
Introduction
Colonoscopy is the gold standard for colorectal cancer diagno-
sis and subsequent surveillance. The quality of colonoscopy
substantially alters the efficacy of adenomatous polyp detec-
tion and colorectal cancer diagnosis. The American Society for
Gastrointestinal Endoscopy (ASGE), British Society of Gastroen-
terology (BSE), European Society of Gastrointestinal Endoscopy
(ESGE), and the Canadian Association of Gastroenterology
(CAG) have baseline quality standards for colonoscopy evalua-

tion [1–5]. These metrics include cecal intubation rate (> 90%–
95%), withdrawal time (> 6 minutes), and adenoma detection
rate (> 15%–25%).

The adenoma detection rate (ADR) is a particularly well-
characterized quality indicator and is inversely related to the
development of post-colonoscopy colorectal cancer (PCCRC)
[6]. Other quality metrics, including adequacy of bowel prepa-
ration and sufficient withdrawal time, have also been associat-
ed with higher ADR and lower rates of subsequent PCCRC [7–
10]. Likewise, colonoscopy completion, defined by cecal intu-
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ABSTRACT

Background and study aims Colonoscopy completion re-

duces post-colonoscopy colorectal cancer. As a result, there

have been attempts at implementing artificial intelligence

to automate the detection of the appendiceal orifice (AO)

for quality assurance. However, the utilization of these al-

gorithms has not been demonstrated in suboptimal condi-

tions, including variable bowel preparation. We present an

automated computer-assisted method using a deep convo-

lutional neural network to detect the AO irrespective of

bowel preparation.

Methods A total of 13,222 images (6,663 AO and 1,322

non-AO) were extracted from 35 colonoscopy videos re-

corded between 2015 and 2018. The images were labelled

with Boston Bowel Preparation Scale scores. A total of

11,900 images were used for training/validation and 1,322

for testing. We developed a convolutional neural network

(CNN) with a DenseNet architecture pre-trained on Ima-

geNet as a feature extractor on our data and trained a clas-

sifier uniquely tailored for identification of AO and non-AO

images using binary cross entropy loss.

Results The deep convolutional neural network was able

to correctly classify the AO and non-AO images with an ac-

curacy of 94%. The area under the receiver operating curve

of this neural network was 0.98. The sensitivity, specificity,

positive predictive value, and negative predictive value of

the algorithm were 0.96, 0.92, 0.92 and 0.96, respectively.

AO detection was >95% regardless of BBPS scores, while

non-AO detection improved from BBPS 1 score (83.95%) to

BBPS 3 score (98.28%).

Conclusions A deep convolutional neural network was

created demonstrating excellent discrimination between

AO from non-AO images despite variable bowel prepara-

tion. This algorithm will require further testing to ascertain

its effectiveness in real-time colonoscopy.
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bation, has been shown to be negatively associated with PCCRC
development [11]. However, there is considerable variability in
cecal intubation rates (CIR) and photodocumentation among
healthcare practitioners and facilities. The CIR ranges from
58.8% to 100% with photodocumentation varying from 6% to
81% [12–17]. The variability in photodocumentation within in-
stitutions adds an additional barrier to quality improvement in
colonoscopy without an objective means to assess for cecal in-
tubation. At present, there are few automated means to record
and confirm colonoscopy completion to maintain quality indi-
cator standards.

Within endoscopy, there has been a shift toward implement-
ing artificial intelligence (AI) to improve endoscopy with en-
hanced diagnostics. There have been prior attempts at using ar-
tificial intelligence to detect cecal intubation without machine
learning, including edge detection by geometric shapes, inten-
sity change and saturation [18, 19]. However, artificial intelli-
gence research in endoscopy has been accelerated by machine
learning. In particular, these techniques have been best de-
scribed in the computer-assisted detection of polyps (CADe),
and histologic prediction of diminutive polyps (CADx) [20–25].
However, there have also been some studies implementing AI
into quality indicators, including bowel preparation calculation,
withdrawal time, and natural language processing in automat-
ing ADR calculation [26–33]. Certain studies have automated
the detection of cecal intubation with artificial intelligence,
but they have not assessed these algorithms in suboptimal con-
ditions [33]. There have been no studies evaluating colonosco-
py completion under suboptimal conditions, including variable
bowel preparation. In this study, we develop a deep convolu-
tional neural network capable of detecting the presence of the
appendiceal orifice as a marker of cecal intubation and colonos-
copy completion with variable bowel preparation.

Methods
This was a retrospective study using high-definition videos of
colonoscopy procedures conducted at St. Michael’s Hospital in
Toronto, Canada, from 2015 to 2018. This study was approved
by the St. Michael’s Hospital Research Ethics Board (19-050).

Datasets and preprocessing

The image dataset was derived from videos of colonoscopy pro-
cedures recorded during previous interventional studies con-
ducted at St. Michael’s Hospital between 2015 and 2018 [34–
36]. These videos did not have any patient identifiers and only
images of bowel lumen were extracted. We screened 144 pro-
cedures from previous studies. Videos were included if the re-
corded colonoscopy was completed (beginning at the rectum,
reaching the cecum, and withdrawn back to the rectum). Vi-
deos were excluded from the study if the recorded colonoscopy
was incomplete (i. e. cecum was not reached), or if the video it-
self was incomplete (i. e. recording does not begin at the rec-
tum, and/or does not show withdrawal back to the rectum after
cecal intubation). A total of 35 videos were included into this
study. The videos were converted into images at 10 frames per
second using Adobe Photoshop CC 2019 software (San Jose,

California, United States). Images were then classified as either:
(1) containing the appendiceal orifice (AO); or (2) not contain-
ing the AO (non-AO). These images were subclassified into Bos-
ton Bowel Preparation Scale (BBPS) scores (a commonly used
evaluative tool for assessment of quality of bowel preparation)
0, 1, 2, and 3 for a segment of bowel. Score 0 was defined as a
segment of mucosa not seen because of solid stool that could
not be cleared. Score 1 was defined as a portion of mucosa
seen, but other areas of the segment not well seen because of
staining, residual stool or opaque liquid. Score 2 was defined as
a minor amount of residual staining, small fragments of stool,
or opaque liquid, with the mucosa well seen. Score 3 was de-
fined as a well visualized segment of colon without any staining,
fragments of stool or opaque liquid [37]. The classification pro-
cess was conducted by expert gastroenterologists (i. e. > 1000
completed procedures). The identification of the appendiceal
orifice was first located in the videos to ensure correct land-
marking. Images that did not provide information regarding
appendiceal orifice or bowel preparation, such as images of
red outs, irrigation, fluid levels, biopsy forceps, blurry images,
were left unclassified. The spectrum of non-AO images was in-
cluded to simulate conditions encountered in colonoscopy.

In total, 13, 522 images were collected from the videos.
There were 6852 images of AO and 6670 images in non-AO
group. The AO images included full-view images of the AO, par-
tial views of the appendiceal orifice, or cecal landmarks sugges-
tive of the appendiceal orifice (triradiate cecal folds). Within
the dataset, 6,559 AO images and 6,663 non- AO images were
utilized for training, validation and testing: 11,900 images for
training and validation and 1,322 images for testing. We en-
sured that the proportion of AO to non-AO images was consis-
tent at each of the training, validation and testing phases. We
additionally rescaled all images to a size of 224×224 pixels. In
addition, to allow for greater generalizability, we applied sever-
al data augmentation strategies to the training data. These
augmentations included: resized cropping, horizontal and/or
vertical flips, random rotation up to 30 degrees, and random af-
fine transforms up to a factor of 10.

Dense convolutional neural networks

We used DenseNet, a dense convolutional neural network ar-
chitecture, that was pre-trained on approximately 1.2 million
images with SIFT transforms from the ImageNet dataset as the
backbone of our model [38, 39]. The DenseNet backbone con-
nects each layer to every other layer in a feed-forward fashion.
It has several advantages including stronger feature propaga-
tion, feature reuse, and fewer parameters, ultimately leading
to a smaller model size. In our implementation, we adopted
the DenseNet169 model architecture, but replaced the last lay-
er with our customized classifier for appendiceal orifice detec-
tion [38, 40]. All experiments were implemented using Pytorch
and scikit-learn libraries.

Training and testing

We used a batch size of 128 for both the training and validation
datasets. We used an Adam optimizer with an initial learning
rate of 3 ×10–4 and a scheduler to decay the learning rate of
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each parameter group by 0.1 every 7 epochs. We optimized our
model by using cross entropy loss as the criterion for the task,
which combines a log softmax operation with a negative log
likelihood loss. For validation of the algorithm, we took all the
validation examples available to us and cross-verified that the
minimization of the loss function was improving in each train-
ing epoch.

Outcomes and statistical analysis

The primary outcome of the study was to evaluate the operat-
ing characteristics of a deep convolutional neural network
trained to detect AO vs non-AO and to assess the performance
characteristics of the algorithm with variable bowel preparation
scores [37]. The operating characteristics of interest include
the detection rate of AO and non-AO along with the overall ac-
curacy, sensitivity, specificity, positive predictive value, and
negative predictive value of the model. The F1 score of the
model was also calculated as a metric to balance precision and
recall of the deep convolutional neural network.

Results
Dataset characteristics

There were a total of 13,513 images (6847 AO images and 6666
non-AO images) extracted from 35 colonoscopy videos. In
terms of AO images, there were no additional findings identi-
fied in the images, including no diverticula, polyp, or vascular
lesions. With respect to BBPS scores for AO images, there were
0 (0.0%) BBPS 0 images, 2378 (34.7%) BBPS 1 images, 3924

(57.3%) BBPS 2 images, and 545 (8.0%) BBPS 3 images. Within
these images, 2378 (34.7%) had inadequate BBPS scores (< 2),
while 4469 (65.3%) images had adequate BBPS scores (≥2).
Within the non-AO images, there were 5153 images (77.3%)
that were assigned BBPS scores, and 1513 BBPS unclassifiable
(22.7%) images. There were 133 additional findings (2.6%)
within the images assigned BBPS scores, all of which were
polyps. In terms of BBPS unclassifiable images, there were
1023 blurry images (67.6%), 249 (67.6%)images of fluid levels
or irrigation (67.6%), 34 images of instrumentation (2.2%), and
207 images (13.7%) of redouts. Among the images assigned
BBPS scores, there were 0 (0.0%) BBPS 0 images, 647 (9.7%)
BBPS 1 images, 3103 (46.6%%) BBPS 2 images, and 1403
(21.1%) BBPS 3 images. There were 647 images (12.6%) of in-
adequate BBPS scores (< 2) and 4506 images (87.4%) with ade-
quate BBPS scores (≥2) (▶Table 1).

AO and non-AO detection

A total of 1,322 images were used for testing, composed of 656
AO (50.0%) and 666 non-AO (50.0%) images. The test set was
representative of the proportion of the classes during training
and validation. The proposed model is able to correctly classify
the appendiceal orifice and non-appendiceal orifice with an
overall accuracy of 94% on the test dataset demonstrating
excellent discrimination between the two images classes
(▶Fig. 1). The AUROC for this neural network is 0.98 (▶Fig. 2).
The operating characteristics of the model can be found in

▶Table 2. The F1 score of the model was 94.3% (▶Table2).

▶Table 1 Adequacy and subclassification of Boston Bowel Preparation Scores (BBPS) for AO and non-AO images in the dataset.

BBPS 0 BBPS 1 BBPS 2 BBPS 3 BBPS unclassifiable BBPS≥2 BBPS≤1

AO 0 (0.0%) 2378 (34.7%) 3924 (57.3%)  545 (8.0%)    0 (0.0 %) 4469 (65.3%) 2378 (34.7%)

Non-AO 0 (0.0%)  647 (9.7%) 3103 (46.6%) 1403 (21.1%) 1513 (22.7%) 4506 (87.4%)  647 (12.6%)

AO, appendiceal orifice.
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▶ Fig. 1 Training and validation loss and accuracy curves for the deep convolutional neural network.
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AO and non-AO Detection with variable bowel
preparation

With regards to the AO test set characteristics, there were 0
(0.0%) BBPS 0 images, 355 (54.1%) BBPS 1 images, 255
(38.9 %) BBPS 2 images, and 46 (7.0%) BBPS 3 images. There
were 355 images (54.1%) with inadequate BBPS scores (< 2)

and 301 images (45.9%) with adequate BBPS scores (≥2). In
the non-AO test group, there were 0 (0.0%) BBPS 0 images, 81
(12.2%) BBPS 1 images, 315 (47.3%) BBPS 2 images, 116
(17.4 %) BBPS 3 images, and 154 (23.1%) BBPS unclassifiable
images. There were 81 images (15.8%) of inadequate BBPS
scores (< 2) and 431 images (84.2%) with adequate BBPS scores
(≥2) (▶Table3). The performance of the algorithm with vari-
able bowel preparation in the test set for AO detection was
97.5%, 95.3% and 95.7% in BBPS 1, 2, and 3, respectively.
When stratified for inadequate (BBPS <2) and adequate (BBPS
≥2) bowel preparation, AO detection was 97.5% and 95.4%,
respectively. Likewise, non-AO detection for BBPS 1, 2, 3, and
unclassifiable was 84.0%, 89.8%, 98.3%, and 96.1%, respec-
tively. In terms of inadequate (BBPS<2) and adequate (BBPS ≥

2) bowel preparation, non-AO detection was 84.0% and 92.1%,
respectively (▶Table4). The model characteristics for BBPS1,
BBPS2, and BBPS3 images, along with adequacy of bowel prep-
aration can be found in ▶Table5.

Discussion
We present a deep convolutional neural network with an accu-
racy of 94% and an area under the receiver operating curve of
0.98 in discriminating images of the AO from those that do not
depict the AO, with variable bowel preparation. The algorithm
had overall excellent operating characteristics in sensitivity,
specificity, positive predictive value and negative predictive.
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▶ Fig. 2 Area under receiver operator characteristic curve for the
deep convolutional neural network.

▶Table 2 Detection characteristics of deep convolutional neural network in AO and Non-AO images.

Sensitivity Specificity Positive predictive

value

Negative predictive

value

F1 score

Model operating characteristics 96.5% 92.0% 92.3% 96.4% 94.3%

True positive True negative False positive False negative

Model test set 633 613 53 23

AO, appendiceal orifice.

▶Table 3 Adequacy and subclassification of Boston Bowel Preparation Scores (BBPS) for AO and non-AO images in test set.

BBPS 0 BBPS 1 BBPS 2 BBPS 3 BBPS unclassifiable BBPS≥2 BBPS≤1

AO 0 (0.0%) 355 (54.1%) 255 (38.9%) 46 (7.0%) 0 (0.0%) 355 (45.9%) 301 (54.1%)

Non-AO 0 (0.0%) 81 (12.2%) 315 (47.3%) 116 (17.4%) 154 (23.1%) 431 (84.2%) 81 (15.8%)

AO, appendiceal orifice.

▶Table 4 Performance of deep convolutional neural network with varying Boston Bowel Preparation Scores (BBPS) in AO and non-AO images.

BBPS 0 BBPS 1 BBPS 2 BBPS 3 BBPS unclassifiable BBPS≥2 BBPS≤1

AO N/A 97.5% 95.3% 95.7% N/A 95.4% 97.5%

Non-AO N/A 84.0% 89.8% 98.3% 96.1% 92.1% 84.0%

AO, appendiceal orifice.
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When assessing bowel preparation, AO detection was >95% ir-
respective of BBPS score and adequacy of bowel preparation.
However, non-AO detection progressively improved (from
84.0% to 98.3%) with BBPS score and was superior with ade-
quate (92.1%) compared to inadequate (84.0%) bowel prepara-
tion.

The improving operating characteristics from non-AO BBPS
1 to BBPS 3 can be attributed to a number of factors. For exam-
ple, the clear visualization of the lack of cecal landmarks is more
difficult with worsening bowel preparation because of in-
creased background noise. In a review of the false-positive ima-
ges (non-AO interpreted as AO) in BBPS 1 and BBPS 2 classes,
the majority of the images had some feature that could be mis-
interpreted as part of the triradiate cecal folds. These features
coupled with increasing noise from worsening bowel prepara-
tion led to the misclassification of these images. This was com-
pounded by the fact that there were limited non-AO BBPS 1
images (9.7%) for training. This is dissimilar to AO BBPS 3 ima-
ges, in which the performance was excellent (96.7%) despite a
limited data set (8.0%), as the presence of cecal landmarks can
be clearly identified. Of note, there were no BBPS 0 images in
the dataset. Although we do not expect our algorithm to have
difficulty with this classification given that cecal landmarks
would be completely obscured, it would be an important addi-
tion to simulate real-life colonoscopy conditions. To improve
the false-positive rate and lower BBPS score classifications of
non-AO images, a larger number of images with more varia-
tions are required for training, validation, and testing.

Although the distribution of BBPS scores was not equal, this
did not bias our algorithm as it was trained for detection of the
AO and non-AO, and not bowel preparation. Likewise, the fluc-
tuation in the BBPS proportions in the test set compared to the
overall dataset is attributed to random allocation that was con-
ducted for AO and non-AO images, but not for bowel prepara-
tion. Despite the excellent accuracy and operating characteris-
tics in AO detection across all bowel preparation classes, our
system was only trained and tested on 35 videos with a relative-
ly limited number of images in our dataset. The model, particu-
larly lower BBPS non-AO images, can be improved with a larger

balanced data set for training and testing to enhance variability
and to improve generalizability. As the model was trained and
validated with static images, this algorithm’s application to re-
corded videos and real-time colonoscopy have not yet been de-
termined and require further research.

In our review of the literature, existing applications of AI in
gastroenterology have focused primarily on developing com-
puter-assisted devices for detection and pathology prediction
of polyps [21–25]. There is growing interest in the implementa-
tion of AI in assessing quality indicators in colonoscopy. In
particular, algorithms have been used to assess for bowel prep-
aration and withdrawal time [32, 33]. However, this is among
the first machine learning algorithms created to assess for cecal
intubation in the presence of variable bowel preparation. The
algorithm adds to the pre-existing literature in synthesizing dif-
fering quality metric parameters and simulates greater real-
world conditions in colonoscopy. Moreover, the robustness of
the algorithm is demonstrated under variable and suboptimal
conditions. Given that colonoscopy quality indicators occur
within a spectrum, the ability for algorithms to perform under
variable circumstances is particularly relevant. Although the va-
lidation of artificial intelligence algorithms in controlled envir-
onments is important, their impact may be greater under sub-
par circumstances. For example, greater benefit may be obtain-
ed from the detection of polyps in inadequate bowel prepara-
tion, or in lower-quality colonoscopy systems with worse spatial
resolution. As such, machine learning algorithms should be
evaluated in both optimal and suboptimal conditions to broad-
en the applicability of their use cases and to derive maximal
benefit in imperfect circumstances.

The applications of AI pertaining to colonoscopy completion
are significant. Although all major gastroenterology societies
have thresholds for colonoscopy completion, there is consider-
able variability in cecal intubation and photodocumentation
among hospitals and practitioners. Of concern, the rates of ce-
cal intubation and photodocumentation among certain provi-
ders pale in comparison to standards set forth by multiple gas-
troenterology societies [12–17]. The maintenance of this qual-
ity metric is significant, as lower rates of colonoscopy comple-

▶Table 5 Detection characteristics of deep convolutional neural network in AO and Non-AO images stratified by Boston Bowel Preparation Scale
(BBPS) scores.

BBPS 1 BBPS 2 BBPS 3 Unclassifiable BBPS ≥2 BBPS≤1

False negative 9 12 2 – 14 9

False positive 13 32 2 6 34 13

True positive 346 243 44 – 287 346

True negative 68 283 114 148 397 68

Sensitivity 97.5% 95.3% 95.7% – 95.4% 97.5%

Specificity 84.0% 89.8% 98.3% 96.1% 92.1% 84.0%

PPV 96.4% 88.4% 95.7% – 89.4% 96.4%

NPV 88.3% 95.9% 98.3% 100.0% 96.6% 88.3%

AO, appendiceal orifice; PPV, positive predictive value; NPV, negative predictive value.
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tion are associated with higher rates of PCCRC [11]. Despite
this, there are no formal auditing practices to ensure the main-
tenance of quality indicators in endoscopy as it is both cost and
time-intensive. One common quality improvement initiative
has demonstrated that providing intermittent feedback to clin-
icians regarding their cecal intubation rates through report
cards can improve cecal intubation rates [41, 42]. Likewise,
other studies have shown a possible association between time
of day and worsening endoscopy quality with reductions in
ADR and cecal intubation rates as a workday progresses, possi-
bly related to practitioner fatigue [43–45]. As a result, imple-
menting a computer-assisted device for detection of colonos-
copy completion may provide a method of quality indicator
feedback by facilitating automated documentation and objec-
tive detection of cecal intubation.

Conclusions

In summary, we successfully created an algorithm using a deep
convolutional neural network with excellent accuracy for detec-
tion of the AO under variable bowel preparation. Moving for-
ward, this algorithm requires a larger dataset for training, and
implementation in real-time colonoscopy to elucidate its appli-
cations more clearly. Within the domain of quality indicators in
colonoscopy, the synthesis of other AI quality metric algorithms
in suboptimal conditions is necessary for future testing to de-
rive greater benefit in improving and maintaining colonoscopy
quality.
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