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Abstract

Introduction: Thresholding of low-weight connections of diffusion MRI-based brain

networks has been proposed to remove false-positive connections. It has been pre-

viously established that this yields more reproducible scan–rescan network architec-

ture in healthy subjects. In patients with brain disease, network measures are applied

to assess inter-individual variation and changes over time. Our aim was to investigate

whether thresholding also achieves improved consistency in network architecture in

patients, while maintaining sensitivity to disease effects for these applications.

Methods: We applied fixed-density and absolute thresholding on brain networks in

patients with cerebral small vessel disease (SVD, n = 86; ≈24 months follow-up), as

a clinically relevant exemplar condition. In parallel, we applied the same methods in

healthy young subjects (n = 44; scan–rescan interval ≈4 months) as a frame of refer-

ence. Consistency of network architecture was assessed with dice similarity of edges

and intraclass correlation coefficient (ICC) of edge-weights and hub-scores. Sensitiv-

ity to disease effects in patients was assessed by evaluating interindividual variation,

changes over time, and differences between those with high and low white matter

hyperintensity burden, using correlation analyses andmixed ANOVA.

Results: Compared to unthresholded networks, both thresholding methods gener-

ated more consistent architecture over time in patients (unthresholded: dice = .70;

ICC: .70–.78; thresholded: dice = .77; ICC: .73–.83). However, absolute thresholding

created fragmented nodes. Similar observations were made in the reference group.

Regarding sensitivity to disease effects in patients, fixed-density thresholds that were

optimal in terms of consistency (densities: .10–.30) preserved interindividual variation

in global efficiency and node strength aswell as the sensitivity to detect effects of time

and group. Absolute thresholding produced larger fluctuations of interindividual vari-

ation.
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Conclusions:Our results indicate that thresholding of low-weight connections, partic-

ularlywhen using fixed-density thresholding, results inmore consistent network archi-

tecture in patients with longer rescan intervals, while preserving sensitivity to disease

effects.
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1 INTRODUCTION

Diffusion-weighted imaging (DWI) and fiber tractography enable us to

map cerebral white matter pathways and reconstruct large-scale brain

networks (Jeurissen et al., 2017). Subsequently, graph theory can be

applied to quantify the properties of such networks (Hagmann et al.,

2007; Sporns et al., 2005). This framework has been widely used to

investigate not only normal brain development but also a variety of

neurological and psychiatric disorders (Fornito et al., 2013; Tijms et al.,

2013).

Amajor challenge in structural network analysis is the limited repro-

ducibility of networks obtainedwith diffusionMRI, due to the presence

of false-negative and false-positive connections (Buchanan et al., 2014;

Zalesky et al., 2016). Essentially, false negatives represent white mat-

ter connections that are undetected by the tractography algorithm. By

contrast, false positives are edges in the reconstructednetwork that do

not represent true white matter connections. These errors can result

from numerous processing steps (Sotiropoulos & Zalesky, 2017), par-

ticularly the choice of parcellation scheme (Zalesky et al., 2010), trac-

tography algorithm (Sarwar et al., 2018), andweighting strategy (Dimi-

triadis et al., 2017).

The most common solution to reduce false positives is to employ

weight-based thresholding by removing so-called “weak” connec-

tions. In diffusion-based brain networks, weak connections are usually

defined as having a low number of streamlines (NOS). Many network

studies have used thresholding strategies such as absolute thresh-

olding (Garrison et al., 2015; Nicols et al., 2016), where a uniform

threshold is applied to remove all connections below a certain edge-

weight (e.g., below five streamlines). Another popular method is fixed-

density thresholding (Rubinov & Sporns, 2010; van den Heuvel et al.,

2017), where a relative threshold derived from each individual’s data

is applied to remove the weakest connections, such that an equal net-

work density is achieved across subjects. Recent scan–rescan studies

have investigated the impact of thresholding on the reproducibility of

structural brain networks in healthy subjects (Buchanan et al., 2020;

Messaritaki et al., 2019; Sarwar et al., 2018; Tsai, 2018; Welton et al.,

2015). Their results suggest that applying thresholds to remove false

positives can improve network similarity between scan and rescan, not

only in terms of graphmetrics but also by replicating the same network

architecture (e.g., the same set of edges and edge-weights).

Previous scan–rescan studies that tested reproducibility typically

focused on datasets of healthy subjects, with state-of-the art MRI

sequences, high imaging quality, and short rescan intervals (Van Essen

et al., 2013). Thresholding methods may also be of value to increase

consistency in network architecture in datasets of patient populations.

In this setting, diffusion-based network studies are primarily used to

study disease effects, cross-sectionally and over time. Before appli-

cation in such clinical studies, it is essential to understand if thresh-

olding indeed also produces more consistent network architecture in

scans from patients, acquired in a clinical setting, containing various

degrees of pathology, and across longer rescan intervals where further

pathology has likely occurred. It is also important to determine if gain

in network architecture consistency in this setting does not come at

the cost of reduced sensitivity to detect disease effects, reflected in

interindividual variation in diffusion metrics, and disease-related net-

work changes over time.

In this study, we therefore investigatedwhether thresholdingmeth-

ods that were previously shown to improve reproducibility in repeated

scans of healthy young subjects also generatemore consistent network

architectures (e.g., the same set edges, edge-weighs, and hubs-scores)

in patients who were scanned over longer time periods. To this end,

we used longitudinal data of patients with cerebral small vessel dis-

ease (SVD), a condition known to affect cerebral whitematter integrity

that is often investigated with network analysis (Lawrence et al., 2018;

Reijmer et al., 2013). In addition, we evaluated in these patients how

thresholding affects sensitivity to disease effects, which was defined

as (1) interindividual variation in network measures often examined in

SVD (e.g., global efficiency and node strength) and (2) differences in

global efficient and node strength between patients with low versus

high SVD disease burden. We focused on two thresholding methods

commonly applied in brain network studies: absolute thresholding and

fixed-density thresholding, both of which remove low-weight connec-

tions and allow analysis of scan–rescan reproducibility on an individual

patient level. As a frameof reference,weprocessedadataset of healthy

controls with the samemethodology.

2 MATERIALS AND METHODS

2.1 Dataset 1—Memory clinic patients with SVD

We included 228 patients from the Parelsnoer longitudinal study (Aal-

ten et al., 2014). Patients who were referred to the memory-clinic

of the UMC Utrecht for evaluation of cognitive problems, with a
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clinical dementia rating scale (CDR) (Morris, 1993) score of 0, .5, or 1,

and a Mini Mental State Examination (MMSE) (Folstein et al., 1975)

of 20 or higher were eligible. Exclusion criteria were: normal pres-

sure hydrocephalus, Morbus Huntington, recent transient ischemic

attack (TIA) or cerebrovascular accident (CVA) (<2 years), TIA/CVA

followed by cognitive decline (within 3 months), history of major psy-

chiatric disease or brain disease other than neurodegeneration or vas-

cular disease, causing cognitive decline (e.g., brain tumor, epilepsy).

Patients were eligible for the current analysis if they had a struc-

tural MRI and DTI scan at baseline and after ≈2-year follow-up visit

date (N = 90). We additionally excluded three patients with cogni-

tive complaints due to a diagnosis other than SVD or Alzheimer’s dis-

ease (AD) to obtain a more homogenous study sample and one patient

who was an extreme outlier in the network analysis. Thus, the total

number of subjects included in the analysis was 86 (59% male). The

follow-up time ranged between 22 and 35 months (mean ± SD: 27 ±

3 months) and age of the patients varied between 56 and 86 years

(mean± SD: 73± 7 years). MRI data were acquired on a 3 tesla Philips

scanner (Achieva, Philips, Best, the Netherlands) using a standardized

clinical protocol that included a 3D T1-weighted image and a diffu-

sionweighted sequence. T1-weighted scanswere acquiredwith a voxel

size of 1 mm3. DWI scans had an isotropic acquisition voxel size of

2.50 mm3, 45 diffusion-sensitizing gradients with a b-value of 1200

s/mm2, and1b=0 s/mm2. Fluid-attenuated inversion recovery (FLAIR;

TR/TE/inversion time: 11,000/125/2800ms) were also obtained.

The study was approved by the institutional review board of the

UMC Utrecht, and all participants provided written informed consent

prior to any research procedure.

2.2 Dataset 2 – Reference data of healthy young
adults

As a frame of reference, we included a second dataset with repeated

scans from healthy young adults from the Human Connectome Project

(HCP, Van Essen et al., 2013). Previous studies have already tested the

effects of thresholding using on this dataset but since network recon-

struction pipelines always differ slightly across studies. We included

these controls in our study to have a high-quality reference, recon-

structed with the exact same software packages, and tractography

algorithm as our patient data. We selected 44 healthy participants

(32% male) with scan–rescan DWI and T1-weighted images. The res-

can interval ranged between 1.5 and 11 months (mean ± SD: 4.7 ± 2

months) and theageof theparticipants variedbetween22and35years

old. MRI was acquired on a Siemens Skyra 3 tesla scanner (Siemens,

Erlangen, Germany). T1-weighted images had an isotropic voxel size of

1.25 mm3. The multi-shell DWI were acquired with an isotropic voxel

size of 1.25mm3 and three diffusion weightings (b-values: 1000, 2000,

and 3000 s/mm2). For each b-value, 90 diffusion-sensitizing gradients

directions were measured. Additionally, 18 images with no diffusion

weighting (b-values= 0 s/mm2) were obtained. Here, we selected only

a single shell (b-value 1000 s/mm2), since it was more comparable to

the patient dataset described above.

2.3 Diffusion processing and fiber tractography

All DWI scans were processed using ExploreDTI version 4.8.6 (Lee-

mans et al., 2009) running onMATLABR2018a (MATLABandStatistics

Toolbox Release 2018a, The MathWorks, Inc., Natick, MA, USA). Data

were corrected for signal drift (Vos et al., 2017), eddy currents, subject

motion with rotation of the B-matrix (Leemans & Jones, 2009), and

susceptibility distortions (Veraart et al., 2013). The DWI volumes were

nonlinearly registered to the T1 images prior to estimation of the

diffusion tensors. Diffusion tensors were estimated using a robust

method to account for outliers (Tax et al., 2015), and fiber tracts were

reconstructed using deterministic fiber tractography. Seed pointswere

distributed uniformly throughout the whole brain with 2 mm isotropic

resolution. The streamlines were propagated using integration over

fiber orientation distributions (FOD), with a step size of 1 mm. The

orientation distributions were inferred using constrained spherical

deconvolution (CSD) with a maximum harmonic order (l-max) of 6

(Jeurissen et al., 2011). Fiber tracking was terminated when stream-

lines entered a voxel with FOD < .1, or when the deflection angle

between two successive 1 mm steps was > 45◦. When tractography

was concluded, streamlineswith a length outside of the range between

10 and 500mmwere excluded.

2.4 Network definition

Figure 1 illustrates the processing steps for network definition. The

T1-weighted scans were preprocessed using the FMRIB Software

Library (FSL v5.0, Smith et al., 2004) and the Computational Anatomy

Toolbox (CAT12, http://dbm.neuro.uni-jena.de/cat). First, each sub-

ject’s T1 image was skull-stripped using FSL BET (Smith et al., 2004).

Next, the gray matter volume was parcellated into 90 cortical and

subcortical regions of interest (ROIs) using the automated anatomical

labeling (AAL) atlas (Tzourio-Mazoyer et al., 2002). The parcellations

were performed in the native T1 space, with the AAL template being

nonlinearly registered to each subjects T1 image. The parcellated

regions and the tractography data were combined to reconstruct the

whole-brain network. Each ROI represented a node in the network,

and two nodes were considered to be connected when they contained

the end-points of at least one streamline, resulting in a 90 × 90 binary

connectivity matrices. We also computed three weighted three matri-

ces, where the edges were weighted by the number of streamlines

(NOS) connecting the two nodes, the mean diffusivity (MD), and the

fractional anisotropy (FA).

2.5 Network thresholding

Thresholding is frequently applied after network reconstruction,

aiming to reduce the number of false-positive connections. In this

work, we employed the two most common weight-based thresholding

strategies: fixed-density thresholding and absolute thresholding. The

fixed-density approach involved removing the edges with the lowest

http://dbm.neuro.uni-jena.de/cat
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F IGURE 1 Network definition and thresholding. First, the DWI images were reregistered to the T1 and corrected for subject motion and
artefacts. This was followed by fiber tractography and graymatter (GM) parcellation. The tractography image and segmented brain regions were
combined to obtain 90×90 connectivity matrices weighted by fractional anisotropy (FA), mean diffusivity (MD), and number of streamlines (NOS).
The NOSmatrix was used for thresholding. The thresholded networks obtained at each threshold level were subsequently weighted by FA and
MD, and used in further analysis

NOS until an equal density was achieved for all subjects. Network

density is defined as the proportion of actual connections in the

network, relative to all possible connections. For example, when a

network has a density of .15, it means that 15% of all possible con-

nections were detected in that network. To ensure that the networks

did not become disconnected after thresholding we incorporated the

minimal spanning tree (MST), an acyclic subgraph that connects all N

nodes in the network (Tewarie et al., 2015). The MST is computed at

the beginning of the thresholding step by selecting only edges with

the highest NOS unless an edge forms a cycle. When all nodes are

connected, theMST hasN− 1 connections and a density of 2/N (≈.02),

withN being the number of nodes (N= 90 nodes in our case). Using the

MST as a starting point, fixed-density thresholding is applied by adding

more edges to the network (from strongest to weakest weights) until

a certain density is achieved. We varied the density level between

the density of the MST (.02) and the mean density of all unthresh-

olded networks (density = .40) in steps of .01. Note that the stronger

the threshold level, the lower the network density. The absolute
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thresholdingapproach involved removingall edgeswithaweightbelow

an absolute number of streamlines. We varied the absolute threshold

level between 1 and 40 streamlines in steps of 1. In this case, the

stronger the threshold, the higher the number of streamlines removed.

For example, a threshold of 20 streamlines means that that have fewer

than 20 streamlines are removed from the network. This thresholding

method does not ensure that nodes will not become disconnected or

that networks of different subjects will have the same density after

thresholding.

2.6 WMH volume segmentation

WMHhyperintensity volumeswere segmented from the FLAIR images

using and automated pipeline, kNN-TTP (Steenwijk et al., 2013).

2.7 Consistency of network architecture

To examine the consistency of network architecture between

scan and rescan, we focused on characteristics that represent the

building blocks of structural networks, such as edges detected, edge-

weight distribution, and hub-scores (node degree and betweenness

centrality).

2.7.1 Similarity in edges detected

The most direct manner of measuring similarity between networks of

scan and rescan is to overlap the edges detected at both time points.

Using the binary connectivity matrix, we computed the dice similarity

coefficient between edges detected at scan and rescan:

dice =
2 |scan ∩ rescan|
|scan| + |rescan|

Here, |scan ∩ rescan| represent edges in common between the two

scans, whereas |scan| and |rescan| represent unique edges of scan and

rescan, respectively. Thedice coefficient ranges from0 to1,with 0 indi-

cating no overlap and 1 representing a complete overlap between the

two sets of edges.

2.7.2 Similarity in edge-weight

We also evaluatedwhether the edges detected in both scans have sim-

ilar weights, namely the number of streamlines (i.e., the weight used to

determine which edges should be retained or removed). Thus, we first

computed edges in common between scan and rescan and calculated

the agreement in edge-weight using the intraclass correlation coeffi-

cient (ICC) (Shrout & Fleiss, 1979). The ICC was originally created to

assess the reliability of multiple raters measuring the same variable,

but it is also often utilized in network studies to assess the consis-

tency of graph measure over multiple sessions (Andreotti et al., 2014;

Buchanan et al., 2014;Messaritaki et al., 2019):

ICC =
MSb −MSw

MSb + (k − 1)MSw

where MSb is the between-subject variance, MSw represents within-

subject variance, and k is the number of repeated measurements. ICC

values range between 0 and 1 and are typically interpreted as poor

(<.40), fair (.40−.59), good (.60−.74), and excellent (>.75) (Cicchetti,

1994;Wang et al., 2019; Yuan et al., 2019).

2.7.3 Similarity in hub score

Another relevant feature of network architecture is the location of

hub nodes. Hubs are topologically central regions and are positioned

to make strong contributions for global network function (van den

Heuvel & Sporns, 2013). The two most common graph metrics used to

define node importance and to identify hubs are node degree and node

betweenness centrality. Degree refers to the number of connections

that link one node to adjacent nodes. Betweenness centrality is defined

as the fraction of all shortest paths in the network that pass through

a given node (Bullmore & Sporns, 2009). These nodes with high “hub-

score” (i.e., high degree and/or betweenness centrality) contribute to

an efficient communication between distant brain regions. We com-

pared the similarity in hub scores of all nodes between scan and rescan

by computing the ICC of betweenness centrality and ICC of degree.

2.8 Interindividual variation and sensitivity to
changes over time in patients

Here, we examined how thresholding affects the natural interindivid-

ual variation in the data, necessary to test associations with external

variables and perform group comparisons (Bagarinao et al., 2019). We

focused onmetrics such as global efficiency and FA- andMD-weighted

node strength. Global efficiencywas defined as the inverse of the aver-

age shortest path length and quantifies how efficiently information is

exchanged over the network (Rubinov & Sporns, 2010). Node strength

was defined as the average FA orMD of all edges connected to a node.

Clearly, disturbances of these network metrics are not specific to

only SVD. Moreover, a range of other metrics exist. We choose these

particular measures because they are known to be affected by SVD

(Lawrence et al., 2014; Reijmer et al., 2013). Moreover, these metrics

(i.e., lower global efficiency and FA, and a higher MD) are known to

be related to disease burden and progression over time. Patients with

largerWMHvolumes show lower global efficiency and FA, and a higher

MD, and as the disease progresses over time, global efficiency, FA and

MD are expected to decline further (Tuladhar et al., 2020). Therefore,

we also tested among the patients how thresholding affected the

effect size of the difference in diffusion metrics between high and

low disease burden and sensitivity to detect changes over time. The
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F IGURE 2 Correlationmatrix of global efficiency values of different thresholds. (a) First, for each threshold level (T), z-scores of global
efficiencies (GE) were calculated for all subjects (S). Then, to examinewhether the inter-individual variation changes between threshold levels (e.g.,
level 1 and 2), we calculated the Pearson correlation coefficient between global efficiency of those threshold levels (r1,2), resulting correlation
matrix containing correlations between all pairs of threshold levels. (b) Correlation coefficients were calculated for all combination of thresholds,
resulting in a correlationmatrix. Note that this matrix is symmetric since r1,2= r2,1

paragraphs below describe how we evaluated the interindividual

variation of these metrics and sensitivity to detect time and group

effects for different threshold levels.

2.8.1 Assessing interindividual variation

For each threshold level, global efficiency and node strength were

calculated and transformed to z-scores. Follow-up z-scores were

calculated using the mean and standard deviation of baseline. To

assess whether thresholding affects interindividual variation, we

computed a correlation matrix containing Pearson’s correlation coef-

ficients between z-scores of different threshold levels. Figure 2 shows

an example of how this correlation matrix was calculated for global

efficiency (GE). First, global efficiency z-scores were calculated for

each subject (S) and for each threshold level (T). Then, z-scores of one

threshold level were correlated with z-scores of another threshold

level, yielding a correlation coefficient (r). The strength of this correla-

tion indicates whether the interindividual variation in global efficiency

is preserved between threshold levels. In other words, if baseline

scores change between threshold levels, this results in low correlation

coefficients. We calculated r between all combinations thresholds to

fill the correlationmatrix. In thismanner, it is possible to observewhich

threshold levels generate substantially different global efficiency

values. We also computed the same correlation matrix for rate of the

change in global efficiency over time (i.e., baseline minus follow-up),

to understand whether thresholding affects the estimated individual

rate of change over time. Essentially, for a hypothetical subject with a

baseline global efficiency of 1.5×standard deviation (SD) relative to the

group mean, if the interindividual variation is not affected, the same

score should be obtained for that subject when a different threshold

is used. Similarly, if the global efficiency of that subject declined −.5

SD from baseline to follow-up, the same rate of decline should be

observed at different thresholds. The range of thresholds that shows

the highest r values thus represent the thresholds were sensitivity

to interindividual variation is optimal. Differences in follow-up time

between subjects were not adjusted in the analyses, because such

differences only further contribute to interindividual variation and our

intention was to assess that variation.

2.8.2 Assessing changes over time

To examine whether thresholding affects the sensitivity to detect net-

work changes over time in patients, we usedmixedANOVA to compare

baseline versus follow-up global efficiency and node strength. Patients

were stratified into two groups using a median split of WMH volume.

For this analysis, 13patientswere excludeddue to lackof FLAIR images

for the segmentation of WMH, resulting in 73 patients. We evaluated

whether the sensitivity to detect an effect of time (within-subject fac-

tor), effect of group (between-subject factor), and interaction time ×

group is preserved across thresholds.

3 RESULTS

3.1 Consistency of network architecture

Figure 3 shows the effect of thresholding on the consistency of net-

work architecture in patients. In each panel, the first plot contains sim-

ilarity scores for different characteristics of the network architecture,

and the second plot shows the number of nodes that remain in the
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F IGURE 3 Consistency of network architecture between scan and rescan in patients (rescan interval= 22–35months). In each plot,
the x-axis represents the threshold level, with the strength of thresholding increasing from right to left. Note that for the fixed-density approach
the stronger the threshold the lower the density, whereas for the absolute approach, the stronger the threshold, the higher the number of
streamlines removed. The curve in orange under each plot shows the number of nodes that remain in the network after thresholding. The initial
number of nodes for the unthresholded network wasN= 90 nodes. Blue: dice similarity of edges, black: ICC of edge-weights; red: ICC of degree;
green: ICC of betweenness centrality. Themarkers highlight maximum value in each curve, and the shaded areas represent the standard
deviation

network at each threshold level. Quantitate values are shown in Table

S1. Resultswith the reference dataset of controls are shown in the Sup-

porting Information (Figure S1 and Table S2).

3.1.1 Similarity in edges detected

In the patients, the dice similarity of edgeswas .70 before thresholding.

When fixed density thresholding was applied, this score increased

with stronger thresholds (i.e., with lower densities), reaching a maxi-

mum of .76 (at a density = .08, p < .001 compared to unthresholded,

Figure 3a, blue line, Table S1). For densities lower than .08, dice scores

decreased sharply to .67 (density = .02). As expected, the number

of nodes (N = 90) in the network did not change with fixed-density

thresholding. Regarding absolute thresholding, the dice score also

increased with stronger thresholds (i.e., with larger number of stream-

lines removed), from .70 (unthresholded) to a maximum of .76 (#

streamlines removed = 40, p < .001, Figure 3b, blue, Table S1). With

absolute thresholding, the maximum dice score was produced by

the strongest threshold. However, at this threshold level, only 38 of

the initial 90 nodes remained in the network. Overall, these results

indicate that compared to not applying any threshold whatsoever,

thresholding generates a more similar set of edges between scan and

rescan.

In controls, thresholding had a similar effect on dice similarity, albeit

with higher scores than in patients as expected, because of higher qual-

ity scans and absence of pathology (Figure S1A and B, blue, Table S2).

3.1.2 Similarity in edge-weight

The ICC of edge-weight in patients was .71 for unthresholded

networks (Figure 3a, black). After fixed-density thresholding, ICC

scores increased with stronger thresholds to a maximum of .75 (den-

sity = .12, p < .001, Figure 3a, black). When absolute thresholding

was applied, the ICC also increased with stronger thresholds, reaching

a maximum of .76, again at the strongest threshold level (# stream-

lines removed = 40 streamlines, Figure 3b, black, Table S1). These

results indicate that the edges retained after thresholding have more

consistent weight distributions between scan and rescan.
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Similar resultswereobserved in controls, butwith higher ICCscores

(Figure S1).

3.1.3 Similarity in hub score

The ICC degree also increased after thresholding, from .78 (unthresh-

olded) to .83 when fixed-density thresholding was used (density = .08,

p < .001, Figure 3a, red, Table S1), whereas the ICC of betweenness

centrality showed an unstable profile and did not increase significantly

after thresholding (Figure 3a, green). Regarding absolute thresholding,

the ICC degree also increased from .78 to amaximumof .83 (Figure 3b,

red), and ICC-betweenness centrality did not increase with stronger

thresholds.

For controls, the effect of thresholding on hubs scores was analo-

gous (see Figure S1), albeit with higher scores.

3.2 Interindividual variation and sensitivity to
changes over time in patients

The analyses assessing interindividual variation and sensitivity to

changes in global efficiency, MD- and FA-weighted node strength in

patients are shown in Figures 4–6. In each figure, “panel a” contains

spaghetti plots summarizing baseline and follow-up z-scores, as well

as a correlations between baseline and follow-up, within each thresh-

old level. From a biological perspective, these correlations indicate

whether patients maintain their relative position in group from base-

line to follow-up, which would then be reflected in parallel lines in the

spaghetti plots, and strong correlations. “Panel b (left)” shows corre-

lation matrices between baseline values of different threshold levels.

These correlations indicate whether individual patients maintain their

relative baseline scores across different thresholds. Threshold levels

that do not disturb this interindividual variation of baseline scores

should show high correlations. Likewise, “panel b (right)” shows a cor-

relation matrix but for the rate of decline over time across thresh-

olds, indicating whether individual patients maintain the same rate of

decline between thresholds. “Panel c” depicts the sensitivity to detect

time and group effects in patients stratified by WMH volume for dif-

ferent threshold levels. If a statistically significant change over time is

found, this will be reflected in an F-value (time) > critical value. The

magnitude of this effect is given by the Cohen’s d. Similarly, if there is

significant difference between patients with low and high WMH vol-

ume, this group-effect is given by the F-value (group) and correspond-

ing effect size.

Since absolute thresholding produced a large number of discon-

nected nodes, some brain regions got excluded from the analysis, not

allowing us to always evaluate global efficiency over the same network

of 90 nodes. It is well known that global network measures are highly

dependent on the number of nodes (van Wijk et al., 2010). Therefore,

for the analysis regarding the sensitivity to disease effects, we focused

on the fixed-density approach where the size of the network is main-

tained regardless of the threshold level, whereas the results for abso-

lute thresholding are shown in the Supporting Information (Figures

S1–S3).

3.2.1 Global efficiency

Figure 4 shows results for global efficiency. In Figure 4a, the spaghetti

plots indicate that before thresholding there is a clear variation in

global efficiency between subjects, with an apparent decline from

baseline to follow-up. The lines of the subject initially run in par-

allel before thresholding, reflected in high a correlation between

baseline and follow-up scores (r = .81). After thresholding, this vari-

ation of baseline and follow-up scores was maintained (r ≈ .8). The

relation between baseline and follow-up scores was only disturbed

when networks were thresholded to densities < .05, implying that

interindividual differences between subjects is no longer maintained.

In Figure 4b, we quantified whether the interindividual variation

of subjects and the individual rate of change over time are maintained

between different threshold levels. Regarding baseline values (left

matrix), z-scores of global efficiency remained robust between density

thresholds of .40 and .05 (r > .9). In other words, the distance of

each subject to the group mean at baseline was unchanged, as long

as networks were not thresholded to densities below .05. The same

was true for the change over time (right matrix). The individual rate

of change from baseline to follow-up was unaffected for densities

between .40 and .10 (r > .9). Overall, these correlations analyses show

that global efficiency scores of individual subjects do not change after

thresholding (.10< density< .40).

In Figure 4c, we statistically tested whether the apparent decline

over time in global efficacy observed in the spaghetti plots was statis-

tically significant, and whether patients with low WMH differed from

highWMH volume. Before thresholding (density = .40), there was sig-

nificant effect of time (blue curve), indicating a decline in global effi-

ciency from baseline to follow-up (F (1, 72) = 22; p < .01; Cohen’s

d = .29). This decline is in line with previous reports (Tuladhar et al.,

2020). Regarding the group effect (gray curve), patients with larger

WMHvolumeshada significantly lowerglobal efficiency (F (1, 72)=45;

p< .01; Cohen’s d= .4). There was no interaction of time × group, with

both groups of patients declining at the same rate. After threshold-

ing, the sensitivity to detect time and group effects was robust, with F-

values and effect sizes remaining relatively constant for awide range of

densities between .40 and .10. This result indicates that these thresh-

old levels preserve the sensitivity to effects of time and groupobserved

originally before thresholding. The absolute thresholding method

resulted in larger changes on the interindividual variation and sensitiv-

ity do detect time and group effects (Figure S1). Only a narrow range of

thresholds preserved the sensitivity to detect time and group-effects.

3.2.2 MD-weighted node strength

Figure 5 describes the same analysis as Figure 4, but for MD-

weighted node strength. By observing the spaghetti plots on Figure 5a,
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F IGURE 4 Effect of fixed-density thresholding on global efficiency. (a) Spaghetti plots showing baseline and follow-up z-scores for different
threshold levels. The red line represents the group average. The horizontal color bar shows correlations between baseline and follow-up scores for
each threshold level. (b) (Left) Correlationmatrix containing Pearson correlations between baseline global efficiency scores of different threshold
levels. High correlations indicate that the baseline scores are similar between threshold levels. (Right) Correlations between the rate of change
over time obtained at different threshold levels. High correlations indicate that the individual rate of change is similar between threshold levels. (c)
Impact of thresholding on the sensitivity to detect changes over time and group differences in patients stratified byWMHvolume. (Top) F-values
and effect sizes were calculated usingmixed ANOVAwith time as within subject factor and group (low vs. highWMH) as between-subject factor.
Left axis corresponds to F-values and right axis represents the effect sizes for each effect: time (blue), group (gray). (Bottom) Average change over
time in global efficiency for patients with low vs. highWMHvolume. Patients with highWMHhave lower efficiency scores and both groups
declined over time
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F IGURE 5 Effect of fixed-density thresholding onMD-weighted node strength. (a) Baseline and follow-up z-scores for different threshold
levels. The horizontal color bar shows correlations between baseline and follow-up scores within each threshold level. (b) (Left) Correlationmatrix
containing Pearson correlations coefficients between baseline scores of different threshold levels. (Right) Correlations between rate of change
over time obtained at different threshold levels. (c) Impact of thresholding on the sensitivity to detect changes over time and group-differences in
patients stratified byWMHvolume. (Top) F-values and effect sizes for the effect s of time (blue), group (gray), interaction term (orange). (Bottom)
Average change over time inMD-weighted strength for patients with low vs. highWMHvolume
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F IGURE 6 Effect of fixed-density thresholding on FA-weighted node strength. (a) Baseline and follow-up z-scores for different threshold
levels. The horizontal color bar shows correlations between baseline and follow-up scores within each threshold level. (b) (Left) Correlationmatrix
containing Pearson correlations coefficients between baseline scores of different threshold levels. (Right) Correlations between rate of change
over time obtained at different threshold levels. (c) Impact of thresholding on the sensitivity to detect changes over time and group-differences in
patients stratified byWMHvolume. (Top) F-values and effect sizes for the effect s of time (blue), group (gray), interaction term (orange). (Bottom)
Average change over time in FA-weighted strength for patients with low vs. highWMHvolume
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MD appears unchanged from baseline to follow-up on a group

level.

However, the correlationmatrices on Figure 5b reveal that between

a density of .4 and .30, MD scores remain initially unchanged (r > .9,

note the block of high correlations on the bottom right of the matrix).

When stronger thresholds were applied (i.e., when more noisy con-

nections were removed, densities < .30), MD scores obtained at these

threshold levels no longer resemble those obtained for thresholds

between .40 and .30 but did not change further for the remaining

thresholds (r> .9, for densities between .30 and .02).

In Figure 5c, we tested the sensitivity to detect changes over time.

Before thresholding, there was a significant but small effect of time

on MD (F (1, 72) = 12; p < .01; Cohen’s d = .1). The group-effect and

the interaction time × group were not significant. After thresholding,

the sensitivity to detect an effect of time was increased (i.e., larger

F-values) and highest for density thresholds around .12. Note that

these were the threshold levels that also improved the consistency

of network architecture over time. This indicates that removing noisy

connections improves the sensitivity to detect small changes within

individuals over time in local weight-based metrics such as MD.

Absolute thresholding produced larger changes on interindividual

variation, but did not eliminate the sensitivity to effects of time and

group (Figure S2).

3.2.3 FA-weighted node strength

Figure 6 shows the results for FA-weighted node strength. Threshold-

ing appears to have a small effect on the relation between baseline and

follow-up FA values as illustrated by the spaghetti plots and the corre-

lations between baseline and follow-up (Figure 6a).

The correlations matrices (Figure 6b) further show that the

interindividual variation of baseline values (left matrix) remained

robust for all threshold levels between .37 and .02 (r > .90). In other

words, the position of each individual subject relative to the group

mean did not change for thresholds between .37 and .02. The same

result was obtained for the individual rate of change over time (right

matrix).

Figure 6c shows that before thresholding no significant time and

group effects were detected. Thresholding did not improve the sen-

sitivity and effect of time, but did improve the sensitivity do detect a

small effect of group for densities< .30: (F (1, 72)= 5; p< .05; Cohen’s

d= .05).

Again, absolute thresholding caused larger changes on interindivid-

ual variation but also improved the detection group-effects after the

first threshold levels (Figure S2).

4 DISCUSSION

In this work, we evaluated the impact of thresholding on scan–rescan

brain networks of patients with SVD to assess how thresholds that

improve scan–rescan network reproducibility in healthy young sub-

jects affect (1) consistency in network architecture in these patients

over a longer time period and (2) sensitivity to detect biological

effects. Our results indicate that threshold levels that improve the

reproducibility in controls also generate more consistent network

architecture over time in patients. The similarity between scan and

rescan for characteristics such as the location of edges detected, edge-

weights, and hub scores improved after thresholding. We also showed

that the natural interindividual variation in outcome measures used

to assess disease effect is preserved within threshold levels where

the network architecture is consistent. Furthermore, the sensitivity to

detect statistical group differences between patients with low vs. high

WMHburdenwasmaintained.

Preceding our work, several studies had examined the effect of

thresholding on reproducibility of network architecture, including the

binary topology, edges detected, edge-weights, and graph metrics in

healthy, mostly young, controls (Andreotti et al., 2014; Buchanan et al.,

2014; Owen et al., 2013). As expected, our results with controls were

in line with studies that explicitly showed that networks become more

reproducible after thresholding (e.g., Buchanan et al., 2020; Messari-

taki et al., 2019; Roine et al., 2019). In patients where disease effects

are monitored over time, the rescan interval is typically much longer.

Therefore, the same thresholding methods and threshold levels that

are reported to improve reproducibility in controls might not directly

apply. We used SVD as an exemplar condition, because network met-

rics have been shown to be relevant for this disease, but also because

SVD-related brain injury such as white matter hyperintensities, brain

atrophy, and enlarged ventricles can impact the performance of

tractography and network reconstruction. Current fiber tractography

methods do not explicitly account for such factors, which can lead

to erroneous estimations of white matter pathways and presence of

more false positives in the network. Our results with patients show

that the consistency of edges detected and their respective weights

are improved when both thresholding methods are used, suggesting

that the edges removed are noisy connections with a more random

weight distribution (Messaritaki et al., 2019; Zalesky et al., 2016).

Thresholding also improved the ICCof degree,meaning that if wewere

to define hubs nodes based on degree, a more consistent set of hubs

would be detected between scans. Notably, the betweenness central-

ity was less consistent between scans, which could be explained by the

fact that this metric depends not only on edges directly connected to a

specific node but also on edges connected to distant nodes. Since the

betweenness centrality quantifies the proportion shortest paths that

go through given node, removing only one edge (which can be directly

or indirectly connected to that node) can have a large impact on that

shortest path. Thus, the betweenness centrality is more susceptible to

disruptions when edges are removed (Drakesmith et al., 2015; Segarra

& Ribeiro, 2014).

The two thresholding methods had distinct threshold levels to

achieve optimal reproducibility. For the fixed-density approach,

similarity scores improved with decreasing density (i.e., stronger

thresholds), before drastically decreasing for densities < .05. This

reproducibility profile could be explained by the proportion of false

positive at low densities and by the MST (Zalesky et al., 2016). The
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MSTwas incorporated to ensure that networks remain connected and

avoid fragmented nodes. Since, by definition, the MST cannot contain

connections that form cycles, a certain proportion of low-weight

connections (i.e., potential false positives) must be included in order

to keep the network connected, meaning that at very low densities,

the effect of these false positives is stronger. A potential disadvantage

of thresholding networks to fixed-density is that it can lead to con-

founding effects when comparing groups or datasets with different

distributions of edge weights. In a group with higher edge weights,

this would lead to ignoring potentially important edges with strong

weights, while in a group with lower edge weights, this would lead to

including weak or potentially spurious edges (van Wijk et al., 2010).

Regarding the absolute thresholding approach, the similarity scores

increased with mild thresholds (2–5 streamlines). Since this approach

works by removing all connections with a weight below a certain

number of streamlines, only the highest weighted connections survive

when strong thresholds are used. A major downside of this method,

also evident in our dataset, is that it quickly creates fragmented

nodes, which means that some brain regions are no longer part of the

network. Furthermore, differences in brain size or absolute number

of streamlines computed for each subject results in largely different

networks between subjects or over time. Thus, a “one size fits all” type

of threshold is not ideal. For datasets of patients with similar charac-

teristics as those included in this study, we therefore recommend using

fixed-density thresholds between .08 and .20 to achieve optimal net-

work consistency while keeping all network nodes connected. This is

also in line with previous research that estimated the density of struc-

tural connectomes to lie between .05 and .30 (Hagmann et al., 2008;

Roberts et al., 2017). One of the main arguments against thresholding

networks of patients in the attempt to improve network consistency

over repeated scans is that this procedure could remove biological

or disease-related effects (Drakesmith et al., 2015; McColgan et al.,

2018). This concern can be relevant in studies trying to identify disease

effects at the level of subnetwork and/or individual connections,

rather than pathological changes in large-scale brain network topology

(Petersen et al., 2020). In the SVD field, this type of analyses could help

understanding how diffuse and/or focal damage in certain brain areas

affects cognitive function. In those scenarios, applying thresholds

could erroneously cut connections that are affected by pathology.

On the other hand, for global network metrics, it is more desirable to

assess disease effects on networkswith amore consistent scan–rescan

architecture, less affected by noisy connections that can confound

the results. Detection of intraindividual changes over time in patients

is generally one of the more challenging tasks in terms of sensitivity.

Such changes may be detected at a group level, but the individual tra-

jectories of patients tend to get overshadowed by noise if techniques

are insensitive. Therefore, analysis of interindividual variation over

time can be performed with more confidence if networks are voided

of noisy connections. In the second part of our analysis, we show that

the concerns about removal of disease effects by thresholding may

not always be justified. For global efficiency, interindividual variation

of subjects at baseline and their individual rate of change over time

remained robust for fixed-density thresholds > .10. Before thresh-

olding, global efficiency was able to capture significant differences

between patients with low and high WMH volume, which is in line

with previous research where white matter lesion load was associated

with lower global efficiency (Heinen et al., 2018). After fixed-density

thresholding, a wide-range of densities (.40–.10) preserved the sensi-

tivity to detect these disease-related effects, suggesting that changes

in global metrics can be consistently detected over multiple threshold

levels (de Brito Robalo et al., 2020; Drakesmith et al., 2015). Absolute

thresholding had a stronger impact interindividual variation and

sensitivity to time and group effects (see Supporting Information), due

to the fact that this thresholding approach creates disconnected nodes

during, thereby changing the size of the network and disrupting global

networkmetrics (vanWijk et al., 2010).

Regarding MD-weighted node strength, the sensitivity to detect

time effects was improved after thresholding (density ≈ .12). Since

this network metric is based on edge weights, the measurements after

thresholding are obtained over a smaller and more consistent set of

connections, thereby decreasing the standard error and improving

the sensitivity to detect small effect sizes. This hypothesis is also

supported by previous work that examined associations between

edge-weights and age and showed that connections retained in the

network after thresholding were significantly more associated with

age than those removed (Buchanan et al., 2020). FA-weighted node

strength was lower in patients with higher WMH volume but did not

significantly decline over time. These effects were not affected by

thresholding.

Strengths of this work include the use of two distinct datasets, with

differentMRI protocols, different subject groups, and rescan intervals.

In this manner, it was possible to directly test whether thresholds that

improve the reproducibility in high-quality scans with short rescan

intervals also have the same effect on scans of patients, with longer

follow-up intervals. Our study also had some limitations. We analyzed

the effects of thresholding only on network metrics that have shown

association with disease effects in patients with SVD, such global

efficiency and node strength. Thus, our results cannot be directly gen-

eralized to all network measures and all patient populations. Further

investigation on disease effects reflected by other network metrics is

required (e.g., local metrics or disease effects at the level of subnet-

works). Our analysis was focused on the most popular weight-based

thresholding methods that directly remove connections from each

individual network, without the need to create a group-level network

to determine a criterion to remove connections. In this manner, test–

retest consistency of network architecture canbe evaluated on an indi-

vidual basis. Other scan–rescan studies have examined thresholding

approaches that are not based on edge-weights but rather on group-

level consistency and is less biased towards the length of streamlines

(Buchanan et al., 2020; Roberts et al., 2017). Their findings also point

that stringency of threshold can improve network consistency. How-

ever, future work should also analyze how consistency-based thresh-

olding improves group-level consistency of network architecture (e.g.,

across scanners) in similar datasets and whether disease effects are

preserved. Our results could also have been influenced by the choice

of parcellation scheme (Zalesky et al., 2010), tractography algorithm
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(Bastiani et al., 2012), weighting scheme, among other factors. Thus,

these results need to be tested using different network reconstruction

pipelines.

5 CONCLUSION

Our study demonstrates the effects of weight-based thresholding on

longitudinal brain networks of patients with SVD. We showed that

thresholding, particularly with fixed-density approaches, can produce

more consistent network architectures in patients scannedover longer

time periods, while preserving disease-related effects. Our work sheds

a light on how tomake informed decisions when applying thresholds in

studies with a longitudinal design and how such choices can potentially

influence the statistical significance of the results. A good practice

for longitudinal studies that intend to apply weight-based thresholds

would be to first examine which threshold levels generate the most

consistent network architecture over time and then verify if those

threshold levels also preserve the interindividual variation in metrics

that will be used as outcome for the study (e.g., global efficiency).
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