affymetrix 6.0 SNP Array.

These regions only contain non-chromosome specific highly

repetitive DNA sequences and are usually not covered by

microarrays. It is important to stress that the array design for

the Affymetrix Human SNP Array 6.0 relied mainly on variation

detected in non-African populations an thus our Rw-map might

underestimate the total variation present in the Rwandese sample.

Specially designed custom arrays that take population specificity

into account by making use of information provided by large scale

sequencing endeavors such as the 1000 Genomes Project [28] will

be capable of yielding more accurate estimations on the amount of

common copy number variation. This is especially important for

Sub-Saharan African populations that show higher degrees of

genetic variation [29]. In order to render the calling of single

CNVs more accurate and to overcome the limitations of the

current genotyping platforms, it is mandatory to identify

population-specific CNVRs and to enrich the marker density for

these known CNVRs on the respective custom arrays.

In summary, we generated comprehensive CNVR-maps using

micro-arrays in two cohorts of ethnically distinct individuals from

Switzerland and Sub-Saharan Africa. The maps represent an

extendable framework that can leverage the detection of common

CNVs and additionally assist in interpreting CNV-based associ-

ation studies.

Methods

Ethics Statement
Swiss sample. After complete description of the study to the

participants, written informed consent was obtained. The ethics

committee of the Canton of Zurich, Switzerland specifically

approved this study.

Rwandese sample. Because most of the study subjects were

analphabetic, they were fully informed verbally before

participation. The informed consent was also in verbal form for

the same reason. Both the ethical boards of Mbarara University of

Science and Technology, Uganda and the University of Konstanz,

Germany specifically approved this study.

Research permit for the study was obtained by the Ugandan

government:

PRESIDENT’S OFFICE

RESEARCH SECRETARIAT

P.O BOX 7168

KAMPALA, UGANDA

Research Identity Cards were issued to the researchers by the

Uganda National Council for Science and Technology, P.O. Box

6884 Kampala granting them access to the Nakivale refugee

camp, which is a restricted area that can only be accessed for

persons in possession of the according permits.

Sample collection and SNP Genotyping
We recruited a total number of N = 1167 individuals from two

ethnically distinct populations from Switzerland and Rwanda. The

Swiss population consisted of 717 healthy, young individuals. The

Rwandese sample is comprised of 450 survivors of the Rwandese

Civil War recruited in the Nakivale refugee camp, Uganda [30].

DNA was isolated from whole blood or from saliva. Samples were

genotyped using the Affymetrix Genome-Wide Human SNP

Array 6.0 following manufacturer’s recommendations. Consecu-

tive CNV analysis was performed with the Birdseye and the

PennCNV algorithm. For downstream statistical analysis only

samples surviving all Quality Control (QC) Criteria were used and

analysis was generally restricted to autosomal chromosomes (see

Methods S1 for a detailed description QCs and the mapping

procedure).

Two randomly chosen subsets consisting of 9 individuals of the

Swiss population and a subsample comprising 7 Swiss and 6

Rwandese individuals were processed on the Nimblegen 385K

aCGH array and the Illumina 1M-Duo BeadChip, respectively.

Data analysis of the Nimblegen 385K aCGH array was conducted

applying the wuHMM algorithm [12]. Data of the Illumina arrays

was processed with Bead Studio (Illumina’s proprietary software).

CNV analysis was done applying PennCNV.

The screening sample that was used for gross validation of

methods consisted of three individuals with previously verified

large-scale aberrations. DNA for these three subjects was isolated

from whole blood and hybridized to the Affymetrix Genome-Wide

Human SNP Array 6.0. Data of the validation sample was

analyzed using Birdseye, PennCNV and the CNAM algorithm of

the commercial Software package Helix Tree [19].

Statistical Analysis
Statistical analysis and plots were done using R [31]. Data

reported by the applied CNV finding algorithm on length and

frequency of CNVs that was used to analyse population

differences, were not normally distributed as indicated by

Shapiro-Wilk tests. Therefore Mann-Whitney-U tests were used.

For comparison of populations, subjects with more than 500

reported CNVs were removed from statistical analysis, since we

assumed that in these cases high misclassification or over-

fragmentation of CNVs is present. Inclusion of these individuals

resulted in even lower p-values (data not shown).

CNVR-Maps in Two Ethnically Distinct Populations
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Supporting Information

Figure S1 This workflow chart is depicting the proceed-
ings of the CNV congruency check and the merge
process. We first applied an overlap-check for the CNVs

reported by the different algorithms. If CNV events had overlaps,

copy number state (gain vs. loss) was also evaluated. Out of all

CNVs detected, only 1916 events in the Swiss sample and 324

CNVs in the Rwandese sample had to be removed due to

incongruent direction of effect. This means that in the Swiss

sample a total of 858 overlapping CNVs had been reported as loss

by one algorithm and as gain in copy number variation by the

other algorithm. In the Rwandese sample, this was the case for

only 162 events. All CNV events that had not at least partially

been detected by the second algorithm were discarded. A total of

22,700 ‘‘merged’’ CNV events survived this quality control in the

Swiss sample and 19,969 CNVs in the Rwandese population,

respectively.

(EPS)

Methods S1

(DOC)

Table S1

(XLSX)

Table S2

(XLSX)
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