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Objective. To establish a novel HBV specific immunoadsorbent for the removing of HBV particles. Methods. The anti-HBsAg
monoclonal antibody was immobilized on sepharose beads to produce a sepharose anti-HBs column.Then the immunoadsorbent
was evaluated and characterized by scanning electron microscopy. In addition, time-dependent effects of the eradication
capacity of anti-HBsAg functionalized sepharose beads against HBV were investigated. Results. Proposed immunoadsorbents
exhibited a favorable biocompatibility as well as specificity. With the optimized recycle time, the decontamination performance
of HBV particles and quantity of HBsAg were assessed either by real-time quantitative PCR or ELISA, which showed that the
immunoadsorbent could remove approximately 90% of the HBV and 90% of the HBsAg from human plasma samples. Conclusions.
All these results indicated that the novel immunoadsorbent could effectively remove HBV particles and likely serve as a novel
therapy option or at least supplementary for the treatment regimen of HBV.

1. Introduction

Hepatitis B virus (HBV) remains a global threat that esti-
mated 2 billion people have been infected with worldwide.
HBV chronic infected patients suffer from a high risk of
liver cirrhosis and cancer that around 1 million people die
from every year [1]. Current clinical trials involvemodulation
of the immune system and antiviral drugs include IFN-𝛼
and nucleoside/nucleotide analogues against HBV infection
to protect liver cells [2]. However, these treatments require
long-term therapy; many may have uncertain side-effects
that cannot be tolerated by patients [3], especially for those
with liver cirrhosis or cancer, even lead to concomitant drug
resistance [4]. In recent years, most treatment strategies rely
on adapting other therapeutic drugs or using combination

therapies. Therefore, it is emergency to develop an additional
regimen option for HBV treatment, especially for those with
persistent severe HBV chronic infection. A currently dis-
cussed new treatment strategy against HBV infection aims at
reducing circulatingHBVparticles, which are often increased
in patients with HBV chronic infection and correlate with
disease severity.

Immunoadsorption has been established as an effective
and specific tool advantageous to plasmapheresis to remove
immunoglobulin and immune complexes in cytapheresis
which was used in autoimmune diseases including myas-
thenia gravis [5, 6], paraneoplastic neurologic syndrome
[7], atopic dermatitis [8], adult immune thrombocytopenic
purpura [9], low-density lipoprotein [10], systemic lupus
erythematosus [5], and so on. In all these clinical cases,
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immunoadsorption represents a rational, effective, and rel-
atively safe treatment option. Our aim is to establish an
extracorporeal immunoadsorption system which pumps the
anticoagulated blood of a patient through an extracorporeal
circulation system at a specific flow rate to selectively clear
away HBV pathogenic substances to achieve a therapeutic
effect. In this paper we report the discovery of a new strategy
of immunoaffinity column with mobilized anti-HBV surface
antigen (HBsAg) monoclonal antibody on the surface of
activated sepharose beads. By perfusing the column with
plasma, the interaction between the HBV and the adsorbing
materials clears the HBV from the patient’s plasma.

2. Materials and Methods

2.1. Plasma Samples. Plasma samples of HBV infected
patients and healthy people, provided from theWuhan Blood
Center (Wuhan, China), were collected and stored at – 80∘C
until use. All the samples were measured for DNA copy
number [11] by real-time quantitative PCR and for hepatitis B
surface antigen (HBsAg) protein level by ELISAmethod.The
anti-HBsAg antibody was supplied by theWuhan Institute of
Virology at the Chinese Academy of Sciences.

2.2. Fabrication of Anti-HBsAg Functionalized Sepharose 6
FF Beads. Sepharose beads are a polysaccharide polymer
material and have been commonly used in chromatographic
separation. To activate the sepharose beads, the beads were
treated with cyanogen bromide (CNBr) in a precooled
alkaline potassium phosphate buffer solution for 5 min and
then washed with phosphate-buffered saline (PBS), pH 8.5,
resulting in activate CNBr-sepharose beads. Then immedi-
ately, the active CNBr-Sepharose beads were immersed in
coupling buffer (0.1M PBS, pH 7.4) containing anti-HBsAg
monoclonal antibody protein at 37∘Cwith shaking at 120 rpm
in a proper time in a rocking incubator, to obtain anti-HBsAg
functionalized sepharose beads. After process of rinse, the
wash-through and antibody solutions loaded were collected
and dried at room temperature in a vacuum [12], followed by
dilution with distilled water, which was used for calculating
the coupling rate. Before process of adsorption assay, blocking
buffer (0.5 M NaCl with 0.5 M ethanolamine, pH 8.3) was
applied to quench the spare activate-ester group unreached
on sepharose surface at 120 rpm and 37∘C for 2 h in a rocking
incubator. The beads were washed three times with acetate
buffer (0.5MofNaCl with 0.5M ethanolamine, pH 4.0), Tris-
HCL buffer (0.5M NaCl with 0.1 M Tris-HCl, pH 8.0), and
phosphate-buffered saline (0.1M PBS, pH 7.4) successively.
In control, the active CNBr-Sepharose beads bind with
BSA were used to validate the nonimmunoadsorption of
targets.

2.3. Plasma Perfusion Assays. To mimic a real immunoad-
sorption, anti-HBsAg functionalized sepharose beads or BSA
binding sepharose (control) was loaded onto the chromatog-
raphy column to generate the extracorporeal circulation
system. Using a peristaltic pump to regulate the flow rate, a

certain quantity of plasma at room temperature was passed
over the column at a constant flow rate, and plasma samples
were collected before and after adsorption.

2.4. Plasma Detection Assays. The samples collected through
the adsorption process were measured and analyzed for
HBsAg, anti-HBs, HBeAg, anti-HBe, and HBcAb protein
levels and HBV DNA copy number by ELISA and real-time
quantitative PCR, respectively.

2.5. Data Analysis. When appropriate, data were obtained
from at least three independent experiments and expressed
as mean ± SD. For comparison of the mean of two groups,
the statistical significance was measured by Student’s t-
test. To compare the difference between multiple groups,
statistical significance was analyzed using a one-way analysis
of variance (ANOVA) followed by Newman-Keul’s test. Cal-
culations were performed with GraphPad Prism Statistical
Software (GraphPad Software Inc., San Diego, CA) according
to the methods of our previously paper [13]. Statistical
significance was defined as P < 0.05 or P < 0.01.

3. Results

3.1. Fabrication of HBV Specific Sepharose Beads. The
sepharose beads have been applied frequently to synthesis
of immunoadsorbents for plasmapheresis therapy, owing
to the stabilization in chemical characters and structure. In
present study, active CNBr-functionalized sepharose beads
[5], high cross-linked spherical sepharose, was adopted as
support matrixes. Schematic representation of preparation
of CNBr-functionalized sepharose 6 FF beads are shown
in Figure 1(a). As the anti-HBsAg protein was immobilized
covalently to attach HBV particles, the coupling incubation
time for anti-HBsAg monoclonal antibody attaching to
sepharose 6 FF beads was optimized. The results showed
that the adsorption rate has increased from 0 min to 30
min. During the incubation time more than 30 min, the
adsorption rate did not have significant change. So we
considered that 30 min for incubation was the optimum time
(Figure 1(b)).

Scanning electron micrograph (SEM) images showed the
surface structure of active CNBr-functionalized sepharose
6 FF beads and anti-HBsAg functionalized sepharose 6
FF beads with or without plasma absorption. They were
depicted, respectively, in Figure 1(c). Obviously, significant
morphological changes rose after anti-HBsAg coupling. Bare
active CNBr-functionalized sepharose 6 FF beads possess
a glossy and smooth surface structure, while numerous
raised granules were observed on the surface of affinity
adsorbents. Compared with the unabsorption anti-HBsAg
functionalized sepharose 6 FF beads, the affinity adsor-
bents exhibit coarser surface containing many bulbiform
small bulges. So we hypothesized that anti-HBsAg had
been immobilized successfully onto the substrate surfaces
(Figure 1(c)).
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Figure 1: Sepharose 6 FF was activated by CNBr through their hydroxyl groups (-OH). (a) Schematic representation of anti-HBsAg
functionalized sepharose 6 FF. (b) Time-point optimization of the incubation conditions. 30 min as the optimal time for maximal absorption.
Shown is representative of at least 3 individual experiments. (c) Scanning electron micrograph (SEM) images showing surface morphology.
(A) (2000X) and (D) (8000X) showed bare CNBr-functionalized sepharose 6 FF beads; (B) (2000X) and (E) (8000X) showed anti-HBsAg
functionalized sepharose 6 FF beads; and (C) (2000X) and (F) (8000X) showed anti-HBsAg functionalized sepharose 6 FF beads adsorbed
with plasma.
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Table 1: Changes of blood components after treatment (n=10).

Blood biochemical indexes Untreated Treated Reference range P value
AST (U/L) 31.23 ± 3.223 29.84 ± 3.453 0 - 45 NS
GLU (mmol/L) 4.35 ± 0.20 3.44 ± 0.32 3.61-6.11 NS
UREA (mmol/L) 4.33 ± 0.3872 3.53 ± 0.3982 1.8-7.1 ∗

CPK (U/L) 121.34 ± 12.32 119.32 ± 12.32 25-170 NS
TP (g/L) 61.57 ± 1.44 57.34 ± 1.60 60.0-78.0 NS
Crea (𝜇mol/L) 46.34 ± 1.18 43.48 ± 1.48 59.00-104.00 ∗

TC (mmol/L) 3.416 ± 0.83 3.174 ± 0.78 <5.30 NS
ALB (g/L) 36.28 ± 2.79 34.2 ± 2.50 34.0-48.0 ∗∗

VB12 (pmol/L) 297.9 ± 3.12 267.32 ± 2.89.3 141.00-698.00 ∗

AST, aspartate aminotransferase; GLU, blood glucose; UREA, urea nitrogen; CPK, creatine phosphate kinase; Crea, creatinine; TP, total protein; TC, total
cholesterol; ALB, albumin; paired T-test analysis was used. Results were shown as mean ± SEM. NS, not significant. ∗, 0.01 < p < 0.05;∗∗, p < 0.01.

3.2. Selectivity and Biocompatibility of Anti-HBsAg Function-
alizedAdsorbents. Theblood compositions are import for the
body, which keeps the balance of homeostatic. Nonspecific
adsorption of anti-HBsAg functionalized adsorbents had
been investigated which was a major concern of all extra-
corporeal immunoadsorbents since that great losses of useful
and essential components in blood samples resulted in a
troublesome issue relating to the safety that was unacceptable.
Herein, effects of adsorbents on biochemical components
were assessed using a batch adsorption system and examined
under aseptic condition simulating clinically operations.
The results are all analyzed and summarized in Table 1. It
was assumed that innocent eliminations of normal blood
components were inevitable in immunoadsorption process.
As shown in Table 1, contents of AST, GLU, CPK, TP,
and TC which represent components in plasma samples
were not significantly changed (p>0.05), which demonstrated
nonspecific adsorption is controllable and avoidable for the
anti-HBsAg functionalized adsorbents. Other components
like UREA, Crea, ALB, or VB12 were decreased significantly
seemingly after adsorption assay by analysis of paired stu-
dents’ T-test, whereas the retention amounts which were
somewhat negligible for the final contents were still within
the allowable ranges of normal value for each individuals as
indicated.

3.3. Recycle Optimization for HBV Affinity Adsorption. Time
tissue of blood circulation is the key concern relative with the
safety and efficiency during the extracorporeal therapy pro-
cess using immunoadsorbents. Recycling of the immunoad-
sorbent would be an optimal scheme for the use of the
activated materials.The results in Figure 2 demonstrated that
recycle for 3 times of affinity adsorption could cause more
than 90% eradication of HBV in plasma.

3.4. Comparation of the Adsorption Rates by Detection of
HBsAg Levels and HBV DNA. HBV Dane particles are
filamentous and spherical bodies containing HBsAg, but
these filamentous and spherical bodies lack DNA. Thus, the
adsorption rates of HBsAg and HBV DNA are different. In
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Figure 2: Recycle optimization for HBV affinity adsorption. The
affinity capacity of HBV by the immunoadsorbent was detected at
recycle time(s) from 1 to 5.

this study, we established a real-time quantitative PCR assay
for HBVDNA detection. As shown in Figure 3, there were no
significant discrepancies of adsorption efficiency by detection
of either HBV DNA or HBsAg.

3.5. Batch Adsorption of HBV Particles from HBV Patients.
For the plasma perfusion, the plasma samples were collected
and the HBsAg, anti-HBs, anti-HBe, HBeAg, HBcAg, and
immunoglobulin (Ig) G levels were measured and compared.
The presence of HBsAg indicates HBV titer in plasma. The
levels of HBsAg in plasma before and after anti-HBsAg
functionalized adsorbents treatment could be used to cal-
culate the adsorption rates. In this study, the HBsAg was
adsorbed well by the Sepharose 6 FF-anti-HBsAg, while
there were no significant changes in the levels of anti-HBs,
anti-HBe, HBeAg, HBcAg, or IgG (Figure 4). The results
showed that the Sepharose 6 FF-anti-HBsAg functionalized
adsorbents can capture the HBV particles with the high
specificity.
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Figure 3: Comparation of the adsorption rates by detection of HBV DNA copies and HBsAg levels. (a) Establishment of real-time PCR
assay for HBV detection. Standard curves for real-time PCR assays. Standard plasmids ranging from 1×103 to 1×109 copies/ml were run in
real-time quantitative PCRmixtures to generate standard curves. R value = 0.9953. (b)The adsorption rates for HBVDNA copies and HBsAg
were determined and compared (n=4).

4. Discussion and Conclusion

The current study had established a novel HBV specific
immunoadsorbents, which could be combined with blood
purification technique. In this study, HBV surface protein
specific monoclonal antibody (anti-HBsAg) had been immo-
bilized onto CNBr-functionalized sepharose 6 FF beads.This
antibody could form a covalent bond through cyanogen
bromination binding to the sepharose 6 FF by cyanate
esters and then binds the HBsAg to clear the HBV virion
through antibody-antigen specific adsorption. Subsequently,
anti-HBsAg functionalized adsorbents have been determined
available and efficiency for eliminate of HBV particles by

detection both HBsAg and HBV DNA. The biocompatibil-
ity and specificity were confirmed using batch adsorption
process spontaneously. Meanwhile recycle optimization for
anti-HBsAg functionalized adsorbents usage was performed
which indicated that recycle for 3 times of affinity adsorp-
tion could cause more than 90% eradication of HBV in
plasma.

In summary, anti-HBsAg functionalized adsorbents
introduced in this work exhibit pretty well potential for HBV
removal and this approach could establish a novel therapy
option or at least as a combination supplementary therapy
strategy with antiviral drugs for the treatment regimen of
HBV.
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Figure 4: Changes of HBsAg and HBV relative protein in plasma through the anti-HBsAg functionalized adsorbents.
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