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As the water source for the Middle Route Project of the South-to-North Water
Diversion Project (MR-SNWD) of China, the Danjiangkou Reservoir (DJR) is in the
process of ecosystem reassembly, but the composition, function, and assembly
mechanisms of bacterioplankton communities are not yet clear. In this study, the
composition, distribution characteristics and influencing factors of bacterioplankton
communities were analyzed by high-throughput sequencing (HTS); PICRUSt2 was
used to predict community function; a molecular ecological network was used to
analyze bacterioplankton interactions; and the assembly process of bacterioplankton
communities was estimated with a neutral model. The results indicated that the
communities, function and interaction of bacterioplankton in the DJR had significant
annual and seasonal variations and that the seasonal differences were greater than
that the annual differences. Excessive nitrogen (N) and phosphorus (P) nutrients in
the DJR are the most important factors affecting water quality in the reservoir, N and
P nutrients are the main factors affecting bacterial communities. Season is the most
important factor affecting bacterioplankton N and P cycle functions. Ecological network
analysis indicated that the average clustering coefficient and average connectivity of the
spring samples were lower than those of the autumn samples, while the number of
modules for the spring samples was higher than that for the autumn samples. The
neutral model explained 66.3%, 63.0%, 63.0%, and 70.9% of the bacterioplankton
community variations in samples in the spring of 2018, the autumn of 2018, the
spring of 2019, and the autumn of 2019, respectively. Stochastic processes dominate
bacterioplankton community assembly in the DJR. This study revealed the composition,
function, interaction, and assembly of bacterioplankton communities in the DJR,
providing a reference for the protection of water quality and the ecological functions
of DJR bacterioplankton.

Keywords: Danjiangkou Reservoir, bacterioplankton communities, seasonal variations, ecological network
analysis, neutral model
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INTRODUCTION

The Danjiangkou Reservoir (DJR) is the water source for the
MR-SNWD of China (Liu et al., 2018). To meet the demand of
MR-SNWD water transfer, the water level in the DJR was raised
from 157 m to 170 m by increasing the height of the dam in 2013,
and the inundation area was increased by 302.5 km2 (Shu et al.,
2017). The water flow direction in the DJR changed dramatically,
from the original outflow from the Danjiangkou Dam to the
diversion of water at the head gate of the Taocha Channel to
the north, eventually reaching Beijing and Tianjin. Therefore, the
DJR ecosystem is in the process of reconstruction, providing an
excellent location for the study of bacterioplankton composition,
function, interaction and community assembly in large reservoirs
(Pan et al., 2018).

Bacterioplankton, as the main component of the aquatic
community, plays an important role in the matter cycling in
freshwater bodies and drive chemical element cycles in the
entire ecosystem (Ducklow et al., 1986; Grossart, 2010). In
addition, bacterioplankton are sensitive to water quality and
environment changes: changes in factors such as the content of
nutrients in different forms and the physicochemical indicators of
the freshwater body will influence bacterioplankton community
structure (Morris and Lewis, 1992; Mohapatra et al., 2020).
Therefore, analyzing variations in bacterioplankton community
structure in a reservoir and the difference in the degree of
response to the physical and chemical properties can well reflect
the water environment of the reservoir and can be used as an
important indicator for analyzing the health of the reservoir
ecosystem. Currently, few studies have been carried out on
the composition of the bacterioplankton communities in the
DJR and the associated influencing factors. In our previous
study, HTS was employed for bacterioplankton community
composition and influencing factors in the DJR, found that
the bacterioplankton community were composed of 27 phyla
and 336 genera and that TN, pH, COD, and CODMn can
significantly affect bacterioplankton community composition
(Chen Z. J. et al., 2020). Sun et al. (2021) studied the composition
of bacterioplankton in the upstream river of the DJR and
reported that environmental parameters such as pH, TN, Cond,
and NH4

+–N significantly affected the composition of the
bacterioplankton communities. The dry season at the DJR occurs
from February to July, and the wet season occurs from August
to January of the following year. The physical and chemical
properties of the water body (temperature, nutrients, etc.) vary
greatly during the different periods. DJR bacterioplankton may
exhibit yearly and seasonal variation, but currently, there is no
comprehensive comparative study on different years and seasons.
The DJR area carries relatively large nitrogen and phosphorus
loads, of which TN, the most important factor affecting water
quality, significantly exceeds the standard (Shu et al., 2017;
Chen et al., 2018). Bacterioplankton is a principal contributor
to the N and P cycles. As noted by Zhang L. et al. (2021) in
their study of bacterial communities in the MR-SNWD main
water diversion canal, attention will be focusing on microbial
communities that help remove N and P in the water body.
Furthermore, microbial communities play an important role in

ecological processes through direct and indirect interactions.
Ecological network analysis technology has been applied in
studies of bacterioplankton interactions (Kara et al., 2013; Chen
Z. J. et al., 2020; Zhang J. et al., 2021). However, there is
still little information regarding the interaction pattern among
species of bacterioplankton in the DJR. The ecological network
of the DJR bacterioplankton community was constructed using
bioinformatics analysis, and key species were identified. These
data are of great significance for analyzing and predicting
the survival patterns of bacterioplankton communities in the
DJR ecosystem. The mechanisms of biome assembly have
always been one of the core issues of ecology, among which
the neutral theory has become a research hotspot due to its
simplicity and predictive ability and has been widely applied
in terrestrial ecosystems such as forests and grasslands; neutral
processes can play an important role in shaping biomes (Zhou
and Ning, 2017; Zhang et al., 2018). The neutral theory has
also been applied to bacterioplankton community assembly in
aquatic ecosystems. Chen et al. (2019) showed that stochastic
processes dominate microeukaryotic community assembly in the
Tingjiang River. Zhang L. et al. (2021) showed that the bacterial
communities in the MR-SNWD main canal were mainly shaped
by a deterministic process and that stochasticity dominated
microeukaryotic community assembly. Currently, there are no
reports on bacterioplankton community assembly in the DJR,
thus requiring attention.

Because the DJR is related to the safe operation of the
MR-SNWD, studies on the composition, function and assembly
of bacterioplankton communities are of great ecological
significance. Based on the current research status for this
topic, we pose the following research questions: (1) Are
there yearly and seasonal variations in the composition
and function (especially the N and P cycles) of the
bacterioplankton communities in the DJR? (2) How do
bacterioplankton communities interact with each other in the
DJR, and do the ecological networks and core microbiome
change between different years and seasons? (3) How does
bacterioplankton community assembly occur in the DJR?
Is the assembly determined by deterministic or stochastic
processes?

MATERIALS AND METHODS

Study Area and Sample Collection
According to geographic location, we set up 11 ecological
sites in the DJR: Dashiqiao (DS), Zhangying (ZY), Heijizui
(HJ), Kuxin (KX), Songgang (SG), Taizishan (TZ), Qushou
(QS), Ganqu (GQ), Bashang (BS), Baxia (BX), Langhekou
(LH) (Figure 1). The dry season at the DJR occurs from
February to July, and the wet season occurs from August to
January of the following year. We collected samples in the
spring of 2018 (May, 2018S), the autumn of 2018 (October,
2018A), the spring of 2019 (May, 2019S), and the autumn
of 2019 (October, 2019A). At each site, three replicate water
samples were collected from surface water (0–50 cm). The
water samples were processed for subsequent DNA extraction of
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FIGURE 1 | Location of study area and distribution of sampling sites.

bacterioplankton and physicochemical analysis of water quality.
0.22-µm filter paper was used to collect bacterioplankton by
filter 1 L of water samples, and the filter were stored in a
–80◦C refrigerator.

Physicochemical variables were measured according to
the environmental quality standard for surface water of
China (GB3838-2002). Water temperature (T), pH and
dissolved oxygen (DO) were measured in situ using the
YSI 6920 (YSI Inc., Yellow Springs, Ohio, United States).
Secchi depth (SD) was determined with a 30-cm-diameter
Secchi disk. Water samples for chemical analysis were
transported to the laboratory within 24 h, stored in a
refrigerator at 4 ◦C, and analyzed within one week after
sample collection. The permanganate index (CODMn) was
calculated using the potassium permanganate index method,
and the chemical oxygen demand (COD) was measured by
the potassium dichromate method. The total phosphorus
(TP) was determined with acidified molybdate to form
reduced phosphorus-molybdenum blue and measured
spectrophotometrically. Total nitrogen (TN) was assayed
via alkaline persulfate digestion and UV spectrophotometry,
whereas ammonia nitrogen (NH4

+–N) was measured using
Nessler’s reagent spectrophotometric method. Chlorophyll a
(Chl a) concentrations were estimated spectrophotometrically
after extraction in 90% ethanol.

The trophic status of the Danjiangkou Reservoir area was
assessed by measuring the parameters TN, TP, CODMn, Chl a, and

SD according to the improved Carlson’s trophic level index (TLI)
(Wang et al., 2002; Chen Z. J. et al., 2020).

DNA Extraction and Sequencing
DNA extraction from each filter was performed with the
E.Z.N.A. R© Water DNA Kit (OMEGA, United States) following
the instructions given by the supplier. The DNA samples
were sent to Shanghai Majorbio Bio-Pharm Technology Co.,
Ltd. and sequenced (2 × 300) on an Illumina MiSeq
platform. For the amplification of the 16S rRNA gene, the
specific primers 338F (ACTCCTACGGGAGGCAGCA) and
806R (GGACTACHVGGGTWTCTAAT) were used for high-
throughput pyrosequencing. Samples were amplified on a T100
thermal cycler (Bio-Rad Laboratories). After pyrosequencing,
the raw data was filtered according to barcode and primer
sequences using the software of Trimmomatic v0.39 and FLASH
v1.2.11. Then the high-quality sequences were processed using
the using QIIME 2 (Bolyen et al., 2019). Non-repeating sequences
were extracted from the optimized sequences using UPARSE
v7.0.1090 (DeSantis et al., 2006). The bacterial sequences were
identified and clustered into OTUs (97% similarity) by using
UCLUST (version 7.11) method (Edgar, 2010). The high-
thoughput sequencing data were deposited in the MG-RAST2

under accession number of mgp101864.

1http://drive5.com/uparse/
2http://www.mg-rast.org/
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Bioinformatic Analysis
We performed beta diversity analysis online using the free
online platform of Majorbio Cloud Platform.3 The Unweighted
pair-group method with arithmetic mean (UPGMA), partial
least squares-discriminant analysis (PLS-DA), non-metric
multidimensional scaling (NMDS), redundancy analysis (RDA),
canonical correspondence analysis (CCA), variation partition
analysis (VPA), correlation test and mantel test were conducted
on this platform (Ren et al., 2022). Phylogenetic molecular
ecological networks (pMENs) analysis was performed using the
Molecular Ecological Network Analyses Pipeline (MENAP)4

(Zhou J. Z. et al., 2011; Deng et al., 2012). The metagenomes
predicted by the Phylogenetic investigation of communities
by reconstruction of unobserved states (PICRUSt2) algorithm
were classified into clusters of orthologous groups (COGs)
(Douglas et al., 2020). In this study, PICRUSt2 was used to
explore the functional profiles of the bacterial communities
according to the online protocol. Heat map were generated
from the gene copy number of the functional genes using
the TBtools software (Chen C. et al., 2020). To determine the
potential importance of stochastic processes on community
assembly, we used a neutral community model (NCM) to predict
the relationship between OTU detection frequency and their
relative abundance across the wider metacommunity. In this
model, Nm is an estimate of dispersal between communities. The
parameter Nm determines the correlation between occurrence
frequency and regional relative abundance, with N describing
the metacommunity size and m being the immigration rate.
The parameter R2 represents the overall fit to the neutral
model. Calculation of 95% confidence intervals around
all fitting statistics was done by bootstrapping with 1000
bootstrap replicates.

RESULTS

Physical and Chemical Properties of
Water
Except for TN and CODMn, the water quality of the DJR
is generally good based on China’s Environmental Quality
Standards for Surface Water (GB38382-2002) and, overall,
meets the requirements of class I water standards. In 2018S,
2018A, 2019S and 2019A, the TN contents were high, with
average contents of 1.75, 1.80, 1.63 and 1.96 mg/L, respectively,
concentrations that were higher than the water quality standards
for class IV surface water, with trends of higher concentrations
in autumn than in spring (Supplementary Table 1). The
CODMn was similar to TN, with average concentrations of
2.60, 2.72, 2.72, and 2.96 mg/L in 2018S, 2018A, 2019S,
and 2019A, respectively, concentrations that met the class II
surface water standards, with trends of higher concentration in
autumn than in spring.

3www.majorbio.com
4http://ieg4.rccc.ou.edu/mena/login.cgi

Bacterioplankton Composition and
Yearly and Seasonal Variations
High-throughput sequencing (HTS) results indicated
that the DJR bacterioplankton comprised the phyla
Proteobacteria, Actinobacteria, Bacteroidetes, Cyanobacteria,
Firmicutes, Verrucomicrobia, and Armatimonadetes, of which
Proteobacteria, Actinobacteria and Bacteroidetes accounted for
71.78%∼96.98% of the total population (Figure 2). At the genus
level, CL500-29_marine_group, Acinetobacter, hgcI_clade,
Limnohabitans, Cyanobium_PCC-6307, Flavobacterium,
Brevundimonas, Sediminibacterium, and Exiguobacterium
accounted for 27.38% ∼ 96.60% of the bacterioplankton
population (Supplementary Figure 1).

A dilution curve was used to evaluate the sequencing depth
of the samples. The results indicated greater than 20,000 sample
bands, with a dilution curve that tended to be flat (Figure 3A).
UPGMA clustering tree analysis and PLS-DA were used to
analyze the bacterioplankton community differences among
different samples. In the UPGMA clustering tree, 2018S and
2019S were clustered in the lower part and separated from the
2018A and 2019A samples (Figure 3B). The PLS-DA analysis
results were similar to the UPGMA clustering tree results. In
the PLS-DA plot, 2018S and 2019S were distributed on the
right side of the plot, and 2018A and 2019A were distributed
on the left side of the plot, indicating that compared with
different years, different seasons had a greater impact on the
bacterioplankton communities and was the most important
factor (Figure 3C). Additionally, comparing different seasons,
the distances in the PLS-DA plots for 2018A and 2019A were
greater than those for 2018S and 2019S, indicating that the
bacterioplankton communities in the DJR varied in different
seasons and that the variations in autumn were larger than
those in spring. Samples from different seasons were clustered
together in the UPGMA and PLS-DA plots, but the DS and ZY
samples were poorly clustered. Based on the distribution of the
sampling points, these two points were located on the tributaries
of the reservoir, and thus, the bacterioplankton communities
were different from those in the reservoir. Adonis and ANOISM
were used to test the differences in the overall composition
of the bacterioplankton communities (Supplementary Table 2).
The results indicated that the differences in the composition
of the bacterioplankton communities in different years and in
different seasons were significant (P < 0.05). The number of
OTUs in the samples at different time points was analyzed using
a Venn diagram. The results indicated that the overall number of
bacterial OTUs in the autumn was higher than that in the spring
and higher in 2019 than in 2018 (Figure 3D).

Influencing Factors of Bacterioplankton
Communities
First, the environmental factors with a variance inflation factor
(VIF) > 10 were screened and removed by VIF analysis,
and the screened environmental factors were used for RDA
or CCA. The effects of environmental factors in different
years and seasons on the bacterioplankton communities were
analyzed by RDA or CCA. ORP, TP, TN, NH4

+-N and SD
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FIGURE 2 | Relative abundance of bacterioplankton sequences at the phylum.

FIGURE 3 | Dilution curve (A), UPGMA-tree (B), PLS-DA (C) and Venn diagram (D) base on pyrosequencing of bacterioplankton communities.

were the significant factors affecting the 2018S bacterioplankton
communities (Figure 4A). pH, CODMn, TN and Chla were
the significant factors affecting the 2018A bacterioplankton
communities (Figure 4B). T, pH, DO, COD, CODMn, TN,

NH4
+-N and Chla were the significant factors affecting the

2019S bacterioplankton communities (Figure 4C). Cond, ORP,
CODMn, NH4

+-N, and NO3
−-N were the significant factors

affecting the 2019A bacterioplankton communities (Figure 4D).
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FIGURE 4 | RDA, CCA of 2018S (A), 2018A (B), 2019S (C), 2019A (D) bacterioplankton communities of and physico-chemical water quality parameters.

The above results suggest that the composition and degree of
impact of the significant environmental factors vary between
different years and seasons and that the relationship between the
DJR bacterioplankton communities and environmental factors
exhibits annual and seasonal variations. Excessive N and P
nutrients in the DJR are the most important factors affecting
water quality in the reservoir. N and P nutrients are also the main
factors affecting the bacterial communities. The effects of N and P
nutrients (TN, NH4

+-N, NO3
−-N, TP) and other environmental

factors on the changes in bacterial community composition were
analyzed by VPA. N and P nutrients (TN, NH4

+-N, NO3
−-

N, TP) explained 16.12%, 10.59%, 32.46%, and 24.93% of the
variation in bacterial community composition in 2018S, 2018A,
2019S, and 2019A, respectively, indicating a strong interaction
of N and P nutrients in shaping the microbial communities
in the reservoir.

Bacterioplankton Functions
To assess the functions of bacterioplankton at different site in
the DJR, PICRUSt2 software was used to perform microbiota
predictions and analyses. The prediction results, based on
the COG database, included a total of 24 functional gene
families, of which six functional gene families, such as amino
acid transport and metabolism and translation, Translation,
ribosomal structure and biogenesis, Energy production and
conversion, Cell wall/membrane/envelope biogenesis, Inorganic

ion transport and metabolism, Carbohydrate transport and
metabolism were the main functional gene families, accounting
for 40.29%–45.76%. We analyzed the functional genes related to
the N and P cycles in bacterioplankton samples from the DJR
for different years and seasons. The results indicated that such
genes were predominantly involved in nitrogen fixation (K02588
nifH), nitrification (K10535 hao), denitrification (K00368 nirK,
K04561 norB, and K00376 nosZ), nitrogen assimilation reduction
and dissimilarity reduction (K02575 nasA, K00367 narB, K02567
napA, K00366 nirA, K00362 nirB, and K03385 nrfA) and other
related nitrogen cycle function genes. The results of cluster
analysis of the copy number of nitrogen cycle genes indicated
two separate groups in spring and autumn, indicating that season
was the most important factor affecting the bacterioplankton N
cycle (Figure 5A). The 2018 and 2019 samples were separated
from each other in different seasons, indicating that year was also
an important influencing factor. The predicted key genes of the
P cycle were K00655 plsC, K01507 ppa, K02036 pstB, K02037
pstC, K02038 pstA, K00324 pntA, K06217 phoH, K03820 lnt,
and K07636 phoR. The results of the gene copy number cluster
analysis were similar to those for the N cycle, i.e., season and year
were the main influencing factors (Figure 5B).

Ecological Network Analysis
The relative abundance of bacterioplankton was used to construct
a bacterioplankton molecular ecological network for the DJR
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FIGURE 5 | Heatmap showing the hierarchical clustering of the predicted functional genes related to the N (A) and P (B) cycles in bacterioplankton sample.

bacterioplankton in different years and seasons based on the
RMT method (Figure 6). Based on the analysis of the network
properties, the number of nodes in the 2019 sample was higher
than that in the 2018 sample, and it was higher in the spring
than in the autumn. The main trend for the total number
of links was that the number was lower in spring than in
autumn. Additionally, the average clustering coefficient and

average connectivity of the molecular ecological network for the
spring samples were lower than those for the autumn samples,
and the number of modules were higher for the spring samples
than for the autumn samples.

In addition, molecular ecological networks have been widely
used in the identification of core microbiomes. Nodes with
Zi ≥ 2.5 or Pi ≥ 0.62 were defined as core microbiomes. The
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FIGURE 6 | Overview of the 2018S (A), 2018A (B), 2019S (C), 2019A (D) bacterioplankton networks. Each node represents an OTU. The colored circles indicate
the OTUs affiliated with particular phyla (color code on the right).

number and composition of core microbiomes in the molecular
ecological network of bacterioplankton in different years and
seasons in the DJR were different. There were 8 core microbiomes
(OTU number) for the 2018S sample: OTU2563 and OTU3223
of Actinobacteria, OTU1049, OTU3534, and OTU3798
of Bacteroidetes, OTU2938 of Cyanobacteria, OTU2425
of Gemmatimonadetes, and OTU1780 of Proteobacteria
(Figure 7A). There were 5 core microbiomes (OTU number)
for the 2018A sample: OTU1765 of Actinobacteria, OTU89
of Bacteroidetes, OTU12 of Proteobacteria, OTU3233 of
Verrucomicrobia (Figure 7B). There were 6 core microbiomes
(OTU number) for the 2019S sample: OTU3748, OTU4243
and OTU3770 of Bacteroidetes, OTU1931, OTU2817 and
OTU3044 of Proteobacteria (Figure 7C). There were 6 core
microbiomes (OTU number) for the 2019A sample: OTU2082,
OTU3717 of Actinobacteria, OTU2641 of Firmicutes, OTU1976
of Patescibacteria, OTU2034, OTU960 of Proteobacteria
(Figure 7D). The OTU classification information for these
key bacteria is provided in Supplementary Table 3. Spearman
correlation was used to analyze the relationship between
environmental factors and key bacteria. The results showed that

T, Cond, CODMn, TP, NH4
+-N, NO3

−-N and SD were the main
factors affecting core microbiomes.

Community Assembly
Neutral model analysis of the bacterioplankton communities in
the DJR showed that the neutral model explained 66.3%, 63.0%,
63.0%, and 70.9% of the bacterioplankton community variations
in 2018S (Figure 8A), 2018A (Figure 8B), 2019S (Figure 8C), and
2019A (Figure 8D), respectively, and that stochastic processes
played a leading role.

DISCUSSION

The Composition of and Yearly and
Seasonal Variation in the
Bacterioplankton Communities in the
Danjiangkou Reservoir
High-throughput sequencing (HTS) has been widely used in
the study of bacterial community composition in aquatic
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FIGURE 7 | Zi-Pi plot of 2018S (A), 2018A (B), 2019S (C), 2019A (D) bacterioplankton networks.

ecosystems, giving people the opportunity to conduct more
in-depth and comprehensive studies on the structure and
function of bacterial communities in freshwater (Grossart, 2010).
Liu et al. (2015) analyzed the bacterioplankton composition
of 42 lakes and reservoirs in China. The results indicated
that Actinobacteria, Bacteroidetes, and Cyanobacteria were the
dominant populations. Sun et al. (2021) analyzed Han River
bacterioplankton upstream of the DJR. The results showed
that the dominant genera were Flavobacterium, Planktophila,
and Siphonobacter. Our assessment of the bacterioplankton
communities in the DJR showed that they were mainly
composed of bacterial phyla common in water bodies, such
as Proteobacteria, Actinobacteria, and Bacteroidetes. At the
genus level, the communities were mainly composed of CL500-
29_marine_group, Acinetobacter, hgcI_clade, and Limnohabitans.
The community composition was similar to the composition
of DJR bacterioplankton in May 2016 but differed from the
composition of bacterioplankton in the main water diversion
canal in the Han River, upstream of the DJR (Luo et al., 2019;
Chen Z. J. et al., 2020; Zhang L. et al., 2021).

Many studies have shown that bacterioplankton exhibit
temporal and spatial variation characteristics under the influence
of physicochemical properties such as T, pH, nutrients, and DO

in the water body and hydrological factors such as flow velocity,
flow rate, and water level (Pearce, 2005; Qian-Qian et al., 2021).
The dry season at the DJR occurs from February to July, and
the wet season occurs from August to January of the following
year. The water level of, nutrients in, and temperature of the
reservoir vary greatly during different periods (Dong et al., 2020).
Based on our analysis, the physicochemical properties of the
water body were different in different periods, and T, TN, and
CODMn exhibited trends of being higher in the autumn than
in the spring (Supplementary Table 1). UPGMA clustering and
PLS-DA of bacterioplankton community composition revealed
that bacterioplankton communities were significantly different
in different seasons and years and that the influence of season
was the most important factor. This finding is consistent with
the results reported by Luo et al. (2019), who showed that the
seasonal variation in the composition of the bacterioplankton
communities in the main canal was greater than that of the spatial
distribution variation.

Seasonal variation in bacterioplankton can be reflected not
only by community composition but also through the interaction
and composition and function of core microbiomes. Jiao et al.
(2020) conducted a network analysis of planktonic bacterial
communities and showed seasonal variations in bacterioplankton

Frontiers in Microbiology | www.frontiersin.org 9 June 2022 | Volume 13 | Article 884765

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-13-884765 June 9, 2022 Time: 16:49 # 10

Chen et al. Bacterioplankton Communities in the Danjiangkou Reservoir

FIGURE 8 | Fit of the neutral community model (NCM) of 2018S (A), 2018A (B), 2019S (C), 2019A (D) bacterioplankton community assembly.

network attributes. Molecular ecological network analysis of
DJR bacterioplankton showed that network attributes such as
nodes, links, average clustering coefficient, average connectivity,
and modules all exhibited seasonal variations. These network
attributes are used to indicate the size, complexity, efficiency of
transferring matter, energy and information between species, and
sensitivity to the external environment of the network (Zhou J.
et al., 2011; Chen et al., 2021). The links, average clustering
coefficient, and average connectivity for the autumn samples
were all higher than those for the spring samples, indicating
a more complex network association and higher susceptibility
to interference from the external environment. Similarly, an
analysis of the bacterioplankton network for the four seasons at
Lake Taihu indicated that the network in autumn was the most
complex and the network in spring was the simplest (Lin et al.,
2019). The reason may be due to the massive reproduction of
phytoplankton in autumn. The large amount of soluble organic
matter, including hydrocarbons and organic acids, produced
by phytoplankton photosynthesis provides abundant nutrients
for bacteria, allowing bacterioplankton networks to be more
complex. Another important function of network analysis is
the identification of core microbiomes, which play important
roles in the stabilization of ecological service functions. The
results showed that the number of core microbes in 2018S was

higher than that in 2018A. The number of core microbiomes in
2019 was the same, but the composition of core microbiomes
was significantly different. The relative abundance of bacterial
communities to which some key nodes belong to in the
Danjiangkou bacterial network was relatively low (< 1%),
indicating that low-abundance bacteria in the water body played
an important role in bacterial network assembly and suggesting
that further attention should be paid to the role of low-abundance
bacteria (Liu et al., 2015; Peter et al., 2018). The molecular
network analysis used to investigate the links between numerous
taxa, however, these links are often difficult to provide any
evidence of such interactions using biochemical or other standard
microbiological tests referring to living microbes. Thus, it is
required follow up experimental validation to confirm true
bacterial interactions in Danjiangkou Reservoir.

N and P Nutrients Are the Main Factors
Driving the Communities and Function of
Bacterioplankton in the Danjiangkou
Reservoir
The DJR is an important drinking water source in China, and
water quality is always stable at classes II and above. A claim
supported by the monitoring results from this experiment
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(Supplementary Table 1). Due to the impact of non-point source
pollution, such as agricultural production around the DJR and
the input of main and tributary streams, such as the Hanjiang
River and the Danjiang River, the excessive TN content in the
DJR has become a major threat to water quality in the water
body. Dong et al. (2020) conducted TN analysis of the DJR for
2016-2020 and showed that the TN content ranged from 0.928
to 1.020 mg/L. The results of this experiment showed that the
TN content in the DJR exceeded 1.00 mg/L, with the highest
content being 2.862 mg/L, meeting the standard for class IV
surface water and showing a trend of higher concentrations in
autumn than in spring. An explanation for thus finding is that
autumn is the wet season, and N in the soil of the upstream basin
enters the water body with rain. As the main factor in freshwater
ecosystems, N and P nutrients significantly affect the composition
of bacterioplankton communities (Kisand et al., 2001; Maria
Montserrat et al., 2002). An RDA of the bacterioplankton
communities and environmental factors in the DJR in May
2016 showed that TN was an important factor affecting the
distribution of bacterioplankton (Chen Z. J. et al., 2020). In
this study, RDA and CCA indicated that N and P nutrients
significantly affected the composition of the bacterioplankton
communities, and subsequent VPA analysis indicated that N
and P nutrients were the most important factors affecting the
bacterioplankton communities. Previous long-term monitoring
of the DJR showed that it was in a mesotrophic state and that
N and P contents in the DJR were lower than those in other
lakes in China (Chen Z. J. et al., 2020). Many previous studies
have shown that in lakes the nutrient concentration may be
the limiting factor for bacterial growth and is the main factor
affecting the composition of bacterioplankton communities
(Vrede, 2005). Spearman correlation analysis showed that NH4

+-
N, NO3

−-N, TP and other nutrients were also the main factors
affecting core microbiomes, indicating that they can also affect
bacterioplankton interactions.

Microbes are also the main driving force of the N and P cycles
in the DJR. Dang et al. (2021) found nitrogen-cycle bacteria such
as Rhodoferax, Polaromonas, Limnohabitans, Pararheinheimera,
Desulfobulbus, and Pseudopelobacter as well as 51 nitrogen
functional genes in the DJR. Studies have shown that PICRUSt
can accurately predict the presence and abundance of functional
genes (Hartman et al., 2017; LeBrun and Kang, 2018; Ribeiro
et al., 2018). We analyzed the functional genes related to the
N and P cycles in the DJR in different years and seasons.
PICRUSt2 predicted 40 N functional genes and 41 P functional
genes, findings that were consistent with the functional genes of
bacterioplankton for N cycling in Pearl River Estuary predicted
by Zhu et al. (2018) and the functional genes of bacterioplankton
for P cycling in Poyang Lake predicted by Ren et al. (2019).
These results indicated that the bacterioplankton communities in
the DJR had abundant N and P cycle functional genes. Cluster
analysis of N cycle gene copy number indicated that similar to
the composition of the bacterial communities, season was the
most important factor affecting the bacterioplankton N cycle. The
above results indicate that N and P nutrients are the main factors
driving the communities and function of bacterioplankton in
the DJR. Similar to other lakes and reservoirs, T, pH, COD,

CODMn, Cond, and Chla are also important factors affecting
the composition of the bacterioplankton communities in the
DJR (Liu et al., 2015; Chen Z. J. et al., 2020; Dong et al., 2020;
Qian-Qian et al., 2021; Sun et al., 2021).

Both Stochastic Processes and
Deterministic Processes Dominate
Bacterioplankton Community Assembly
in the Danjiangkou Reservoir
Currently, there is no study on bacterioplankton community
assembly in the DJR. Relevant studies are not only conducive
to predicting variations in community composition but also
play a potential role in bacterioplankton ecological function
and diversity protection (Nemergut et al., 2013). Niche
theory and neutral theory are the main models that explain
the formation and maintenance of biodiversity, that is, the
community assembly. The niche theory proposes that biological
communities are regulated by environmental selection and
biological interaction, which are deterministic processes; the
neutral theory proposes that stochastic processes, including
the birth, death, migration, and diffusion of species, shape
biological communities (Zhou and Ning, 2017; Zhang et al.,
2018; Chen et al., 2019). Researchers have tried to strengthen
the understanding of the influence of stochastic processes on
bacterioplankton community assembly based on the neutral
theory. In this study, Environmental factors such as T, pH,
DO, COD, CODMn, TN, NH4

+-N and Chla were significantly
related to variations in the bacterioplankton community.
They demonstrated that environmental factors have impact
on bacterial community assembly. But, the high proportion
of unexplained variation in bacterioplankton communities
indicated the potential importance of neutral or stochastic
processes for community assembly. Our analysis of the neutral
model of bacterioplankton communities in the DJR showed
that the neutral model explained 66.3%, 63.0%, 63.0%, and
70.9% of the bacterioplankton community variation in 2018S,
2018A, 2019S, and 2019A, respectively. The neutral community
model fitted well for the bacterioplankton community with
a moderate fitted value (R2 = 0.630∼0.709). The fitted value
indicated that stochastic process played only a moderate role
in the community assembly process by comparing with other
studies (Chen et al., 2019; Zhang Z. F. et al., 2021; Zhang et al.,
2022). Due to the heightening of the dam and the increase in
the water level, the aquatic ecosystem in the DJR is in a process
of reconstruction. Additionally, due to the demand for water
storage and water transfer, the hydrological and water quality
physicochemical properties of the reservoir during the dry season
and the wet season vary greatly each year, potentially affecting
neutral (dispersal-related) process in the DJR and making it
mainly a stochastic process.

CONCLUSION

The water quality in the DJR is important because it is associated
with the safety of drinking water for hundreds of millions

Frontiers in Microbiology | www.frontiersin.org 11 June 2022 | Volume 13 | Article 884765

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-13-884765 June 9, 2022 Time: 16:49 # 12

Chen et al. Bacterioplankton Communities in the Danjiangkou Reservoir

of people along the MR-SNWD in China. In view of the
important role of bacterioplankton in aquatic ecosystems, the
study of bacterioplankton community composition, function and
community assembly has important ecological and economic
significance. We analyzed the bacterioplankton community
composition and distribution characteristics in different years
and seasons and found that bacterioplankton had annual and
seasonal variations. Additionally, the main factors affecting the
bacterial communities were analyzed through RDA and CCA,
and it was found that N and P nutrients were the main
driving factors. Subsequently, the function of bacterioplankton
was predicted by PICRUSt2, and it was found that the N and P
cycle functions of bacterioplankton had significant seasonality.
In addition, ecological network analysis revealed that the links,
average clustering coefficient, and average connectivity of the
autumn samples were all higher than those of the spring
samples, indicating that the network was more complex and more
susceptible to interference from the external environment. The
analysis of the neutral model showed that stochastic processes
dominated bacterioplankton community assembly in the DJR.
This study systematically studied the composition, function,
interaction, and assembly of the bacterioplankton communities
in the DJR as well as the influencing factors, providing a reference
for the protection of water quality and the ecological functions of
DJR bacterioplankton.
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