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Abstract

The burgeoning cannabis market requires evidence-based science such that farmers can

quickly and efficiently generate new plants. In part, horticultural operations are limited by the

success of cloning procedures. Here, we measured the role of environmental conditions

and cultivar identity on the success of generating long branch material with many meristems

in planting stock (mothers) and in rooting success of stem-derived clones. To evaluate the

influence of lighting treatments on the optimal production of branching mothers, four lighting

conditions (Fluorescent High Output T5s [T5], Metal halide lamps [MH], Plasma lamps [PL],

or Metal halide lamps augmented with far red LED lights [MH+FR]) were applied to two culti-

vars of container grown plants (Cannabis sativa L. ‘Bubba Kush’, ‘Ghost Train Haze’) grown

in peat-based organic substrates in mylar grow tents. To evaluate the influence of lighting,

cutting tool (secateurs or scalpels), and stem wounding (present/absent) on optimal rooting

of stems, three lighting conditions (Fluorescent T8s, T5, PL) were applied to three cultivars

of peat pellet grown plants (C. sativa L. ‘Bubba Kush’, ‘Ghost Train Haze’, ‘Headband’).

Mothers grown under T5 and MH (vs MH+FR) produced ~30% more meristems. However,

growing mothers under MH+FR were 19% taller than mothers under T5, with ~25% longer

internodes on dominant stems than plants under any other lighting condition. Canopies

were denser under T5 because petiole length was ~30% shorter under T5 and fan leaves

were longer and narrower under MH+FR and MH+FR and PL, respectively, than under

other lighting conditions. Cultivar Ghost Train Haze stems rooted most frequently and most

quickly. Wounded stems were 162% more likely to root than unwounded stems and rooted

1.5 days earlier. Our results will guide producers attempting to maximize the rate of clone

production in licensed facilities; although results may differ among cultivars, where cultivars

differed in their average phenotype as mother plants, and their propensity to root from cut-

tings, and the speed with which they produced those roots.
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Introduction

Cannabis sativa is an annual crop that has been widely cultivated for its fiber, nutritional con-

tent, and medicinal purposes [1,2] and is experiencing rapid growth in the industrial-scale

production and consumption of the plant. A group of terpenes called cannabinoids largely

influence the psychoactive effects of the plant and selective breeding has produced high-

potency marijuana cultivars that serve to supply the majority of cannabinoids consumed glob-

ally. Cannabis is estimated to be a $22.6B industry in Canada [3], and the demand for safe,

consistent, high-quality Cannabis has outstripped supply following legalization. Knowledge of

the environmental conditions and horticulture practices that maximize the Cannabis produc-

tion is limited, with few publications describing evidenced-based practices, although we review

available knowledge next. This emerging market requires evidence-based science, such that

cannabis producers can quickly and efficiently generate new plants. The rate at which new

plants are generated is, in part, limited by the success of cloning procedures. To produce

clones, cultivators harvest stems from mother plants and cut these stems into short sections

(clones) with each section possessing meristems on at least three nodes: one meristem will pro-

duce new roots, the other two may produce leaves. Therefore, the success of clonal propagation

within industrial production facilities is a key determinant in the efficiency of operations.

Here, we explored the influence of cultivar and environmental conditions on stem growth of

mother plants and on rooting success of cuttings subsequently derived from the mother

plants.

Mother plant size and stem architecture determines the number of clones that can be har-

vested from a plant. One of the most influential environmental conditions to affect cannabis

production is lighting [4,5], since light radiation is a key environmental signal that regulates

plant growth [6], morphology [7], and secondary metabolite chemistry [8], and particular

wavelengths of light have very prescriptive responses. For instance, many plants increase inter-

node length as a response to intercepting increased far-red [e.g., 9–11], which could influence

the number of clones that a mother could produce. In contrast, metal halide lights tend to radi-

ate a spectrum which is expected to reduce internode length but may also limit growth. Finally,

plasma lights exhibit more uniform photosynthetic photon flux and better replicate solar spec-

tra, and thus may promote more growth indoors [12]. Modifications to lighting may alter the

physical architecture of mother plants, allowing a single mother to produce more clones.

When restricted to growing indoors, as in the Canadian medical marihuana industry, growers

must provide supplemental light to grow plants and manipulate photoperiods [4,5,13]. How-

ever, there is a dizzying variety of lighting technologies available, with very sparse peer-

reviewed data comparing systems and their impact on cannabis clone growth, development

and yield. In particular, there is little evidenced-based research available on the sensitivity of

cannabis mother plants to lighting environments and the consequences of lighting for clonal

propagation, especially the influence of light source on diverse cultivars grown and across life

stages.

A number of environmental conditions can influence the growth and rooting speed of vege-

tative propagation including humidity [14], temperature [15,16], cutting length, stem thick-

ness [17,18], season [16,18], and the age and health of mother plants [16,19]. Yet, there is little

published data describing the effect of light, cutting method, or spatial arrangement of cuttings

on the success of those cuttings. By modifying the conditions under which clones are collected

and grown, we could increase the number of clones that successful produce roots and the

speed at which they do so. Basal stem wounding when combined with applications of the

auxin IBA (1H-indole- 3-butanoic acid) has been shown to encourage rooting in difficult to

propagate plant populations [14,15,20,21]. Exposure of vascular cambium and secondary
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xylem (i.e., wounding) to the rooting environment can be beneficial by inducing hormonal

changes in plant tissues capable of producing lateral roots [22]. In the propagation of Juniperus
osteosperma or Abies fraseri, wounding apparently enhances rooting when also exposed to aux-

ins (e.g., indole-3-butyric acid, IBA [21]). Importantly, wounding alone does not increase root-

ing ability [16], implying that wounding largely acts to make pericycle cells (which initiate

lateral root formation) more accessible to exogenous applications of auxin. Further, wounding,

in concert with auxin application, has expressed varied results in dicots. Jojoba (Simmond sia-
chinensis) stem cuttings show roots emerging from the entire wound rather than just the base,

although there is no increase in overall success or time to root [20]. Alternatively, Colutea istria
displays increased rooting success and root number when wounded [14]. Some cannabis

growers suggest wounding may be a useful method for enhancing rooting speed in the high-

throughput production of clones.

Finally, managing water stress in soft stem cuttings is essential to encouraging rooting of

clones. Previous studies have revealed that optimal relative humidity conditions for rooting

are species-specific requirements [e.g., 14,23]. If wounding is not imposed, a 45˚ cut maxi-

mizes the contact between tissue surface area with the rooting medium. However, if a tool

damages the stem’s vascular system during the process of making the cut, then a clone will

likely experience water stress regardless of other environmental conditions [24]. Moreover,

vascular tissue may be occluded by microorganisms that are present on the stem or transferred

from cutting surface during the cloning process [25,26]. Notably, we did not encounter studies

comparing the efficacy of cutting tools in the primary literature. We chose to compare two cut-

ting methods to clonally propagate clones from mother plants. Sharp scalpels may cause less

tissue damage than pruning shears, in addition to being easier to clean. In contrast, pruning

shears require less labor and are safer to use.

Our objectives were to identify optimal lighting environments for the productive of moth-

ers and to assess the ideal method for producing rooting stems (clones). We asked:

1. How does lighting condition (fluorescent high output T5s, 1000W metal halide / high pres-

sure sodium lights, metal halide/high pressure sodium lamps augmented with far red LED

lights, or plasma lamps) and genotype (Bubba Kush or Ghost Train Haze) influence the

number and size of clones that a mother plants generate? and,

2. Does rooting success of stem cuttings vary among genotypes (Bubba Kush, Ghost Train

Haze, Headband) and lighting environments (fluorescent T8s, fluorescent high output T5s,

plasma lights)?

Methods and methods

Plant genotypes

Only female plants were used in the following two experiments (the Mother Experiment and

the Cloning Experiment). Two cultivars, Bubba Kush and Ghost Train Haze were included in

both experiments, so that we had the opportunity to measure the response of two genetically

and phenotypically distinct populations to variation in lighting conditions. Bubba Kush pos-

sessed high THC:CBD ratio (THC = 13.1%, CBD <0.05%) and typically flowered in 63 days.

Ghost Train Haze also exhibited a high THC:CBD ratio (THC = 25%, CBD = 0.07%) and typi-

cally flowered in 70–84 days. A third cultivar was included in the cloning experiment only:

Headband also exhibited a high THC:CBD ratio (THC: 17.6%, CBD: 0) and an intermediate

flowering phenology.

Clonal propagation of Cannabis sativa
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Plant culture

Seeds were planted on November 27, 2013 in 25.4cm x 50.8cm black plastic seedling trays with

72-cell inserts and later transplanted (December, 2013) into square nursery pots (8.89cm x

8.89cm x 10.16cm). These plants were transplanted into 7.6L pots in late January, 2014 and

18.9L pots in early April, 2014 to create a population of potential mothers. All plants were

watered and fertilized according to the Tweed standard operating procedures (Tweed Inc.,

City, Canada) and grown under 6400K T5 fluorescent lights until the experiments began. Cul-

tivars Ghost Train Haze and Headband mothers were grown under T5 lighting prior to clon-

ing, while Bubba Kush was maintained under 1000W metal halide lamps.

For the cloning experiment, all clones were taken on the same day, December 10th, 2014. A

single mother plant of each variety produced 244 Ghost Train Haze clones and 288 Headband

clones, ensuring genetic homogeneity of experimental plants. A total of 190 Bubba Kush clones

were taken from three mother plants, one grown from seed for 11 months and two secondary

mothers (i.e., clones of the first mother), both grown for about 7 months.

Branches, 20 cm long, were initially cut from mothers with a pair of pruning shears and

were placed in a solution of 500 ml water and 5 ml of 5% hydrogen peroxide until the

application of treatments described below. Cut clones were stripped of lower fan leaves

using pruning shears, and then were re-cut at a 45˚ angle to a 15cm length. Pruning shears

and scalpels were replaced regularly to ensure they remained sharp. The bottom of each

clone stem was then dipped in #1 Stim Root (Master PlantProd Inc., Brampton, ON, Can-

ada), inserted in a Grow-Tech Flexi-Plug1 with the stem tip approximately 1.5 cm from

the plug base (Quick Plug, South Portland, ME, USA) and placed into a seedling tray. The

trays were covered with 7” Aztec humidity domes with closed vents, and were placed in

their appropriate experimental block on a Hydrofarm seedling heat mat (Hydrofarm, Pet-

aluma, CA, USA) connected to a Jump Start Digital Temperature Controller for Heat

mats (Hydrofarm) set to a temperature of 26˚C. In the production facility, clones gener-

ally produced roots between 5 to 35 days following cloning, depending on the genotype

and environmental conditions.

To create isolated blocks, we used independently HEPA ventilated 2.41m x 1.22m X

2.01m silver mylar grow tents under positive atmospheric pressure, limiting potential

aerial contamination. Each tent contained four 36-cell cloning trays (53.3cm x 27.9cm x

7.6cm) that were paired and spaced two feet apart in the center of a tent for a total of 144

possible clones. Clones were randomly and blindly assigned to a treatment combination,

tray, and location within trays to minimize positional effects within a block and limit

experimenter bias. Clones were watered as needed with a solution of 76L water, a com-

pany-specific 76L nutrient solution, and 340 ml hydrogen peroxide at a pH of ~5.8, and

an EC of ~1.20 mS/cm. On day three, the humidity dome vents were opened. On day six,

the domes were removed for several hours a day, and entirely removed on day 10. Daily

air temperature and relative humidity of three locations within the tent were recorded

and exhaust fans were used to maintain similar environmental conditions across tents.

Additionally, external temperature probes were placed in the base of two clone trays per

tent to measure the approximate root zone temperature.

Treatments imposed during the mother experiment

To determine the influence of lighting environment and cultivar on the production of branch

lengths that were appropriate for producing clones from mother plants, we designed a complete

randomized block experiment where plants of two cultivars (Bubba Kush, Ghost Train Haze)

were randomly assigned to tents that exposed plants to one of four lighting treatments. We
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compared the growth of six vegetative plants per genotype under one of four lighting treatments

(or a total of 144 mother plants): fluorescent high output T5s (6400K), 1000W metal halide /

high pressure sodium lights (1000W), metal halide/high pressure sodium lamps augmented

with far red LED lights (730-735nm Far Red 50W LED Lighting), or plasma lamps (300W) (Fig

1). The photon flux within a tent was measured at multiple sites within a block and was stan-

dardized to within 10 umol/m2/s across all replicates (~104 to 110 umol/m2/s). As per industry

practice, we used a 24-hour photoperiod and raised the lights as plants grew to maintain a stan-

dard height (120cm) of the lights above plants for the duration of the experiment.

Treatments imposed during the cloning experiment

For the experiment that evaluated successful methods for creating clones, we used a random-

ized block design where cutting tool, stem wounding, lighting, and genotype were main effects

Fig 1. Schematic of experiments to quantify the effect of lighting and genotype used on the growth and morphology of Cannabis mothers. A) Blue, red, purple and

green rectangles represent the plasma, T5, Metal Halide and Metal Halide tents, respectively. White squares within each tent represent the approximate size and

placement of lamp fixtures. B) Plant layout within each experimental tent.

https://doi.org/10.1371/journal.pone.0213434.g001
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with two replicates per combination (Fig 2), with ~12 stems per genotype by cutting tool by

wounding treatment combination or 836 clones involved. To determine if the cutting tool

influenced rooting success, branches were cut into clones (that were 15cm long) with either a

disposable scalpel or with pruning shears. To determine whether clones that had experi-

enced wounding were more likely to produce roots, half of the clones were wounded by

removing epidermal tissue from the bottom 5cm of a clone’s stem by scraping a scalpel

parallel to the stem surface. Three lighting treatments were considered in our design. We

compared the rooting behaviour of clones under Fluorescent T8s (3200K), Fluorescent

High Output T5s (6400K), and 300W plasma lights. The photon flux within a tent was

measured at multiple sites within a block and was standardized to within 10 umol/m2/s

across all replicates (~104 to 110 umol/m2/s). As per industry practice, we used a 24-hour

photoperiod. Since the height of the clones did not change by more than several centime-

ters over the course of the experiment, the lights remained the same distance from the

clones for the duration of the experiment.

Data collection

In the mother experiment, before the experiment started and weekly thereafter, we assessed a

variety of morphological characteristics of each plant prior to the start of the experiment and

at the end of the experiment (week 4). The amount of nutrients leaching from each plant (EC)

and the soil pH were measured. For leachate testing, we watered each plant with 1L of water,

waited an hour and added 1.5L of water, collecting all of the leachate from the second watering

Fig 2. Schematic of experiments to quantify the effect of lighting, stem scarring, and tool used on the rooting probability and timing of Cannabis clones. A) Blue,

red, and yellow rectangles represent the plasma, T5, and T8 tents respectively. White squares within each tent represent the approximate size and placement of lamp

fixtures. B) Tray layout within each experimental tent; black X—air temperature/humidity probe, white X- seedling heating mat thermostat probe C) Experimental

procedure. Cuttings were taken using either secateurs or a scalpel and were randomly allocated to a tray position in a lighting treatments replicate.

https://doi.org/10.1371/journal.pone.0213434.g002
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using a funnel and a clean container. We then used an EC/pH meter (Hanna Instruments

98129 pH/Conductivity/TDS combo pen) to measure the characteristics of the leachate. All

equipment was rinsed using pure water before re-use.

On each plant, we measured key morphological features to predict clonal yield and

robustness of plants for the mother experiment (S1 Fig). We measured the height of each

plant from the first node to the tallest apical meristem and the stem diameter (one mea-

surement at the base of the plant and one measurement at 10cm above the base of the

plant; VWR calipers #36934–154, accuracy: +/- 0.2mm, resolution: 0.1mm). We counted

the number of apical and lateral meristems. We measured the length of all lateral branches

derived from the shortest and the tallest upright branches. On each individual, we mea-

sured the length of all internodes on the tallest and shortest upright branches. Because leaf

area is both responsive to light quality and important for photosynthetic assimilation, we

also measured the morphological consequences of light on leaf shape. On three haphaz-

ardly selected petioles, the length of the petiole was assessed. We measured the width of

the three largest fan leaf blades at the widest point, the width of the widest point of leaflets

of these same three leaves.

In the cloning experiment, to determine date of rooting, Flexi-Plugs were checked for emer-

gent roots from day 7 to 26 (S2 Fig). Rooted clones were marked, and left untouched for the

remaining duration of the experiment.

Data analyses

To determine whether lighting treatment or cultivar (and their interaction) influenced the

branch lengths, we ran a multivariate ANOVA in SPSS (IBM SPSS Statistics for Citrix, Version

24.0. Armonk, NY: IBM Corp.) on 16 measurements collected in the fourth week of the

mother experiment (EC, pH, number of meristems, number of apical meristems, number of

lateral meristems, plant height, average length of internodes on the tallest and shortest stem,

petiole length, fan leaf width, length and width of the largest leaflet, stem diameter at the base

of the plant and at 10 cm above the soil surface, length of the longest lateral branch on the tal-

lest stem, length of the longest lateral branch on the shortest stem. Before MANOVA analysis,

we z-transformed all data (S1 Dataset; transformed data are available from OSF database at:

https://osf.io/qdnkh/?view_only=237af5bf977148b4b60e599caec74159). If a main effect was

significant, a priori contrasts were then performed to determine differences among lighting

conditions (all pair-wise comparisons) and cultivars.

Before running analyses on clones, we removed two plants with broken stems from the

cloning dataset, because this early experience may affect their likelihood of rooting. To deter-

mine whether lighting, cultivar, position within tray, wounding, or cutting tool would affect

the likelihood of rooting, we ran a nested mixed model logistic regression using the glmer

function in lme4 in R [27] where the binary response variable was rooting status (yes or no, see

S1 Code). After running the full model, several main effects (and their interactions) with non-

significant effects were removed from the model (light, cutting tool, position within tray, num-

ber of fan leaves). The final model was: Rooting status ~ Intercept + Cultivar + Wound +

Cultivar × Wound + Tray within Tent + Tent within Light + Error.

With the 520 clones that rooted, we then assessed the influence of lighting, genotype,

wounding or cutting tool on the timing of rooting using a GLM ANOVA in SPSS, controlling

for the number of fan leaves. Again, the full model failed due to lack of degrees of freedom.

After removing the genotype x lighting x wounding x cutting tool interaction, there were

enough degrees of freedom for the model to perform as expected. All non-significant interac-

tions that were subsequently detected were also removed from the model; we found no

Clonal propagation of Cannabis sativa

PLOS ONE | https://doi.org/10.1371/journal.pone.0213434 March 18, 2019 7 / 15

https://osf.io/qdnkh/?view_only=237af5bf977148b4b60e599caec74159
https://doi.org/10.1371/journal.pone.0213434


significant effect of several main effects (lighting, cutting tool, number of fan leaves) and

removed them (and their interactions) from the ANOVA.

Results

Which lighting condition maximizes the number and size of clones that a

mother generated?

By the fourth week of the experiment, the mother phenotype differentially responded to light-

ing conditions (MANOVA: F39,192 = 3.68, P<0.001) and genotype (MANOVA: F13,62 = 31.25,

P<0.001) and their interaction was marginally significant (MANOVA: F39,192 = 1.34,

Fig 3. Comparison of nine key traits to predict clonal yield and robustness of “mother” Cannabis sativa plants grown under one of four lighting treatments.

Lighting treatments included T5 fluorescent bulbs, metal halide lamps (MH), metal halide lamps augmented with far red LEDs (MH + FR LED), and Plasma lamps.

Averages represent trait means of 48 mother plants from two cultivars (White = Bubba Kush, Black = Ghost Train Haze); error bars represent the SE of the mean.

https://doi.org/10.1371/journal.pone.0213434.g003
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P = 0.10). Specifically, plants grown under T5 and metal halide lamps produced more meri-

stems (both apical and lateral) than plants grown under metal halide lamps augmented with

far red spectra (See Fig 3; See Table 1 for tests of between-subject effects of the MANOVA

described earlier). However, plants grown under metal halide lamps augmented with far-red

spectra grew taller than plants grown under T5 bulbs and longer internodes on dominant

stems than plants grown under any other lighting condition. Plants grown under metal halide

lamps produced significantly shorter internodes on lateral branches than plants grown under

other lighting treatments. Leaf morphology also changed in response to lighting conditions.

Petiole length was ~30% shorter under T5 lamps, making the canopy denser, than under other

lighting conditions. Further, fan leaves were narrower under metal halide lamps augmented

with far-red spectra. Finally, leaflets were longest under metal halide lamps augmented with

far-red spectra and plasma lights.

Predictably, cultivars differed in their plant architecture (Table 1, Fig 3). In particular,

Ghost Train Haze produced 20% more meristems (apical and lateral), grew 35.5% taller, and

exhibited 12% longer internodes than Bubba Kush. Further, Ghost Train Haze exhibited a

denser canopy with 15% shorter petioles, 18% wider and 28% longer leaves than Bubba Kush.

We did not detect any significant genotype by lighting environment interactions for any mea-

sured trait (Table 1).

Does rooting vary among genotypes and environments?

Cultivars differed significantly in the tendency for cut stems to produce roots and the speed

with which they rooted (Table 2). Of the cultivars we tested, Ghost Train Haze rooted most fre-

quently and most quickly (Fig 4). Stem wounding improved rooting success (Table 2) such

that wounded plants were 162% more likely to root than unwounded stems and rooted 1.5

days earlier (Fig 4). There was no significant interaction of cultivar and wounding for the

Table 1. A comparison of key traits to predict clonal yield and robustness of “mother” Cannabis sativa plants grown under one of four lighting treatments from

one of two cultivars (genotype).

Dependent Variable (transformed to z-scores) R2 Lighting (L) Genotype (G) L x G

df F df F df F

No. Meristems 0.26 3,75 4.34 1,75 8.55 3,75 2.13+

No. Apical Meristems 0.22 3,75 4.52 1,75 8.10 3,75 0.24

No. Lateral Meristems 0.25 3,75 3.84 1,75 7.65 3,75 2.34+

Height 0.65 3,75 5.16 1,75 112.12 3,75 0.58

Avg. Length of Internodes on Tallest Stem 0.34 3,75 6.89 1,75 9.51 3,75 1.82

Avg. Length of Internodes on Shortest Stem 0.09 3,75 1.79 1,75 1.20 3,75 0.15

Avg. Length of Internodes on Lateral Branches on Tallest Stem 0.09 3,75 1.91 1,75 0.13 3,75 0.52

Avg. Length of Internodes on Lateral Branches on Shortest Stem 0.13 3,75 1.89 1,75 5.01 3,75 0.07

Petiole Length 0.37 3,75 9.78 1,75 9.15 3,75 1.95

Width of Fan leaf 0.35 3,75 3.34 1,75 27.63 3,75 1.90

Length of Largest Leaflet 0.69 3,75 8.13 1,75 131.37 3,75 0.27

Width of Largest Leaflet 0.17 3,75 2.44+ 1,75 3.37+ 3,75 1.43

Stem diameter at base 0.10 3,75 0.86 1,75 0.50 3,75 1.65

Stem diameter 10 cm above base 0.10 3,75 1.22 1,75 3.75+ 3,75 0.10

We performed a multivariate ANOVA for each trait (transformed z-scores) for two cultivars (Bubba Kush, Ghost Train Haze). Plants were exposed to one of four

lighting environments: Lighting treatments included T5 fluorescent bulbs, metal halide lamps (MH), metal halide lamps augmented with far red LEDs (MH + FR LED),

and Plasma lamps. F-statistics are presented to indicate significant differences: not bold type, P > 0.10

+, P < 0.10; bolded type, P < 0.05.

https://doi.org/10.1371/journal.pone.0213434.t001
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tendency to root (Table 2A); however, there was a significant interaction for days to rooting

(Table 2B). Specifically, days to rooting for Headband was unresponsive to wounding treat-

ment, whereas days to rooting was shortened for Bubba Kush and Ghost Train Haze when

wounding was applied (Fig 4).

Substrate EC and pH

EC did not change significantly among genotypes nor lighting conditions (nor their interac-

tion; Table 1). Similarly, pH did not change significantly among genotypes nor the interaction

of lighting and genotype but there were significant differences among lighting treatments in

the fourth week of data measurements (end of the mother experiment) for pH (Table 1). pH

was ~0.48 units lower in pots grown under metal halide lamps that supplemented with Far

Red LED lighting than in pots grown under T5 lights.

Fig 4. Response of clonal rooting to environmental and genetic context. A) Frequency of cuttings that produced roots for three cultivars (A: Bubba Kush, B: Ghost

Train Haze, C: Headband), depending on whether stem cuttings were wounded (1) or not (0). B) Average number of days until stem cuttings produced roots for three

cultivars and experimental wounding.

https://doi.org/10.1371/journal.pone.0213434.g004

Table 2. Logistic regression analysis of A) rooting success and B) date of rooting across three cultivars (Bubba

Kush, Ghost Train Haze, Headband) that either experienced stem wounding or not during the generation of

clones.

Factor df F-value P-value

A Cultivar (C) 2,2 25.26 0.038

Wounding (W) 1,2 102.4048 0.010

C x W 2,715 0.0474 0.95

B Cultivar (C) 2,2 42.9801 0.023

Wounding (W) 1,2 46.6819 0.021

C x W 2,512 5.5421 0.0042

Cultivar interactions with Wounding were included to evaluate the degree to which genotype effects were context-

dependent. The Generalized linear mixed model fit by maximum likelihood also accounted for the variance

associated with tray nested within tent.

https://doi.org/10.1371/journal.pone.0213434.t002
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Discussion

Adjustments in lighting environments for mother plants generally produced either plants with

many more meristems (T5 and MH, ~160 meristems) but short internode lengths (~23 mm)

or fewer meristems (~124 meristems) with longer internodes (MH+FR; ~29mm), revealing a

life-history trade-off that will influence production of clones. Notably, one cultivar (i.e., Ghost

Train Haze) would be easier to use as a source of clones because it produces more meristems

and longer internodes and stem cuttings were more likely to root quickly than the other culti-

vars. Importantly, we did not detect any reaction norms (because there were no significant

genotype by lighting environment interactions) suggesting that these C. sativa genotypes may

already be selected for “stable” cultivated genotypes. Finally, the production of adventitious

roots in stem cuttings appears to be positively influenced by stem wounding but not influenced

by lighting condition or cutting tool. These results suggest that clonal propagation of cannabis

may be increased by wounding stem cuttings and may be influenced by diverse lighting condi-

tions for mother plants, depending upon the desired morphological outcome. Specifically, if

the grower is aiming for many meristems on mother plants, we recommend using either T5

fluorescent or metal halide lighting, whereas if a grower’s goal is long internodes, then we rec-

ommend using metal halide lighting augmented with far red LEDs.

Within a cannabis operation, mother plants serve as a source of stem cuttings to propagate

the next crop of harvested plants. As such, an ideal plant and cultivar would possess large

quantities of meristems and reasonably long internodes (~40–80 mm) such that a single cut-

ting would be composed of three nodes and two internodes of ~75 mm each. Finally, because

leaf area influences photosynthetic assimilation rates, the leaves of an ideal mother plant

would be relatively unresponsive to shifts in light. As predicted based on other studies of pho-

tomorphogenic responses [summarized in 28], the four light spectra had a strong influence on

plant architecture but revealed a trade-off between number of meristems and length of inter-

nodes. Under far red LED lighting, internodes were stretched to 29 mm and ranged between

5–93 mm, depending on the plant, genotype, and lighting condition. Under MH+FR, ~5 inter-

nodes (6 nodes) would be needed to create a stem cutting 15 cm long whereas under T5s, 6

internodes and 7 nodes would create a 15cm stem cutting. Therefore, under T5 lighting, plants

would create 22 stem cuttings, whereas under MH+FR lighting, a plant would produce 20

stem cuttings that were 15 cm long, if almost the entire plant was useable. Since the difference

among lighting conditions is negligible for the volume of clones produced, selection of lighting

is perhaps best decided by a grower’s preference of clone morphology, either relatively long or

short internodes. One of this study’s intentions was to elongate the internodes (length of stem

between leaves/lateral branches), and although changing lighting conditions to metal halide

augmented with Far Red LEDs (relative to all other lighting treatments) lengthened internodes

in statistically significant ways, the increase is still perhaps industrially insignificant ways given

the trade-off detected.

It is difficult to attribute plant morphogenic responses to specific physiological pathways

mediated by the light environment in this experiment, because the light spectra used differed

in many ways. However, there has been extensive research on two conspicuous characteristics

that differ among light environments. Although they have been reviewed elsewhere [e.g., 29],

we briefly mention them here. First, plants grown under altered red to far red light ratios are

generally taller with longer petioles, and invest relatively more dry biomass in the stem, at the

cost of partitioning dry biomass to the leaves [30]. Second, sun-leaves (with smaller leaf area

and a high photosynthetic capacity) develop when exposed to a greater blue light fraction, or a

higher absolute amount of blue light [31–33]. However, it is difficult to draw reliable conclu-

sions on the mechanisms underlying the responses of the plants grown under the various
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spectra used in this study because of the interaction of blue light fraction, R:FR ratio, and other

differences in the spectrum.

More dramatically, cultivar selection will influence the rate of clone production, since geno-

type had such a significant impact on both the number of stem cuttings available and their rate

of rooting. High demographic recruitment rates in other, naturally clonal species are main-

tained by both high rates of clonal propagation and low variance among genotypes in clonal

recruitment [34]. Growth rates commonly differ among genotypes in many plant species

[35,36]. Importantly, many plant species have shown genotypic differences in plant architec-

ture and physiology in response to environmental variation, including visible spectra [4,37].

Thus, choosing cultivars that show aggressive growth rates and that tend to naturally have lon-

ger internodes may improve yield of clones from mothers. However, this is rarely the single

most important consideration for cultivar selection in a licensed facility. Futher, we failed to

find any significant genotype by environment effects for any trait, which taken together sug-

gests that for these cultivars, a genotype’s ability to exhibit plasticity in growth form in the face

of different environmental conditions is not genetically determined [38]. This may be a result

of repeated informal selection by growers for “stable” genotypes.

Like several other crops where one sex is economically important (e.g., jojoba, fibre hemp,

asparagus), it is important to be able to quickly clone plants to increase productivity and

reduce variability in crop performance [20,39,40] and strategies for improving the efficiency of

clonal propagation have been studied for a century [41]. While clonal propagation is widely

used, specific methods used vary considerably, along with degree of success. Several studies

report both increased rooting and number of roots, when plant stems are wounded, and our

results are consistent with this [20,42]. Cannabis sativa has been regularly vegetatively propa-

gated [8,43] and various cultural strategies improve rooting success of stem segments includ-

ing the use of IBA. Although the mechanisms behind how wounding would serve to increase

adventitious root formation is unknown in C. sativa, it appears as though wounding can result

in the release of polyphenol oxidase or jasmonic acid in other plants, chemicals that support

rapid root growth (sometimes via shuttling sugars, for instance to the sites of growth [44,45].

Similar to a recent study which tested the effect of leaf number [43], we also noted no signifi-

cant effect of this variable. However, our study adds wounding as a successful strategy to the

horticultural toolbox of a Cannabis propagator.

In summary, we found that some cultivars possess more traits that make it easier for har-

vesting stem cuttings and light can augment their plant architecture for the purposes of clonal

propagation in C. sativa. These differences were expressed as changes in the number of meri-

stems and internodes. Further, our data is the first the reveal the tendency for cannabis stem

cuttings to produce adventitious roots is driven both by genotype and stem wounding

practices.
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