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Background: Achaete-scute homolog 1 transcription factors were important in

the differentiation of neuronal-like glioblastoma (GBM) cancer stem cells

(CSCs). To gain a better understanding of the role of ASCL1 in GBM,

chromatin immunoprecipitation followed by high-throughput sequencing

(ChIP-seq) data can be analyzed to construct their gene transcription

regulation network.

Methods: GSE87618 was downloaded from the Gene Expression Omnibus,

which is a famous database, in the field of biology. The filtered clean reads were

mapped to the human genome utilizing the software of bowtie2. Then,

differential peak analysis was performed by diffbind. Finally, the annotated

gene functions and signaling pathways were investigated by Gene ontology

function and kyoto encyclopedia of genes genomes (KEGG) pathway

enrichment analysis. Moreover, the protein–protein interaction network (PPI)

analysis of genes obtained fromASCL1 was carried out to explore the hub genes

influenced by ASCL1.

Results: A total of 516 differential peaks were selected. GO analysis of functions

revealed that promoter, untranslated region (UTR), exon, intron, and intergenic

genes were mainly enriched in biological pathways such as keratinization,

regulation of cAMP metabolic process, blood coagulation, fibrin clot

formation, midgut development, and synapse assembly. Genes were mainly

enriched in KEGG pathways including pentose phosphate pathway,

glycosphingolipid biosynthesis—globo and isoglobo series, ECM–receptor

interaction, and adherens junction. In total, 244 nodes and 475 interaction
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pairs were included in the PPI network with the hub genes including EGFR,

CTNNB1, and SPTAN1.

Conclusion: EGFR, SPTAN1, and CTNN1B might be the potential down-stream

genes of ASCL1 in GBM development, and CTNN1B might make contributions

to GBM progression on regulating the cAMP pathway.

KEYWORDS

achaete-scute homolog 1 gene, glioblastomas, bioinformatics, ChIP-seq, signaling
pathways

Introduction

Glioblastoma (GBM), as themost common primarymalignant

brain tumor in adults, is one of the most aggressive and lethal

human tumors characterized by a block in cellular differentiation.

The median survival can range from 12 to 15 months among

patients undergoing the current standard of care treatment

involving surgery, chemotherapy, and radiation therapy (Ji et al.,

2015; Shabihkhani et al., 2017; Xu et al., 2017; Mortazavi, 2018; Jin

et al., 2019). For GBM patients, the disease is hardly diagnosed in

the early stage. Meanwhile, recent therapeutic options are limited

and prognosis is poor (Berninger et al., 2007). Due to the extremely

high malignant grade of GBM, surgical resection combined with

radiotherapy and chemotherapy has not changed its malignant

progression trend, which is a serious threat to human health. Thus,

novel treatment paradigms are urgently needed to improve

outcomes. Currently, many efforts are focused on the target

therapies, such as traditional small molecule inhibitors,

monoclonal antibodies, and immunotherapeutic approaches

(Park et al., 2017). These treatment strategies are actively

examined in clinical trials and offer an attractive alternation

(Shao et al., 2013; Narayanan et al., 2018; Bao et al., 2020). At

present, various bioinformatics methods have sprung up, and a

large amount of tumor gene expression profile data have become

the research direction of tumor precision therapy. Therefore, the

study of the glioma gene expression network also has an important

theoretical value and practical significance, and its clinical

application prospect should not be rested.

ASCL1 is a gene classifier for the pro-neural (PN)

transcriptional subgroup of GBM, which plays as a relevant

role in the neuronal-like differentiation of glioblastoma stem

cells (GSCs). It has been noted that cell-cycle exit and full

neuronal specification and differentiation could be induced by

ASCL1 over-expression in neural precursor cells (Barrett et al.,

2013). Park et al. demonstrated that the transcription factor

ASCL1 was required for GSCs to undergo neuronal lineage

differentiation, and GSCs with high ASCL1 expression levels

were responsive to notch pathway inhibitors and important in

driving neuronal fate (Kent et al., 2002; Langmead and Salzberg,

2012; Bolger et al., 2014). Furthermore, Narayanan proposed that

ASCL1 might be served as potential subgroup-specific targetable

vulnerability in GBM through targeting NDRG1 (Zhang et al.,

2008; Stark, 2011; Bao et al., 2018; Ji et al., 2019; Bao et al., 2021).

These efforts suggest that ASCL1 plays important roles in neuronal

specification. However, the molecular network associated with the

roles of ASCL1 in GBM has not yet been researched.

In order to clarify the regulatory mechanisms of the

ASCL1 in GBM, the data of ChIP-seq were analyzed by

utilizing bioinformatics method. The annotated gene functions

and signaling pathways were investigated by Gene ontology (GO)

function and kyoto encyclopedia of genes genomes (KEGG)

pathway enrichment analysis. Moreover, the protein–protein

interaction network (PPI) analysis of genes was constructed to

explore the hub genes influenced by ASCL1.

Materials and methods

Data sources

GSE87618 was the genome occupancy profiling of differential

ASCL1 binding between control and GSC cultures induced to

overexpress ASCL1 after 18 h of doxycycline treatment, which were

downloaded from the database of Gene Expression Omnibus (GEO,

http://www.ncbi.nlm.nih.gov/geo/) (Robinson and Oshlack, 2010).

GSE87618 contained data from eight samples, including three

ASCL1 ChIP-seq negative controls (nc1, nc2, nc3), one

ASCL1 ChIP-seq negative control input (nc_input), three

ASCL1 ChIP-seq doxycycline (dox1, dox2, dox3, 18 h of

doxycycline treatment), and one ASCL1 ChIP-seq doxycycline

input (dox_input, 18 h of doxycycline treatment). Sra format profile

data of GSE87618 were downloaded, and the microarray data were

then converted into. fastq utilizing fastq-dump (https://trace.ncbi.nlm.

nih.gov/Traces/sra/sra.cgi?view=toolkit_doc&f=fastq-dump).

Quality control of sequencing data

In order to filter out the unreliable bases and reads, quality

control was performed for the original offline data. Sequencing

tape joints were firstly removed. Reads with consecutive masses

below 20 at both ends or reads less than 36 nt in length would be

removed. Clean reads were obtained by utilizing the tool of

Trimmomatic (v3.6) (Yu et al., 2015; Bao et al., 2020).
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Sequence alignment

The filtered clean reads were mapped to the human genome

(UCSC, hg19), utilizing the software of bowtie 2 (Shannon et al.,

2003; Huang et al., 2009; Yu et al., 2012; Szklarczyk et al., 2015).

The non-unique mapped reads and low-quality mappings in the

results were removed, utilizing default parameters.

Peak calling

Peak signal detection is a key step in the ChIP-seq analysis.

MACS2 was used to find the peaks of the enrichment region of

trusted sequence (the ASCL1 binding region) from the short

sequence alignment results and predict the length of the

predicted frag_sizes (Dablander and Hinne, 2019). The default

parameters and p-value< 1e-3 were set as the screening threshold.

Differential peak analysis

Based on the obtained alignment result and the peak call

result, differential peak analysis was performed, utilizing diffbind

software (Wang et al., 2008) to obtain differential peak binding to

the chromosome due to the expression level of ASCL1 between

the ASCL1 ChIP-seq doxycycline group and negative control

group. The downstream analysis was performed on an overlap

peak in at least three samples, and the number of reads covered

by the peak was calculated to obtain the binding affinity matrix.

Then, the differential peaks were calculated by edgeR (Du et al.,

2015; Tang et al., 2015). The screening thresholds were designed

as false-positive rate (FDR) < 0.05 and |Fold change | > 2.

Peak annotation

The differential peaks obtained in the previous step were

annotated, utilizing Chipseeker (Rheinbay et al., 2013). A 3 kb

(up: 2500 bp down: 500 bp) sequence near the transcription start

site (TSS) was selected as a promoter region.

Gene ontology function and kyoto
encyclopedia of genes and genomes
pathway enrichment analysis

Enriched GO function and KEGG pathway were analyzed on

the annotated genes (Zhang et al., 2008). The genes were divided

into five categories based on different positions, including

promoter, UTR, exon, intron, and intergenic. KEGG pathways

and GO functions were analyzed for genes on different positions,

respectively, utilizing the tool of Database for Annotation,

Visualization and Integrated Discovery (DAVID) based on

hypergeometric test (Azzarelli et al., 2022). The significant

threshold was set as p value <0.05.

Protein–protein interaction network

The database of Search Tool for Retrieval of Interacting

Genes (STRING) is an online database for predicting PPIs

(Wang et al., 2021). Utilizing STRING (version 10.0, http://

www.string-db.org/) database, the PPIs of genes were

analyzed. The protein pairs with PPI score >0.4 were

collected. Then, Cytoscape (version: 3.2.0, http://www.

cytoscape.org/) was used to visualize the predicted PPI

network (Gorla et al., 2009; Bhinge et al., 2017; Vue et al., 2020).

Three methods were used to evaluate the centrality of the

complex network, including degree centrality (Ackermann et al.,

2019), betweenness centrality (Nager et al., 2018), and closeness

centrality (Chen et al., 1998). CytoNCA was a cytoscape plugin

for the calculation of three topology properties (parameter

setting: network is without weight) (Mahesparan et al., 1997;

Woods et al., 2022). In the CytoNCA output, the node score

represented the role of the protein in the network.

Results

Sequencing data quality control and
sequence data comparison result

Table 1 shows the quality of sequencing data. The

percentages of bases in all eight samples with Phred values

greater than 30 were all more than 99.8%. The results of

sequencing data comparison are shown in Table 2, and the

mapped rates in different samples were all more than 95%.

Peak call based on the expression level of
ASCL1

In total, 4792 peaks were obtained in sample DOX_1,

4176 peaks in DOX_2, 4231 peaks in DOX_3, 1211 peaks in

NC_1, 1193 peaks in NC_2, and 733 peaks in NC_3. The

doxycycline treatment resulted in a higher expression of

ASCL1, and then more peaks were obtained.

Differential peak analysis

The differential peak analysis was performed, and a total of

516 differential peaks were selected. The results of the principal

component analysis (PCA) between multiple samples are shown

in Figure 1A, and the samples in control and doxycycline

treatment group were clustered separately. Differential
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FIGURE 1
Principal component analysis (A) and two-dimensional hotspot clustering map of differential peaks (B).

TABLE 1 Quality of sequencing output data.

Sample raw_reads base_base clean_read clean_base clean_read_ QC30
(%)

Gc% (%)

dox1 30270652 3057335852 27858530 2783226852 99.88 42

dox2 28593135 2887906635 26234044 2621375448 99.88 42

dox3 26781109 2704892009 24625563 2461120368 99.89 42

dox_input 33156476 3348804076 31951206 3201740411 99.92 42

nc1 29060175 2935077675 26104377 2609039566 99.88 42

nc2 27823338 2810157138 25390202 2537614866 99.88 42

nc3 28106737 2838780437 25336418 2533215072 99.90 42

nc_input 32015101 3233525201 30780580 3081984505 99.92 43

TABLE 2 Comparison results of sequencing data.

Sample clean_read Mapped Mapped rate
(%)

Unique mapped Unique mapped
rate (%)

dox1 27858530 26736498 95.97 23031768 82.67

dox2 26234044 25089241 95.64 21628215 82.44

dox3 24625563 23615202 95.90 20451291 83.05

dox_input 31951206 30733109 96.19 26421023 82.69

nc1 26104377 24943337 95.55 21355241 81.81

nc2 25390202 24294770 95.69 20820887 82.00

nc3 25336418 24320000 95.99 21004213 82.90

nc_input 30780580 29595109 96.15 25423607 82.60
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expression peak hotspot distribution map showed that the profile

of differential expression peaks was significantly different in the

control and doxycycline treatment group (Figure 1B).

Differential peak annotation

Peaks were annotated by peakseeker, and results showed that

10% peaks were located near the gene promoter, 33% of the peaks

were located in the intergenic region, and 40% of the peaks were

located in the intron region of the genes (Figure 2).

GO function and KEGG pathway
enrichment of genes involved in
differential peak annotation

According to the results of the differential peak annotation,

the obtained genes were separately subjected to GO functional

and KEGG pathway enrichment analysis. As shown in Figure 3A,

genes are mainly enriched in biological pathways, such as

“odontogenesis of dentin-containing tooth,” “embryonic digit

morphogenesis,” and “negative regulation of cell development.”

Figure 3B shows that genes are mainly enriched in KEGG

pathways, including “starch and sucrose metabolism,” “small

cell lung cancer,” and “relaxin signaling pathway.”

Genes were divided into five categories including promoter,

UTR, exon, intron, and intergenic. Functional enrichment

analysis was further performed, and the results showed that

promoter genes were mainly enriched in biological pathways

such as keratinization. UTR genes were enriched in the

regulation of the cAMP metabolic process. Exon genes were

enriched in blood coagulation and fibrin clot formation, intron

genes were enriched in midgut development, and intergenic

genes were enriched in synapse assembly (Figure 3C). KEGG

pathway analysis showed that the significant pathways included

pentose phosphate pathway (promoter genes), glycosphingolipid

biosynthesis—globo and isoglobo series (UTR genes),

ECM–receptor interaction (exon genes), adherens junction

(intron genes), and fluid shear stress and atherosclerosis

(intergenic genes) (Figure 3D).

PPI network

The PPI network for genes was constructed (Figure 4), and

244 nodes and 475 interaction pairs were included in the network.

The top 10 hub nodes based on the degree centrality, betweenness

centrality, and closeness centrality are shown in Table 3, such as

epidermal growth factor receptor (EGFR), catenin Beta 1 (CTNNB1),

and spectrin alpha, non-erythrocytic 1 (SPTAN1).

Discussion

GBMs are incurable brain tumors with a high degree of cellular

heterogeneity and genetic mutations. For anti-GBM therapies, the

loss of proliferation control and unregulated self-renewal would be

themost important hardwork for clinical treatment. In the context of

gliomas, some transcription factors are often expressed and have been

shown to function in determining the tumorigenicity and

differentiation status of tumor cells. In this study, we focus on

ASCL1, a class II basic-helix–loop–helix (bHLH) transcription

factor that forms a heterodimer with class I bHLH E-proteins

FIGURE 2
The pie chart of peaks annotated into the genomic region.

Frontiers in Genetics frontiersin.org05

Zhang et al. 10.3389/fgene.2022.938712

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.938712


(such as E47/TCF3) to activate specific target genes. Studies have

shown that ASCL1 regulates transcriptional targets that are central to

the GBM development. The study of Park et al. showed that

ASCL1 could control the neuronal fate and suppress

tumorigenicity of glioblastoma stem cells by reorganizing

chromatin (Park et al., 2017). The study of Rheinbay et al.

showed that ASCL1 exerts functions in part by repressing an

inhibitor of Wnt signaling, DKK1, resulting in increased signaling

through this pathway to maintain the tumorigenicity of glioma cells

(Shannon et al., 2003). ASCL1 phosphorylation and

ID2 upregulation are roadblocks to glioblastoma stem cell

differentiation (Wang et al., 2008; Dablander and Hinne, 2019).

The study of Tou et al. showed that the loss of ASCL1 significantly

reduces the proliferation of GBMs induced in the brain of a

genetically relevant glioma mouse model, resulting in extended

survival times, illustrating an important role for ASCL1 in

controlling the proliferation of GBM (Du et al., 2015). In our

study, a total of 516 differential peaks between

ASCL1 overexpressed GSC samples and negative controls were

screened. GO analysis of functions revealed that the genes

annotated on differential peaks were mainly associated with

biological pathways such as keratinization, regulation of cAMP

FIGURE 3
Functional enrichment analysis. (A) Gene ontology (GO) enrichment analysis. Category: the category of GO, BP: biological pathway, CC: cell
composition, MF: molecular function, term: GO function description information, count: the number of differential genes enriched in the term; the
black trend line represents the -log10 (p Value) value. (B) The KEGG pathway enrichment analysis results of differential genes. The rich factor refers to
the ratio of the number of differentially expressed genes in the pathway to the total number of genes in the pathway. The size of the rich factor
represents the degree of enrichment. (C) Enriched biological pathway of five kinds of genes; (D) KEGG pathway of five kinds of genes. The abscissa
represents the group name, and the ordinate represents the enrichment entry name.
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metabolic process, blood coagulation, fibrin clot formation, midgut

development, and synapse assembly. Genes were mainly enriched in

KEGG pathways including pentose phosphate pathway,

glycosphingolipid biosynthesis—globo and isoglobo series,

ECM–receptor interaction, adherens junction, and fluid shear

stress and atherosclerosis. The PPI network with 244 nodes and

475 interaction pairs was constructed including the hub genes such as

EGFR, CTNNB1, and SPTAN1.

The gene expression was mediated by ASCL1 binding to

chromatin. In particular, a member of the basic helix–loop–helix

(BHLH) family of transcription factors was encoded by ASCL1,

and the protein was important in the neuronal differentiation,

olfactory, and autonomic neuron generation. In our study, a

regulation network associated with ASCL1 was constructed

based on ChIP-seq data. In PPI network, EGFR, CTNNB1,

and SPTAN1 were hub genes. In lung adenocarcinomas

patients, EGFR mediates the activation of RET with

neuroendocrine differentiation characterized by

ASCL1 expression, implicating that EGFR is a key regulator of

RET (Tang et al., 2015). ASCL1 function is an upstream regulator

of the Ret Proto-Oncogene, so combined with our findings, we

speculate that in GBM, ASCL1 may mediate RET activation

FIGURE 4
Protein–protein interaction network. The V-shaped node represents the promoter, the triangular node represents the UTR, the diamond node
represents the exon, the circular node represents the intron, and the square node represents the intergenic region.
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through EGFR, thereby affecting tumor progression. The protein

encoded by SPTAN1 has been implicated in DNA repair and cell

cycle regulation. Meanwhile, this gene was involved with the RET

signaling pathway (Rheinbay et al., 2013). Ackermann et al.

demonstrated a close relationship between low

SPTAN1 expression and tumor progression and metastasis in

colorectal cancers (Azzarelli et al., 2022). Although no direct

evidence has shown the association between ASCL1 and the

genes such as EGFR and SPTAN1 in GBM, the data revealed its

potential value as an important downstream gene of

ASCL1 in GBM.

It has been reported that WNT-CTNN1B signaling plays

important roles in promoting cancer cell proliferation and

stemness, and Nager et al. showed that silencing CTNN1B

could decrease cell viability and induce GBM cell apoptosis

(Wang et al., 2021). In malignant gliomas, previous evidence

showed that protein kinase (PKA) activation was correlated

with decreased proliferation, increased differentiation, and

apoptosis induction by increasing cAMP levels or directly by

cAMP analogues (Vue et al., 2020). Regulation of the cAMP

metabolic process was involved in the GO enrichment

function in GBM. Together with the data presented herein,

there is a growing body of evidence suggesting a role of

CTNN1B in GBM progression based on regulating the

cAMP pathway. An uncontrolled cell proliferation and

infiltrative growth within the brain were the main

characteristics in malignant human gliomas. The

conjunction with vascular elements has specific interactions

between tumor cell surface receptors and specific ECM, which

induced an extensive tumor cell movement along blood vessels

(Bhinge et al., 2017). Enhancing ASCL1 activity in a

neurogenic environment both increases binding at

endogenous ASCL1 sites and also results in additional

binding to new low affinity sites that favors neuronal

differentiation (Gorla et al., 2009). Our data showed that

the ECM–receptor interaction and pentose phosphate

pathways were dysregulated by ASCL1 overexpression

in GSCs.

Our data provide a genome-wide view of gene regulation by

ASCL1 signaling in GBM, and we showed important roles of hub

genes influenced by ASCL1. However, there are some limitations

that should be noted. The data were all analyzed by the method of

bioinformatics, and the potential functional enrichment of genes

should be further researched by clinical research. Furthermore,

only three ASCL1 ChIP-seq negative controls and three

ASCL1 ChIP-seq doxycyclines were enrolled in the analysis. It

should not be denied that the background of GBM patients varied

from each other. Thus, the conclusion should be verified by

further systematical analysis.

In summary, we constructed a regulation network for the

ASCL1 role involved in neurogenic gene expression program

activation in GBM. Our data revealed that EGFR and

SPTAN1 were the potential downstream genes of ASCL1 in

the GBM development, and CTNN1B might take part in GBM

progression based on regulating the cAMP pathway. However,

the conclusion should be further verified by

experimental data.
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TABLE 3 The top 10 hub nodes in the protein–protein interaction network.

name Degree name Betweenness name Colseness

EGFR 41 CTNNB1 13460.64851 CTNNB1 0.041263

CTNNB1 33 CALM2 11008.59049 EGFR 0.041179

SPTAN1 27 SPTAN1 10851.35589 SPTAN1 0.041117

CALM2 27 EGFR 10807.95974 CALM2 0.041117

PTK2 17 GNA12 4305.269611 PTK2 0.040772

SH3GL1 17 DDX1 3878.215375 AR 0.040772

SHH 16 PTK2 3480.394513 SHH 0.040669

CTNNA1 15 AR 3439.149015 BCL2L1 0.040649

AR 14 SHH 3354.04941 MYCN 0.040602

NCAM1 13 SH3GL1 2918.910619 CTNNA1 0.040595

GNA12 13 NPS 2559.36073 CDH17 0.04048

EPHA2 12 NCAM1 2169.773138 YWHAZ 0.040412

BCL2L1 10 TBL1XR1 2112.331093 NCAM1 0.040406

SMAD2 10 NAT10 1869.07619 SMAD2 0.040352

MYCN 10 FASN 1813.87283 MEF2A 0.040319
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