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Abstract: Mesenchymal stromal cells (MSCs) can generate immunological tolerance due to their
regulatory activity in many immune cells. Extracellular vesicles (EVs) release is a pivotal mechanism
by which MSCs exert their actions. In this study, we evaluate whether mesenchymal stromal cell
extracellular vesicles (MSC-EVs) can modulate T cell response. MSCs were expanded and EVs were
obtained by differential ultracentrifugation of the supernatant. The incorporation of MSC-EVs by
T cells was detected by confocal microscopy. Expression of surface markers was detected by flow
cytometry or CytoFLEX and cytokines were detected by RT-PCR, FACS and confocal microscopy
and a miRNA PCR array was performed. We demonstrated that MSC-EVs were incorporated by
lymphocytes in vitro and decreased T cell proliferation and Th1 differentiation. Interestingly, in Th1
polarization, MSC-EVs increased Foxp3 expression and generated a subpopulation of IFN-γ+/Foxp3+T
cells with suppressive capacity. A differential expression profile of miRNAs in MSC-EVs-treated
Th1 cells was seen, and also a modulation of one of their target genes, TGFbR2. MSC-EVs altered
the metabolism of Th1-differentiated T cells, suggesting the involvement of the TGF-β pathway in this
metabolic modulation. The addition of MSC-EVs in vivo, in an OVA immunization model, generated
cells Foxp3+. Thus, our findings suggest that MSC-EVs are able to specifically modulate activated T
cells at an alternative regulatory profile by miRNAs and metabolism shifting.

Keywords: mesenchymal stromal cells; extracellular vesicles; Th1 polarization; miRNA; metabolism

1. Introduction

Mesenchymal stromal cells (MSCs) are adherent cells, capable of proliferating and differentiating
in mature cells of mesenchymal lines [1] and expressing CD73, CD90, CD105 [2]. MSCs exert
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different biologic functions, which include, besides cell differentiation in multiple lines, tissue repair
and immunosuppression. MSCs can modulate innate cells such as monocytes and macrophages,
DCs and NK cells [3] and cells of the adaptive immune system, preventing the proliferation of CD4+

and CD8+ T cells and B cells. The effect of MSCs on T cells modulation is more widely studied.
These cells suppress the proliferation of CD4+ and CD8+ naïve and memory T cells [4,5]. The presence
of MSCs in lymphocyte culture may also lead to increase of regulatory T cell subpopulations (Treg) [6–9],
a subtype essential for the suppression of immune response and tolerance induction [10]. Studies that
pursue to identify the mechanisms by which MSCs exert their regulation suggest that the paracrine
effect is more important than cell-cell contact, being the main mediator of this action [3]. In this
context, the release of soluble factors with immunomodulatory properties, such as HGF [11], TGF-β [7],
IL-10 [12], prostaglandin-E2 (PGE2) [13], indoleamine-2,3-dioxygenase (IDO) [14], has been identified as
responsible for the effects of MSCs in several studies. Recently, nevertheless, the release of extracellular
vesicles (EVs) by these cells has been demonstrated as an alternative mechanism by which MSCs
perform their biologic effects [15].

EVs include several particles which are classified according to their origin and size. Exosomes
are small particles (40 to 100 nm in diameter), derived from the endocytic pathway, released through
the fusion of multivesicular bodies (MVBs) with the cell membrane [16]. Microvesicles (MVs) are larger
particles (50 to 1000 nm in diameter) and more heterogeneous, originating from the direct budding
of the plasma membrane [17]. Apoptotic bodies and oncosomes are vesicles of larger size (>1 µm).
Apoptotic bodies are released after apoptotic cells fragmentation [18], while oncosomes are produced
by the membrane protrusion of malignant cells [19]. More recently, a new subtype has been identified,
the exomeres, with approximately 35 nm, these particles are enriched of proteins involved in cell
metabolism [20]. EVs contain proteins, RNAs and miRNAs, DNAs and lipids that can be transferred
to target cells. The composition of EVs may change according to tissue and cell type of origin, as well
as their physiological status [21]. Once captured by the target cells, EVs can release their contents
into the cytosol, being the transfer of active biomolecules the most responsible for their biologic effect.
Hence, EVs are able to modify or reprogram the recipient cells.

In this sense, like the cells of origin, mesenchymal stromal cell extracellular vesicles (MSC-EVs)
have been widely studied as a therapeutic option for different diseases. It was shown that MSC-EVs
contains different mRNAs and miRNAs that can be transferred to other cells [22,23]. mRNAs involved
in the control of transcription, proliferation and immunoregulation [22,23] have already been
identified in these EVs, as well as miRNAs involved in the development of multiple organs, cell
survival and differentiation. An important group of miRNAs associated with the regulation of
the immune system was also found [24]. It was observed that MSC-EVs administration reduce
inflammation, primarily by reducing infiltration of inflammatory cells as macrophages [25], leukocytes
and neutrophils [26]. In a recent study, our group showed the capacity of MSC-EVs in modulate
activated macrophages using a model of thioglycolate-induced peritonitis. The treatment with
MSC-EVs decreased the macrophages infiltration and increased M2 polarization [27].

In this present study, we hypothesized that MSC-EVs are able to modulate immune cells, especially
lymphocytes, leading to a regulatory profile and generating a condition of immunological tolerance
that may be beneficial in cases of different inflammatory diseases. Therefore, we demonstrated
that MSC-EVs were able to modulate lymphocytes proliferation and Th1 differentiation, leading to
an alternative regulatory profile. This modulation was controlled by changing in miRNA profile and T
cell metabolism, associated to the regulation of TGF-β pathway.

2. Materials and Methods

2.1. Animals

All animal experiments were carried out in the vivarium of Federal University of São Paulo
(UNIFESP) in accordance with Federal Law 6638 of 1979, which regulates the use of animals in
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scientific experimentation, under approval of the Research Ethics Committee of the UNIFESP (CEUA
9031100214) and Instituto Butantan (CEUAIB 5954100918). Eight-to-nine-week C57BL/6 wild-type
and Foxp3-GFP knock-in mice were obtained from the Center for the Development of Experimental
Models for Medicine and Biology—CEDEME of the Federal University of São Paulo—UNIFESP being
kept with light/dark artificial cycle of 12 h, at a constant temperature of 22 ◦C. Autoclaved water
and food were supplied ad libitum.

2.2. Isolation and Characterization of MSC-EVs

MSCs were isolated from the adipose tissue of C57BL/6 mice and maintained in DMEM low-glucose,
10% fetal bovine serum (FBS) (Hyclone), 100-U/mL penicillin and streptomycin (Gibco). Cells were
incubated at 37 ◦C in a humidified atmosphere with 5% CO2. Cultures with passages between 15 to
20 at confluence of 90% had its media substituted for DMEM low glucose without FBS and further,
the supernatant was collected after 48 h. To obtain EVs, these supernatants were pre-centrifuged
at 2000× g for 20 min at 4 ◦C, to exclude larger particles and cellular debris, and then ultracentrifuged
at 100,000× g for 2 h at 4 ◦C. After ultracentrifugation, MSC-EVs were resuspended in PBS and stored
at −80 ◦C. Characterization of EVs was done according to “Minimal Information for Studies of
Extracellular Vesicles” (MISEV) [28,29]. To determine EVs concentration, MSC-EVs were diluted 500X
and visualized and characterized for size, distribution and concentration using the Nanoparticles
tracking analyses (NTA) (Malvern, UK) and Zetasizer (Malvern, UK) systems. MSC-EVs were labeled
with surface molecules expressed by EVs (CD9—clone: KMC8—and annexin—BD catalog 51-65874X)
and MSCs (CD45 clone: 30-F11, CD90 clone: G7, CD73 clone: TY-23, CD105 clone: MJ7/18) with specific
antibodies and analyzed by flow cytometry and CytoFLEX (Beckman Coulter) and the CytExpert
software (Beckman Coulter).

2.3. Scanning Electron Microscopy (SEM)

MSCs were plated in glass coverslips in 24 wells plate and after they reached 60% of confluence
the cells were washed and added media without FBS. After 48 h, cells were fixed in a 2.5% glutaraldehyde
solution as reported elsewhere [30]. The cells were post fixed with osmium tetroxide, treated with
tannic acid, and dehydrated with ethanol. Samples were observed in a Field Emission FEI Quanta 250
FEG scanning electron microscope (FEI, OR, USA).

2.4. Transmission Electronic Microscopy (TEM)

After ultracentrifugation, MSC-EVs were resuspended in a 2% paraformaldehyde solution.
The particles suspension was dripped onto carbon-coated electron microscopy screens and adsorbed
for 20 min. The screens were fixed with glutaraldehyde 1% and washed with deionized water.
Subsequently, the screens were contrasted with uranyl acetate for 10 min and rinsed again with distilled
water and air dried. The images were acquired and observed in a JEOL 1200 EX II transmission electron
microscope at 80 kV.

2.5. Detection and Incorporation of EVs

MSC-EVs were labeled with the fluorescent red dye PKH26 (Sigma) following the manufacturer’s
instructions and subjected to ultracentrifugation for the washes required to remove excess of dye.
Labeled EVs were added to the culture of naive CD4+ T lymphocytes purified by FACS sorting
(FacsAria-BD) and activated with anti-CD3 (BD—clone145-2C11) and anti-CD28 (BD—clone 37.51) for
evaluation of the internalization through the imaging by confocal microscopy (Zeiss LSM 780-NLO).
Lymphocytes were monitored overnight for approximately 15 h.
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2.6. T Cell Isolation and Total Splenocytes Proliferation

T cells were isolated from the spleen of C57BL/6 mice and maintained in RPMI medium (Gibco)
supplemented with 10% FBS (Hyclone), 100-U/mL penicillin and streptomycin (Gibco), 1% L-glutamine
(Gibco), 1% MEM non-essential amino acids, 1% MEM vitamins (Gibco), 1% pyruvate (Gibco),
0,1% B-mercaptoethanol (Gibco) (complete RPMI). To obtain naive CD4+ T cells, total splenocytes
were labeled with antibodies to CD4 (clone RM4-5), CD62L (clone MEL-14) and CD44 (Clone IM7)
and purified by FACS sorting (FacsAria-BD) (CD4+ CD44low-interm CD62L+). For proliferation assays,
total splenocytes were labeled with CellTrace Violet reagent (Life Technologies) and plated (2 × 105

cells/well) in 96-well flat bottom plates in the presence of soluble anti-CD3 (1 µg/mL) (BD). MSC-EVs
were added on day 0 and after 48 h (109 particles/dose). After 72 h in culture, cells were collected
and labeled with the live/dead (Life Technologies) marker and the anti-CD4 antibody for evaluation of
the proliferation by FACS.

2.7. Differentiation of Naive CD4+ Cells

Naive CD4+ T cells were isolated by FACS sorting and plated (2 × 105 cells/well) in 96-well flat
bottom plates in the presence of coated anti-CD3 (2 µg/mL) (BD) and soluble anti-CD28 (1 µg/mL)
(BD). For the Th0 control, no cytokines were added. For Th1 differentiation, IFN-γ (PeproTech,
10 ng/mL), IL-12 (PeproTech, 10 ng/mL) and anti-IL-4 (BD-clone 11B11) (10 µg/mL) were added.
For Th17 polarization, IL-6 (Peprotech,10 ng/mL), TGF-β (R&D, 5 ng/mL), IL-23 (R&D, 10 ng/mL),
anti-IFN-γ (BD—clone XMG1.2) (10 µg/mL), anti-IL-12 p40/p70 (BD—clone C17.8) (10 µg/mL), anti-IL-4
(BD—clone 11B11) (10 µg/mL) were added. For Tregs differentiation, TGF-β (R&D, 5 ng/mL), IL2
(Roche, 1 ng/mL) and anti-IFN-γ (10 µg/mL), anti-IL-12p40/p70 (10 µg/mL), anti-IL-4 (10 µg/mL)
were added. To assess the direct effect on Tregs, Foxp3-GFP cells were purified by FACS sorting
and maintained in culture in the presence of IL-2 (50 U/mL). For all the conditions, MSC-EVs were
added at day 0 and after 48 h (approximately 109 particles/dose). After 5 days, the populations of
Th1, Th17 and Treg cells were analyzed by FACS (after a live/dead and CD4+ gate) according to
the expression of IFN-γ (clone XMG1.2), IL-17 (clone TC11-18H10.1) and Foxp3 (clone MRRF-30),
respectively. Th1-differentiated cells were also evaluated by confocal microscopy (Zeiss LSM 780-NLO)
after labeling with anti-Foxp3 and anti-IFN-γ antibodies. Cell cultures were maintained at 37 ◦C with
5% CO2 in a humidified incubator.

2.8. Tregs Suppression Assay

Total splenocytes were labeled with CellTrace Violet reagent and plated (75 × 103/well) in a 96-well
plate. Cells obtained after differentiation for Th1, with or without MSC-EVs treatment were co-cultured
in the ratios 2:1 (150 × 103 cells/well), 1:1, 1:2, 1:4 and 1:8. Proliferation was stimulated with soluble
anti-CD3 (1 µg/mL). As suppression control, sorting purified Tregs cells (Foxp3+) were used in the same
ratios. Cells were maintained in complete RPMI medium for 72 h at 37 ◦C with 5% CO2 in humidified
incubator. After this time, cells were collected and labeled with live/dead dye (Life Technologies)
and anti-CD4 (clone RM4-5) and anti-CD8 (clone 37.51) antibodies for proliferation evaluation.

2.9. Flow Cytometry Analysis (FACS)

Cells were labeled with live/dead (Life Technologies) as the same time as with antibodies for
surface molecules. Both the frequency and the fluorescence intensity were evaluated. For the detection
of intracellular cytokines, Th1 or Th17 differentiated cells were stimulated with Phorbol 12-myristate
13-acetate (PMA) (Sigma) (50 ng/mL) (Sigma), ionomycin (500 ng/mL) (Sigma) and Golgi stop (1:1000)
(BD) for 4 h at 37 ◦C. Cells were collected and labeled with anti-CD4 and live/dead and then intracellular
labeling was performed with antibodies against cytokines and transcription factors using Transcription
Factor Staining Buffer Kit (Tonbo Biosciences). In some cases, Foxp3-GFP animals were used to
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detect Foxp3+ cells directly. All data were collected on the FacsCAnto or Fortessa (BD) cytometers
and analyzed by FlowJo software (Tree Star, USA).

2.10. Real-Time PCR (RT-PCR)

The evaluation of gene expression was performed through real-time PCR reactions.
The reactions were performed on GeneAmp 7700 (Applied Biosystems-USA) using the SYBR Green
and Taqman systems. The total RNA of the samples was obtained by Trizol (Life Technologies)
and the complementary DNA synthesized from the messenger RNA. As endogenous control, the gene
HPRT was used. The results were analyzed based on the CT (cycle threshold), using the formula
2−∆∆CT or the formula 10000/2∆CT [31].

Primers Taqman: HPRT: Mm01545399_m1, IFN-γ: Mm01168134_m1, Foxp3: Mm00475156_m1
Tbet: Mm00450960_m1.

Primers Sybr: HPRT F: CTCATGGACTGATTATGGAC, HPRT R: GCAGGTCAGCAAAGAACTTA,
TGFBR2 F: CCGCTGCATATCGTCCTGTG, TGFBR2 R: AGTGGATGGATGGTCCTATTACA, PKM2 F:
GCCGCCTGGACATTGACTC, PKM2 R: CCATGAGAGAAATTCAGCCGAG, HK2 F: TGATC
GCCTGCTTATTCACGG, HK2 R: AACCGCCTAGAAATCTCCAGA, ACLY F: CTCCAAGAAGC
CAAATCTTATC, ACLY R: ATATTCATCAGCTTCCTCCC, PDK1 F: AGGATCTGACTGT GAAGATG,
PDK1 R: TGGAAGTACTGTGCATAGAG, PPP2R5E F GACGGATTTTCTCGGAAGTCC, R:
GAGGTTGGAACGTCTTTCAGC, PIK3R3 F: TACAATACGGTGTGGAGTATGGA, R: GAGTC
ATTGGCTTAGGTGGCT.

2.11. miRNA PCR Array and in Silico Analysis

Total RNA of Th1-differentiated cells was isolated using miRNeasy Mini Kit (Qiagen). cDNA was
synthesized from 300 ng of the mRNA using the miScript II RT kit (Qiagen). PCR array of miRNAs were
run in 96-well plates for each sample (3 samples per group) following the instructions of the miScript
MIMM-111Z- T Cell & B Cell Activation miRNA PCR Array (Qiagen) assay. Analysis were performed
using the Qiagen website. miRNAs differentially expressed between the groups were selected and only
the two miRNAs more significantly upregulated and two more significantly downregulated were
considered. Three different online databases (TargetScan7 [32], miRDB [33] and Starbase [34]) were used
to obtain the targets of these miRNAs. The InteractiVenn [35] website was used to select the intersections
between the target genes empirically obtained from the different databases. Enrichr [36] platform
was used to obtain the correlations between these target genes and possible signaling pathways
in which these genes are involved. Thus, 4 signaling pathways (KEGGS pathway) that could be
modulated by the miRNA expression changes were found. Analyzing the signaling pathways involved,
we selected 10 of the target genes to evaluate their expression by RT-PCR.

2.12. Glycolytic Stress Test—Seahorse

Extracellular acidification rates (ECAR) were measured using Extracellular Flux Analyzers
(Seahorse Bioscience). After Th1 differentiation, cells were plated to XF assay media without glucose.
Glucose 10 mM (Sigma-Aldrich), 1-µg/mL oligomycin (Sigma-Aldrich), 22 mM 2-deoxiglicose (2-DG)
(Agilent) and media were added in this order using the ports on the XF96 cartridges. The data
were collected using the XF Reader software (Seahorse Bioscience). Glycolysis was calculated by
the difference between ECAR rates after glucose injection and the basal rate (before glucose injection).
Glycolytic capacity was calculated by the difference between ECAR rates reached after oligomycin
injection and the ECAR rates reached before glucose injection. The glycolytic reserve was calculated
by the difference between glycolytic capacity and glycolysis rate. Finally, ECAR rate prior to glucose
injection was determined as non-glycolytic acidification.
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2.13. Mitochondrial Membrane Potential Detection Assays

Mitochondrial membrane potential (4ψm) was detected in cells after differentiation. Cells were
incubated with TMRE (Abcam) (0.3 µM) or MitoTracker Deep Red FM (Life Technologies) (0.3 µM)
for 30 min at 37 ◦C. For evaluation by FACS the cells were also labeled with live/dead and anti-CD4
and the fluorescence intensity of TMRE and MitoTracker was calculated by MFI (Median of Fluorescence).
To get the images the cells were labeled concomitantly with Hoescht, washed and immediately subjected
to imaging of 5 fields per well using a 40x magnification in the InCell Analyzer 2200 (GE) equipment.
For quantitative analysis of fluorescence intensity and percentage of positive cells, InCell Investigator
software was used. As a control, cells were incubated with CCCP (Carbonyl cyanide m-chlorophenyl
hydrazone) (10 µM) for 30 min.

2.14. OVA Immunization In Vivo

Six-to-eight-week C57BL/6 mice were immunized with OVA protein (Ovalbumin grade V,
Sigma-Aldrich). A mixture of Montanide ISA 50 V adjuvant (50%) [37] (Seppic) and OVA (200 µg) +

Tween-20 (1%) + PBS or MSC-EVs (60 µL/animal) was prepared and injected at the base of the tail
(200 µL/animal). After 7 days, the animals were euthanized. Inguinal and periaortic lymph nodes
were collected, stimulated with PMA (50 ng/mL) and Ionomycin (500 ng/mL) and Golgi stop (1: 1000)
and labeled with antibodies for the detection of IFN-γ and Foxp3 by FACS.

2.15. Statistical Analysis

Data were analyzed by ANOVA or Student’s t-test. All results are presented as mean and standard
deviation. Values of p < 0.05 were considered statistically significant.

3. Results

3.1. Isolation and Characterization of MSC-EVs

The adipose tissue-derived MSCs used in this study was provided by a cell bank which cells were
previously characterized by our group [38]. A scanning electron microscope was used to demonstrate
that MSCs release EVs of different sizes and origins (Figure 1A,B). TEM analysis showed that MSC-EVs
presented a spheroid shape, with a bi-lipid membrane structure and varied sizes, representing a mixed
population of smaller vesicles, that could be exosomes (approximately 100 nm) and larger vesicles, for
example, microvesicles (between 100 and 1000 nm) (Figure 1C). MSC-EVs presented a mean size of
150–200 ηm with concentration, analyzed by NTA, of approximately 1011 particles/mL (Figure 1D).
Expression of MSCs markers by EVs was detected using FACS. Calibration beads of 1 µm were used
to adjust the parameters of size (FSC) and granularity (SSC) (Figure 1E). Over half of EVs expressed
CD9 (Figure 1F) and the CD9+ particles were positive for CD73, CD90 and CD105 and negative for
CD45 (Figure 1G–J), as observed at MSCs [2]. In addition, The CytoFLEX also was used to detect
and better characterize the MSC-EVs. Using Gigamix beads the MSC-EVs were gated according to
their corresponding size (Figure 1K,L) and they expressed classical EVs markers as annexin and CD9
(Figure 1M,N).



Cells 2020, 9, 1059 7 of 27
Cells 2020, 9, x 7 of 29 

 

Figure 1. Characterization of mesenchymal stromal cell extracellular vesicles (MSC-EVs): To verify 
EVs releasing, mesenchymal stromal cells (MSCs) were visualized in a scanning electron microscope 
(A,B). The release of vesicles of different sizes was demonstrated. In A, a larger vesicle is budding 
from the cell membrane, while in B a pool of smaller vesicles is released. MSC-EVs were visualized in 
a transmission electron microscope, showing the characteristic double membrane structure. Arrows 
indicate larger vesicles, compatible with microvesicles, whereas arrow heads indicate smaller vesicles, 
compatible with exosomes (C). To obtain the distribution of size and concentration (particles/mL), 
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Expression of present and absent markers of MSCs was also evaluated in MSC-EVs with anti-CD73, 
CD90, CD105 and CD45 antibodies (G-J). MSC-EVs were evaluated by CytoFLEX where they were 
gated based on Gigamix beads size (K,L) and stained for Annexin (M) and CD9 (N). 

Figure 1. Characterization of mesenchymal stromal cell extracellular vesicles (MSC-EVs): To verify
EVs releasing, mesenchymal stromal cells (MSCs) were visualized in a scanning electron microscope
(A,B). The release of vesicles of different sizes was demonstrated. In A, a larger vesicle is budding
from the cell membrane, while in B a pool of smaller vesicles is released. MSC-EVs were visualized in
a transmission electron microscope, showing the characteristic double membrane structure. Arrows
indicate larger vesicles, compatible with microvesicles, whereas arrow heads indicate smaller vesicles,
compatible with exosomes (C). To obtain the distribution of size and concentration (particles/mL), MSC-
EVs were analyzed by NanoSight (D). The extracellular vesicles (EVs) were analyzed by flow cytometry
analysis (FACS), using 1-µm beads as reference (E) and labeled with anti-CD9 (F). Expression of present
and absent markers of MSCs was also evaluated in MSC-EVs with anti-CD73, CD90, CD105 and CD45
antibodies (G–J). MSC-EVs were evaluated by CytoFLEX where they were gated based on Gigamix
beads size (K,L) and stained for Annexin (M) and CD9 (N).



Cells 2020, 9, 1059 8 of 27

3.2. MSC-EVs are Incorporated by CD4− T Cell and Alter Lymphocyte Proliferation and Differentiation

To investigate the biodistribution of MSC-EVs, confocal microscope assay was performed
and the MSC-EVs were visually incorporated by CD4+ T lymphocytes (Figure 2A,B). In order
to evaluate the functional effect of the MSC-EVs on lymphocytes proliferation, total splenocytes were
labeled with Cell trace violet and stimulated with anti-CD3. The proliferation was evaluated by FACS 3
days after the stimulus. MSC-EVs were able to reduce the proliferation of activated CD4 T lymphocytes
by approximately 50% (Figure 2C–E).
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Figure 2. Effects of MSC-EVs on lymphocytes proliferation: incorporation of PKH26-labeled MSC-EVs
by purified naive CD4+ cells using confocal microscopy, before (A) and 15 h after the addition of EVs
(B). MSC-EVs effect on total splenocytes proliferation when stimulated by anti-CD3 and anti-CD28
(C–E). Data are representative of 5 independent experiments (** p < 0.01).

Since we observed that MSC-EVs inhibited CD4+ T cell proliferation, we next sought to assess
whether the MSC-EVs would influence on T cell differentiation. Then, we sorted naïve CD4+ T
cells and polarized them to differentiate to Th1, Th17 and Treg cells in the presence of MSC-EVs.
The presence of MSC-EVs significantly affected Th1 differentiation as observed by the decreasing of
IFN-γ production (Figure 3A,B), although nothing was observed regarding the IL-17A production in
the presence of MSC-EVs (Figure 3C,D). In the Treg differentiation, it was detected higher numbers
of Foxp3+ cells within MSC-EVs-treated group when compared to untreated ones, however without
statistical differences (Figure 3E,F). Further, to access the precise effect of MSC-EVs in differentiated
Tregs, we purified mature Tregs (Foxp3+GFP+) by cell sorting from spleen and lymph nodes of
FOXP3-GFP knock in mice and stimulated them with plated-bound anti-CD3 and soluble anti-CD28 in
the presence of MSC-EVs. Again, we did not observe any statistical improvement of the foxp3 expression,
even with higher number of Foxp3+ cells detected in the MSC-EVs-treated group (Figure 3G,H). Thus,
these results altogether indicate that MSC-EVs can modulate the Th1 differentiation.
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Figure 3. Effect of MSC-EVs on differentiation for T helper subsets: purified CD4 cells were differentiated
for Th1 (A,B) Th17 (C,D) and Treg (E,F) and evaluated by detection of IFN-γ, IL-17 and Foxp3,
respectively, by FACS. Foxp3+ cells were purified from spleen by FACS sorting and maintained in
culture in the presence of IL-2 and MSC-EVs. Foxp3 expression was evaluated after 5 days in culture
(G,H). Data are representative of 3 independent experiments (** p < 0.01).
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3.3. MSC-EVs Induce Foxp3 Expression in Th1 Differentiated Cells

In order to understand how MSC-EVs inhibited Th1 differentiation we decided to investigate
the generation of Foxp3+ cells during Th1 differentiation in the presence of MSC-EVs, since this is
one defined mechanisms of MSCs immune regulation [6,8,9]. As expected, the addition of MSC-EVs
decreased IFN-γ production visualized by reduced number of red dye-labeled cells (Figure 4A,C,D).
Notably, MSC-EVs addition in CD4+ naïve T cells polarized to Th1 increased the frequency Foxp3+

cells and expanded Foxp3 expression (green dye-labeled cells) (Figure 4A,C,E). This finding of increase
in Foxp3+ cells in Th1 cells in the presence of MSC-EVs was confirmed by confocal microscopy and by
flow cytometry (Figure 4A,B). The addition of MSC-EVs increased the frequency of Foxp3+ cells
(Figure 4C,E). Surprisingly, IFN-γ and Foxp3 double-positive cells were also identified after treatment
with MSC-EVs (Figure 4A,B,F).

Expression of IFN-γ and Foxp3 was also evaluated by RT-PCR, as well as Tbet (Th1-specific
transcription factor) expression. Although a reduction of IFN-γ by FACS and confocal microscopy was
demonstrated, we did not see a difference in the expression of IFN-γmRNA (Figure 4G). The same
was observed for Tbet expression (Figure 4I). However, the Foxp3 increase was confirmed by real-time
PCR analysis (Figure 4H).

In an attempt to confirm functional regulatory profile of these MSC-EVs-modulated T cells
generated, we performed a suppression assay using differentiated Th1 cells in the presence or absence
of MSC-EVs in co-culture with total splenocytes at different ratios (Figure 5). As control, Tregs cells
were purified by sorting and co-cultured with total splenocytes, also in different ratios (Figure 5C–F).
In the 2:1 ratio, we observed that MSC-EVs-modulated T cells (Foxp3+ IFN-γ+) in the presence
of MSC-EVs were able to suppress CD4+ T cell (Figure 5A) and CD8+ T (Figure 5B) proliferation.
The suppressive effect of these cells was similar to Tregs at 1:4 ratio (Figure 5E).

These results suggest that cells differentiated to Th1, in the presence of MSC-EVs, are reprogrammed
to a more regulatory profile, decreasing the frequency of IFN-γ producing cells and increasing Foxp3
expressing cells, which are able to suppress the proliferation of total splenocytes.

3.4. The Global Analysis of miRNA Array Reveals Possible Targets of miRNA Regulation in Lymphocytes
Treated with MCS-EVs

The transfer of miRNA has been considered the main mechanism by which EVs exert their
effects [39]. Therefore, in order to detect differentially expressed miRNAs in Th1 cells and possible
molecular signature involved in the Th1 regulation by MSC-EVs, a specific platform for detection
miRNAs associated with signaling pathways in B and T cell activation (QIAGEN) was used. This kit
comprises a panel with 84 miRNAs involved in the differentiation of lymphocytes (Figure 6A).
We detected 5 upregulated and 53 downregulated miRNAs in T cells differentiated into Th1 in
the presence or not of MSC-EVs (fold change> 1.5) (Figure 6B). Further, we verified the most regulated
transcript and only 3 miRNAs had significantly its expression decreased and 13 showed to be statistically
increased (p < 0.05) (Figure 6C,D). In an attempt to detect signaling pathways and genes regulated
by these differentially expressed miRNAs, an in silico analysis was carried out, in which the most
modulated miRNAs were addressed (upregulated: miR-19a-3p and miR106a-5p and downregulated:
miR23a-3p and miR-21a-5p). The target genes of each miRNA were found in 3 different and independent
databases (Figure 7A,C). Putative target genes commonly found in these 3 databases were analyzed
in the ENRICHR website to detect possible signaling pathways involved (Figure 7B,D). Among
the pathways regulated by the positively regulated miRNAs (pathways that would be less active),
the AMPK and MAPK pathways were selected (Figure 7B and Table S1), whereas the pathways
regulated by reduced miRNAs (pathways that would be more active), the TGF-β pathway and FoxO
pathway were selected (Figure 7D and Table S2). The target genes that participate in each pathway
analyzed were identified and some genes were validated by RT-PCR (Tables S1 and S2). TGFBR2
expression was the only gene evaluated which had its expression regulated (Figure 7E–G).
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Figure 4. Effects of MSC-EVs on Th1 differentiation: Purified naive CD4+ cells were differentiated for
Th1 and IFN-γ and Foxp3 were detected by confocal microscopy (A), FACS (C–F) and RT-PCR (G,H).
Detection of IFN-γ (red) and Foxp3 (green) by confocal microscopy; (A) demonstrates the presence
of double positive cells for Th1 cytokine and Tregs transcription factor Foxp3 (B,F). Expression of
Tbet transcription factor was also evaluated by RT-PCR (I). Data are representative of 4 independent
experiments (* p < 0.05).
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Figure 5. Functional analysis of the Foxp3+ cells generated. A suppression assay using Th1 differentiated
cells, treated or not with MSC-EVs, in co-culture with total splenocytes was performed. The effects on
the proliferation of CD4+ (A) and CD8+ T (B) cells in the 2:1 ratio were shown. Tregs cells were used
as a positive control of CD4+ T cell suppression in several ratios (C–F). Data are representative of 2
independent experiments (* p < 0.05).

Expression of AMPK pathway genes PPP2R5E (Figure 7F) and PI3KR3 (Figure 7G), which are
target genes of the upregulated miR-19a-3p, was not altered. Since TGFBR2 is regulated by miRNA
23a-3p, which was downregulated in the presence of MSC-EVs, its expression was increased in
the MSC-EVs treated group (Figure 7E). These results confirm, in part, the participation of miRNAs in
Th1 cell modulation by MSC-EVs and suggests that TGF-β signaling pathway (miRNA-23a-3p/TGFBR2)
may modulate Th1 differentiation.
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Figure 6. PCR array of miRNAs expressed from Th1 differentiated cells: Comparative heat map of
miRNAs in MSC-EVs treated and untreated groups (A). Graphs representing differentially expressed
miRNAs with fold change > 1.5 (B) and differentially expressed miRNAs with significant variation
(p < 0.05) (C). Bar graph demonstrating the miRNAs with the highest variations (D). n = 3 (* p < 0.05).



Cells 2020, 9, 1059 14 of 27Cells 2020, 9, x 15 of 29 

 

 
Figure 7. In silico analysis of signaling pathways regulated by miRNAs: Venn diagrams representing 
the intersection of upregulated (A) and downregulated (C) miRNAs found in 3 different databases. 
Biologic processes related to the most overexpressed (B) and the most reduced (D) miRNAs found by 
KEGGS pathway analysis on the Enrichr platform. The expressions of TGFBR2 (E), PPP2R5E (F) and 
PI3KR3 (G) were detected by RT-PCR. n = 5 (** p <0.01). 

3.5. Treatment with MSC-EVs Alters the Metabolism of Differentiated T Cells to Th1, Decreasing 
Mitochondrial Membrane Potential and Glycolysis 

It is well known that TGF-β pathway can regulate metabolic process through the regulation of 
mTOR pathway, which can regulate T cell metabolism. Therefore, in order to further investigate 

Figure 7. In silico analysis of signaling pathways regulated by miRNAs: Venn diagrams representing
the intersection of upregulated (A) and downregulated (C) miRNAs found in 3 different databases.
Biologic processes related to the most overexpressed (B) and the most reduced (D) miRNAs found
by KEGGS pathway analysis on the Enrichr platform. The expressions of TGFBR2 (E), PPP2R5E (F)
and PI3KR3 (G) were detected by RT-PCR. n = 5 (** p <0.01).
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3.5. Treatment with MSC-EVs Alters the Metabolism of Differentiated T Cells to Th1,
Decreasing Mitochondrial Membrane Potential and Glycolysis

It is well known that TGF-β pathway can regulate metabolic process through the regulation of
mTOR pathway, which can regulate T cell metabolism. Therefore, in order to further investigate
possible determinant mechanisms by which MSC-EVs exert effects on T lymphocytes, as a consequence
TGF-β pathway modulation observed in the miRNA profile, we searched for specific metabolic
and mitochondrial changes in T cells. Genes involved in metabolic regulation (ACLY, HK2, PKM2
and PDk1) were evaluated (Figure 8A–D) and PKM2 showed reduced expression after treatment with
EVs (Figure 8C), while no statistical difference was observed in the other molecules evaluated.
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Figure 8. Effects of MSC-EVs on T cell glycolytic metabolism: Th1-differentiated cells were evaluated
by the expression of metabolic-related genes, such as ACLY (A), HK2, (B), PKM2 (C) and PDK1 (D) by
RT-PCR. A Seahorse analysis was performed in order to evaluate glycolytic metabolism (E). Separately,
glycolysis (F), glycolytic capacity (G) glycolytic reserve (H) and non-glycolytic acidification (I) rates
were obtained. n = 3 (* p < 0.05).
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Th1 cells depend on glycolysis to produce IFN-γ [40,41]. On the other hand, inhibition of
glycolysis favors Treg differentiation [40]. Therefore, we performed a Seahorse analysis in order
to obtain the extracellular acidification rate (ECAR), for direct measurement of glycolysis index.
A prominent decreasing in ECAR rate in the cells differentiated in the presence of MSC-EVs was
observed (Figure 8E). In addition, we detected several metabolic parameters decreased in T cells treated
with MSC-EVs, as glycolysis rate (Figure 8F), glycolytic capacity (Figure 8G) and glycolytic reserve
(Figure 8H), considering that no statistical difference was seen at non-glycolytic acidification (Figure 8I)
rate. All these data confirm that T cells are less glycolytic after MSC-EVs addition and this may be
affecting their IFN-γ production.

To verify whether MSC-EVs can further impact mitochondrial metabolism, lymphocytes were
labeled with TMRE and MitoTracker and analyzed by FACS and microscopy (InCell Analyzer).
T cells treated with MSC-EVs demonstrated a decrease in mitochondrial membrane potential (4ψm),
represented by the reduced TMRE and MitoTracker fluorescence intensity when evaluated by FACS
(Figure 9A,B) and by low frequency of TMRE-positive cells when evaluated by microscope (Figure 9E,G).
Besides no difference in intensity of TMRE fluorescence (Figure 9D,G), this was confirmed by the decrease
of MitoTracker fluorescence (Figure 9C,F). As a control, CCCP, a decoupling agent inhibiting oxidative
phosphorylation, was added and a 4ψm reduction was observed.

These results suggest that MSC-EVs can regulate metabolic pathways in Th1 differentiated
cells, which may also be related to the reduction of IFN-γ and generation of Foxp3+ cells and to
the modulation of the TGF-β pathway.

3.6. MSC-EVs Treatment Expands Tregs In Vivo

To verify the regulatory effects of MSC-EVs on Th1 differentiation in vivo, we choose a murine
immunization model with OVA. After 7 days, the animals were euthanized, and the draining lymph
nodes were collected for analysis. It was detected that immunization with OVA significantly increased
the number of infiltrating cells in the lymph nodes (Figure 10A). After 7 days, the number of CD4+ T
cells expressing IFN-γ after immunization showed a tendency to increase and no effect was observed
after MSC-EVs injection (Figure 10B). On the other hand, the number of Foxp3-expressing CD4+ T cells
was dramatically elevated after treatment with MSC-EVs (Figure 10C). Finally, these results confirm
the ability of MSC-EVs to expand Foxp3+ T cells during an inflammatory response in vivo, as it was
seen in the in vitro assays.

4. Discussion

In this study, we demonstrate the ability of MSC-EVs to regulate Th1 cells potentially via
modulation of miRNA profile associated TGF-β pathway and metabolism shifting. MSC-EVs reduced
differentiation to Th1, generating cells that express Foxp3 with reduced IFN-γ production and increased
suppressive capacity. The addition of MSC-EVs changed miRNAs expression in the Th1 cells, increasing
TGFBR2 expression, as a consequence of the reduction of mir-23a-3p. The regulation of TGF-β pathway
can be related with the regulation of metabolic pathways. Accordingly, we showed a reduction
in glycolytic and mitochondrial metabolism in the cells differentiated in the presence of MSC-EVs.
Our data confirm the capacity of MSC-EVs in regulating T cells and open new perspectives to the use
of EVs as a therapeutic alternative to MSCs.

During EVs isolation, we excluded the larger vesicles and possible cellular debris of our MSC-EVs
population by centrifuging the cell supernatant at 2.000× g. After centrifugation at 100.000× g, we obtained
a mixture of EVs with the presence of exosomes, exomeres and MVs. Opting for not do the 10,000× g
ultracentrifugation, we don’t differentiate medium size particles from smaller size ones [42]. Accordingly,
the presence of different vesicle sizes was detected by scanning and transmission electron microscopy
and NTA. Analysis of size distribution by NTA suggests, however, a predominant presence of smaller
particles. Although several studies indicate that different fractions of EVs may have different [43] or
even opposites effects, [44,45], the choice of using this mixture of particles is mainly because EVs may be
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released simultaneously by the cells. Additionally, the yield of EVs from MSC culture supernatant is not
high and large amounts of particles from purified EVs are needed to obtain modulatory effect. The mixed
population of EVs obtained showed the molecules from parental cells, expressing MSCs [27,46] markers,
and were mostly positive for Annexin and CD9, classical EVs markers.
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Figure 9. Effects of MSC-EVs on mitochondrial metabolism: The mitochondrial membrane potential
(4ψm) was evaluated using the specific markers TMRE and MitoTracker Deep Red. The fluorescence
intensity of MitoTracker and TMRE was detected by flow cytometry (A,B) and by images using
InCell Analyzer (C,D). The percentage of cells expressing TMRE was detected by microscopy (E).
Representative images of Th1 cells differentiated in the presence or not of MSC-EVs stained for
MitoTracker in red (F) or TMRE in yellow (G). Data are representative of 4 independent experiments
(FACS) and 3 independent experiments (InCell). * p < 0.05 (** p < 0.01).
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Figure 10. Effects of MSC-EVs in vivo: C57Bl/6 mice were immunized with OVA and treated with
MSC-EVs. After 7 days, the animals were euthanized, and the draining lymph nodes were collected.
The total number of cells in the lymph nodes (A) and the total number of CD4 cells producing IFN-γ
(B) and expressing Foxp3 (C) were evaluated. n = 5 (* p < 0.05).

PKH dyes have been widely used for labeling extracellular vesicles [47,48], however, their use has
been controversial. Recent studies have shown that nanoparticles of dye can also be internalized [49,50],
but in a lower extension as EVs-labeled particles [49]. When we evaluated the incorporation of
MSC-EVs by lymphocytes using PKH26, we found an accumulation of EVs on the cell surface.
Although it is not possible to differentiate whether there was accumulation in the cytosol or fusion
with the plasma membrane, studies have suggested that EVs naturally associate with the lymphocyte
membrane [43,51] exerting their modulatory effects. In this sense, the addition of MSC-EVs significantly
reduced the proliferation of T cells. The literature is controversial regarding the effects of MSC-EVs
on lymphocyte proliferation. Some studies have shown inefficiency of MSC-EVs in inhibiting T cell
proliferation [52–54], others have demonstrated lower efficiency of EVs when compared to MSCs [55–58]
while others have reported ability to inhibit lymphocyte proliferation [59–61]. The difference between
these studies may be due to variations in the dose and types of EVs and T cell sources used.

Functionally, authors have reported that MSC suppression on T-cell proliferation is more related
to cell cycle inhibition than apoptosis induction [62]. To confirm that our EVs were not killing
the cells, we performed live/dead labeling by cytometry and did not see changes in cell viability
following the addition of MSC-EVs in our culture conditions (Figure S1). In order to evaluate whether
the MSC-EVs could alter specifically T cell response, we differentiated naïve CD4+ T cells into different T
cell subtypes: Th1, Th17 and Treg. It was previously shown that MSCs or MSC-EVs can alter the balance
between different T cell subtypes [63,64]. In a study using PBMC cells from type I diabetes patients,
MSC-EV administration decreased Th17 response while increased Treg response [65]. Based on that,
we differentiated lymphocytes to a pro-inflammatory condition (Th1) and as it was shown previously
with MSCs treatment [66,67], a significant reduction of IFN-γ-secreting cells was observed after
treatment with MSC-EVs. We then differentiated to another pro-inflammatory condition, Th17, but
we did not see effect on T cell differentiation. When we evaluated the effect over Treg differentiation,
we detected a trend to increase the percentage of cells expressing Foxp3. The same was observed when
we evaluated the effects directly on purified Tregs from the spleen. The different behavior of EVs in each
condition may indicate a dependency of a favorable environment for them to perform their adequate
functions, which we believe being preferentially associated with inflammatory microenvironment.
For instance, in a model of skin transplantation, MSC-EVs expanded Tregs and increased animals
survival only in animals that received the graft [68]. Accordingly, the presence of cytokines may
influence the effects of MSC-EVs. One study observed that the presence of TNF along with EVs may
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promote greater effect on target cells than using EVs or TNF alone, suggesting that they may act
synergistically [69]. Therefore, cytokines present in a Th1 condition, such as IL-12 or IFN-γ, may have
intensified the effects of MSC-EVs.

In addition, knowing the ability of MSCs to induce Tregs [9,66,70], we also sought to evaluate
the expression of Foxp3 transcription factor in T cells under inflammatory conditions. Interestingly,
the addition of MSC-EVs induced a significant increase in Foxp3 expression in Th1-differentiated cells,
suggesting that MSC-EVs can induce a regulatory transcriptional profile in Th1-type cells. In our study,
the reduction of Tbet expression was not demonstrated after the addition of MSC-EVs. However,
the co-expression of Tbet and Foxp3 transcription factors, by itself, may suggests the induction of more
regulatory cells. Recent studies have demonstrated the existence of a type of hybrid cells that co-express
transcription factors of different T subtypes, exerting preferentially an anti-inflammatory effect [71–73].
It was demonstrated that the expression of Tbet in Tregs (Foxp3+) is important for these cells to
regulate Th1 response and, consequently, regulate IFN-γ production [71,74]. Tregs can also produce
IFN-γ as a way to regulate the inflammatory response [58] or generate operational tolerance [75].
Accordingly, the co-expression of Foxp3 and IFN-γ in MSC-EVs treated cells, suggests the generation
of a different hybrid cell subset that may have regulatory function. In this context, the suppression
assay of CD4+ and CD8+ T cell proliferation confirmed that these generated Foxp3+ IFN-γ+ T cells
are functional and have regulatory profile. Therefore, the treatment with MSC-EVs generate a rare
subtype of Th1 cells that at same time that produce IFN-γ and express the regulatory transcription
factor Foxp3, which make them acquire regulatory properties, regulating lymphocyte proliferation.
However, the molecular mechanisms of how these cells behave should be further investigated.

In order to investigate possible mechanisms involved in the MSC-EVs effects over Th1 cells,
the PCR miRNA array platform associated to T and B cell activation pathways was used as a tool to
identify miRNAs and signaling pathways involved in the regulation of Th1 response. We observed
that MSC-EVs addition reprogrammed T cell miRNAs profile as observed during modulation of
the immune system upon activation [76,77]. In silico enrichment analysis, focusing on the target
genes of the most up or downregulated miRNAs, showed possible signaling pathways involved
in this process. Among the pathways linked to downregulated miRNAs was observed the TGF-β
pathway, which is involved in the generation of Tregs through the binding of transcription factors in
the regulatory elements at the Foxp3 locus [78,79]. Therefore, we looked for genes that activate these
pathways and we detected difference in TGFBR2 (TGF-β receptor 2) expression, a gene targeted by
miR-23a-3p. This receptor has important role in the control of Th1 cells. Its absence in T cells led to
a more inflammatory condition, with greater production of IFN-γ by CD4+ T cells [80,81]. Additionally,
expression of a dominant negative form of this receptor also decreased the suppressive capacity of
Tregs [82]. These data suggest that the regulation of miRNAs expression and their target genes can be
one mechanism by which MSC-EVs are modulating Th1 cells. Specifically, the miRNA regulation of
TGFBR2 expression may be regulating IFN-γ production from Th1 cells after MSC-EVs addition.

TGF-β pathway is also involved in the inhibition of mTOR pathway, which regulates metabolic
process in immune cells, favoring anabolic processes and promoting glycolysis [83]. Recently,
the correlation between metabolism and immune cells has been more explored. After activation,
Naïve T cells need substrates for the biosynthesis of proteins, lipids and nucleic acids essentials
for cell proliferation and, hence, to accelerate this process, they switch their metabolic profile to
anabolic state, mainly dependent on aerobic glycolysis [84]. This process, known as the Warburg
effect [85], occurs when the cell performs glycolysis even in the presence of oxygen. Specifically, for Th1
cells, the glycolytic pathway appears to be the most important. IFN-γ production is regulated by
GAPDH, a glycolytic pathway enzyme [86] and Glut-1 [41]. In contrast, Tregs is dependent mainly of
the metabolism of lipids (beta oxidation), which occurs in the mitochondria [84,87] and the inhibition
of glycolysis favors Treg differentiation [40]. Therefore, in order to verify if MSC-EVs treatment and its
consequent signal trough TGF-β pathway could alter T cell metabolism, we evaluated the expression of
genes associated with different metabolic pathways. Hexokinase 2 (HK2) is an enzyme that catalyzes
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the first step of glycolysis, ATP citrate lyase (ACLY) is an important enzyme in lipid biosynthesis [88],
Pyruvate dehydrogenase kinase 1 (PDK1) is an enzyme that phosphorylates and inactivates pyruvate
dehydrogenase, the enzyme responsible for the first step of citric acid cycle—TCA [89]—and pyruvate
kinase isozyme 2 (PKM2) catalyzes the last glycolysis reaction [90]. Although we have not identified
any significant differences in the expression of ACLY, PDK1 and HK2, we cannot affirm that there
is no metabolic changes in T cells treated with MSC-EVs, since the regulation of these enzymes
may act principally at the protein level [91–93]. However, importantly, we detected a difference in
PKM2 expression. This enzyme has been related to the Warburg effect, especially in cancer cells [94].
PKM2 has also functions not related to metabolism, being associated with activation of inflammatory
response [95], mainly acting as co-activator of HIF-1α [96,97]. Accordingly, it is demonstrated that
under normoxia conditions, the absence of HIF-1α increase Tregs differentiation [40]. Finally, PKM2
can act as a regulator of mTOR pathway. A recent study has shown that the reduction of PKM2
inhibits PI3K/Akt [98] signaling, which may also justify the reduction of IFN-γ in cells treated with
MSC-EVs. Additionally, when we evaluated specifically the glycolytic metabolism, a reduction of
ECAR, glycolysis and glycolytic capacity and glycolytic reserve was shown, corroborating with PKM2
expression levels reduced. These data also suggest that the metabolic switch required to cytokine
production was not achieved and may explain the IFN-γ reduction observed.

To further investigate the effects of MSC-EVs over T cell metabolism, we looked at mitochondrial
metabolism through the detection of mitochondrial membrane potential (4ψm). The evaluation of
membrane potential of Th1-differentiated cells demonstrated a reduction in cells treated with MSC-EVs,
which suggests a lower participation of mitochondrial metabolism in this process. Mitochondrial
metabolism results in the generation of ROS (reactive oxygen species), which is important for the optimal
activity of NFAT and NF-kB [99,100], involved in the signaling for T cell activation and cytokine
production [101], such as IFN-γ [102]. In this context, the addition of MSC-EVs may have altered
the metabolism of the T cells, reducing their activation and IFN-γ production. Additionally, in a recent
study, Sukumar and colleagues isolated cells differentiated for Th1 in vitro, sorting them according to
the mitochondrial potential. Cells with high 4ψm produced four times more IFN-γ compared to low
4ψm cells and cells with low 4ψm showed a reduction in mTORC1 activity [103]. In another study,
the addition of TGF-β reduced glycolytic metabolism in thymus Tregs, as a consequence of the reduction
of mTOR pathway activation [104]. These data corroborate our findings that cells producing less IFN-γ,
after treatment with MSC-EVs, have lower 4ψm and may also suggest the participation of TGF-β
pathway in this regulation.

Finally, to evaluate the MSC-EVs effect in vivo, we used an OVA immunization experimental
model. Since we believe that the major effect of EVs depends on an inflammatory environment,
we looked for a model that would give us a Th1 response. Therefore, we used Montanide ISA
adjuvant [37], which induces predominantly a Th1 response [105]. According to what was discussed
above, we believe that MSC-EVs effects are dependent on the presence of specific cytokines related to
the Th1 response. When MSC-EVs were injected concomitantly with OVA, an increase in the total
number of cells expressing Foxp3 was seen, confirming the ability of MSC-EVs to generate regulatory
cells expressing Foxp3—as observed in vitro in a Th1 differentiation. However, we did not observe
any effect on the IFN-γ production in this context. Increasing the dose may lead to a more pronounced
effect. Nevertheless, these data corroborate our in vitro studies and demonstrate the ability of MSC-EVs
to induce Foxp3+ cells under inflammatory conditions in vivo.

In summary, in this report we demonstrated that MSC-EVs have the capacity to modulate
lymphocytes. We verified that Th1 cells reduced the production of IFN-γ—and surprisingly—they started
to express Foxp3. As part of their regulatory mechanism, we have shown that MSC-EVs induced
modifications in the miRNA profile, decreasing miR-23a-3p expression and increasing the expression
of its target gene, TGFBR2, suggesting active participation of TGF-β pathway in this regulation.
This pathway, in turn, may inactivate the mTOR pathway and, as a consequence, alter the metabolic
profile of T cells treated with MSC-EVs. These cells presented a reduction in the glycolytic metabolism,
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as well in the mitochondrial metabolism, what can be related to PKM2 modulation. This molecular
crosstalk can explain the presence of less activated Th1 cells with lower IFN-γ production. Concluding,
our findings suggest that MSC-EVs are able to specifically modulate activated T cells at an alternative
regulatory profile by miRNAs and metabolism shifting. Thus, we can speculate that MSC-EVs can
induce immunological tolerance, in vivo, contributing for their future use as an alternative therapy.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4409/9/4/1059/s1,
Table S1. Upregulated miRNAs’ target genes selected for analysis and their corresponding signaling pathways.
Table S2. Downregulated miRNAs’ target genes selected for analysis and their corresponding signaling pathways.
Figure S1. Cells viability after MSC-EVs treatment: Live and dead staining of cells differentiated for Th1 after
MSC-EVs treatment. Data representative of 4 independent experiments. Video S1. Animation of incorporation of
PKH26-labeled MSC-EVs by purified naive CD4+ cells: Images were captured at 15 min interval over the course
of 15h and collated in sequential order. See Figure 2A,B.
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