
RESEARCH ARTICLE

The Multifocal On- and Off-Responses in the
Human Diabetic Retina
Jenny C. Y. Lung1, Peter G. Swann1,2, Henry H. L. Chan1*

1 Laboratory of Experimental Optometry (Neuroscience), School of Optometry, The Hong Kong Polytechnic
University, Hong Kong SAR, China, 2 School of Optometry, The Queensland University of Technology,
Queensland, Australia

* henryhl.chan@polyu.edu.hk

Abstract
The characteristics of the on- and off-responses in the human diabetic retina by a “long-

duration”multifocal electroretinogram (mfERG) paradigm were investigated. Changes in

the retinal antagonistic interaction were also evaluated in the early stage of diabetes melli-

tus (DM). Twenty type II diabetic patients with no or mild non-proliferative diabetic retinopa-

thy (NPDR) and twenty-one age-matched healthy controls were recruited for “long-duration”

mfERGmeasurements. A 61-hexagon mfERG stimulus was displayed under two chromatic

conditions (white/black and blue/black) at matched luminance. The amplitudes and implicit

times of the on-response components (N1, P1 and N2) and off-response (P2) components

were analysed. The blue stimulation generally triggered greater mfERG amplitudes in P1,

N2 and P2 (p<0.05) than those from white stimulation in both control and diabetic groups.

The diabetic group showed significantly greater N2 amplitude than the controls under white

stimulation in mid-retinal regions (Rings 2 and 4) (p<0.05). When the stimulus was changed

from white to blue, the diabetic group showed a smaller percentage change in N2 amplitude

than the controls in peripheral retinal region (Ring 5) (p<0.02). When a stimulus is changed

from white (broad-band spectral stimulation) to blue (narrow-band spectral stimulation), a

decrease in the involvement of lateral antagonism would be expected. The larger amplitude

of the on-response component (N2) in the diabetic patients suggested an imbalance of lat-

eral antagonism, and the lesser percentage change of N2 amplitude in the diabetic group

may indicate an impairment of the cross-talk at the middle retinal level in early stages of

DM.

Introduction
Diabetic retinopathy (DR) is an ocular vascular complication associated with diabetes mellitus
(DM) which has a rapid increase of incidence in Asia [1]. DR is one of the leading causes of
blindness among the working population [2]. It is proposed that damage of the vascular endo-
thelium and pericytes, as well as the acceleration of cellular apoptosis, contribute to vascular
leakage in the retina and hence the clinically visible signs of DR [3].

Early functional and structural deficits in the eye have been found in diabetic patients. Col-
our discrimination ability was shown to deteriorate with or without DR [4–6]. A generalized
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loss of chromatic discrimination in diabetic patients was reported [7], with a more pronounced
reduction in the short-wavelength colour [4,8–9]. Indeed, selective loss of short-wavelength
cone sensitivity was illustrated by electrophysiological assessments in diabetic patients [8–9].
Besides colour vision impairment, reduction of sensitivity in automated perimetry [10–11] and
thinning of the retinal nerve fiber layer (RNFL) [12–16] were also reported.

The multifocal electroretinogram (mfERG), an objective assessment of retinal function with
topographic details [17], was found to be superior to two standard clinical assessments (auto-
mated white-on-white perimetry and RNFL thickness measurement by optical coherence
tomography) in demonstrating early physiological changes prior to any visible vascular lesions
[18–22]. The mfERG reflects neural activities mainly in the middle and inner retinal layers
[23]. Functional deterioration detected by the mfERG indicates disturbance of retinal adapta-
tion at or beyond the level of secondary neurons. A number of studies have applied the mfERG
with different protocols to provide objective evaluation of the functional changes in diabetic
patients [18–20,24–35]. In fact, retinal dysfunction detected by the mfERG in diabetic patients
was not fully explained by either weaker perimetry luminance sensitivity or morphological
changes of the RNFL [22,29]. Thus, it is believed that the possible site for the functional
changes is within the middle to inner layers of the retina.

To investigate the functional changes in the middle and inner retinal layers using mfERG,
segregation of the on- and off-pathway responses is necessary. However, there is usually a large
overlap of the two responses in the conventional mfERG paradigm. In order to dissociate the
on- and off-pathways, Kondo and Miyake [36] modified the mfERG paradigm to mimic the
“long-duration” flash which is applied in the Ganzfeld full-field electroretinogram [37]. By
increasing the number of multifocal flashes and dark frames, the overlap between the on-
response (the retinal signal measured when the light stimulus turns on) and off-response (the
retinal signal measured when the light stimulus turns off) in the mfERG can be minimized. By
this way, mfERG can be used to assess the on- and off-pathways separately [36]. Such a proto-
col has been successfully applied in some other retinal disorders to study the activities of the
on- and off-pathways [38–40].

Different chromatic stimulations were studied in the electroretinogram measurements and
it was demonstrated that narrow-band spectral stimulation can trigger a larger retinal signal
than broad-band stimulation. It was suggested that the chromatic stimulations further isolated
the antagonistic interactions initiated by networks of long-, middle- and short-wavelength
cones and their secondary neurons [41].

In the present study, the modified long-duration mfERG paradigm described above was
used to study the on- and off-responses of the middle and inner retinal layers in diabetic
patients. Furthermore, the mfERG stimulus pattern was used under two chromatic conditions
(white/black and blue/black) to manipulate any antagonistic interactions, in order to evaluate
the changes of the cross-talk at or beyond the middle retinal level in the early stages of DM.

Methods

Subjects
Twenty type II diabetic patients (aged 46.6±7.4 years) with no or mild non-proliferative dia-
betic retinopathy (NPDR) and twenty-one age-matched healthy controls (aged 46.6±7.4 years)
were recruited for this study. All of the participants had visual acuity equal to or better than 6/9
and their refractive errors were between +3.00D and -6.00D with astigmatism less than -1.25D.
The mean DM duration of the diabetic patients was about 5.0±5.2 years (ranged from 1 to 21
years) based on patients’ reported history. All of them were under oral medication without
insulin treatment. A thorough eye examination (including dilated fundus examination and
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biomicroscopy) was carried out for each subject. Fundus photo-documentation was performed
in the central retina and in the eight cardinal gaze directions using a fundus camera (Topcon
TRC-NW6S Non-Mydriatic Fundus Camera with software IMAGEnet, Japan). Each photo
covered 45-degree field of view and totally nine non-stereoscopic fundus photos were taken for
each eye. The fundus photos were then graded by a masked retinal specialist (PS) according to
the ETDRS levels for classifying the presence of DR [42–43]. Participants with ocular diseases
other than DR were excluded. Participants with long-term medication (including hyperten-
sion) other than for DM were excluded.

All of the study procedures fulfilled the tenets of the Declaration of Hesinki. This study was
approved by the Human Ethics Committee of The Hong Kong Polytechnic University. Written
consent was obtained from each individual subject after full explanation of the experimental
procedures.

Measurements
1) Multifocal ERG recording. The VERIS Science 5.1 system (Electro- Diagnostic- Imag-

ing, Redwood City, CA, USA) was used for the “long-duration”mfERG measurement. A scaled
61-hexagon pattern (Fig 1) which subtended 49° horizontally and 47° vertically was displayed
on a high luminance CRT monitor with P45 phosphor (FIMI Medical Electrical Equipment,
Saronno, Italy). Each base period of the mfERG stimulation contained 16 video frames: 8 suc-
cessive multifocal flash frames and 8 successive dark frames, as suggested by Kondo and
Miyake [36,38]. Each base period lasted about 213.3 ms (bright phase duration: 106.6 ms, dark
phase duration: 106.6 ms). The stimulus was displayed at a frame rate of 75 Hz and the
pseudo-randomm-sequence chosen had 211−1 steps. The mfERG signal was amplified by
100,000X (Grass Instrument Co., Quincy, MA, USA) and bandpass filtered from 3 to 300 Hz
with spatial averaging (iteration = 1) done by VERIS system which has monthly regular
calibration.

Measurements were made under two chromatic conditions (white and blue stimulations).
In the white condition, the bright phase was displayed at 22 cd/m2 and the dark phase was dis-
played at 0.3 cd/m2. The background luminance was maintained at the mean luminance level
at 10 cd/m2. The room illuminance was dimmed and maintained at about 10 lux (eye level of
the subject during mfERG recording).

In order to achieve the blue mfERG stimulation, the CRT monitor brightness was firstly
turned up with the white hexagon at about 380 cd/m2 and the black hexagon at about 3.4 cd/
m2. AWratten 47A filter was inserted between the display and the eye to achieve the blue stim-
ulation conditions. The Wratten 47A filter has peak transmission at 440nm, with cutoff at half-
height at about 500nm [44]. The spectrum of visible wavelengths emitted from P45 phosphor
(Y2O2S: Tb) [45] is broader than the cutoff of the Wratten 47A filter, and the combination of
P45 and Wratten 47A produces a deep blue stimulus which stimulates mainly the short-wave-
length (SW) and partly middle-wavelength (MW) cone systems [45–46]. The luminance levels
of the white and black hexagons on the FIMI monitor under the 47A filter were adjusted so
that the similar luminance was achieved as for the white stimulation condition (without 47A
filter). Hence, under the condition with 47A filter, the resultant luminance of the white hexa-
gon was about 21 cd/m2 while the black hexagon was about 0.3 cd/m2 with the background
luminance of about 10 cd/m2. The luminance measurements were made using a Konica Min-
olta LS-110 photometer (Konica Minolta Optics, Inc., Tokyo, Japan). Subjects completed two
mfERG recording sessions, one using the white stimuli and one using the blue stimuli. The
order of presentation, whether using the white stimuli or the blue stimuli in the first recording
session, was randomized.
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One eye of each subject was randomly selected for mfERG measurement and dilated using
1% Tropicamide (Alcon, Fort Worth, TX, U.S.A.) until the pupil reached at least 7 mm diame-
ter. A Dawson-Trick-Litzkow (DTL) electrode was used as the active electrode. A gold-cup
electrode was placed at the outer canthus as the reference electrode, and another at the central
forehead as the ground electrode. Subjects were corrected for the viewing distance of 33 cm
using ophthalmic lenses. Each subject was instructed to fixate at the central cross of the mfERG
stimulus pattern throughout the measurement. The measurement for each condition was
divided into 32 segments. Any recorded segment contaminated by blinks or other artifacts was
rejected and re-measured immediately. The central peak and the blindspot depression on the

Fig 1. The 61-hexagonal mfERG stimulus pattern which was divided into five rings for data analysis.

doi:10.1371/journal.pone.0155071.g001
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mfERG 3-D plot were used as an indicator of the signal quality based on the method described
in a previous study [47].

2) Measurement of the instantaneous plasma glucose level. The instantaneous plasma
glucose level of the subjects was measured at the time of mfERG measurement. A user-friendly
blood glucose meter (Accu-Chek Compact Plus, F. Hoffmann-La Roche Ltd, Basel, Switzer-
land) was applied on the finger tip to measure the plasma glucose level for each diabetic subject
at least 2 hours after any food intake.

Data analysis
The mfERG responses from the 61-hexagon pattern were grouped into 5 rings for analysis. There
were two sections of the resultant waveform: the on-response triggered by the mfERG bright
phase (stimulus-on) and the off-response triggered by the mfERG dark phase (stimulus-off) (Fig
2). The on-response was the initial part of the waveform, which was similar to the conventional
mfERG waveform, including a negative trough (N1) followed by a positive peak (P1) and then
another trough (N2). After a plateau following N2, there was a second peak (P2) which was the
off-response. The on-response (N1, P1 and N2) and off-response (P2) were defined according to
the study by Kondo et al. [36]. The relevant amplitude and time parameters are shown in Fig 2.
When the mfERG stimulus was changed from white to blue stimulation, the percentage changes
for the mfERG responses were calculated using the following equation:

ðmfERG response under blue stimulus � mfERG response under white stimulusÞ x 100%
ðmfERG response under white stimulusÞ

This value was used to reflect the changes of the antagonistic interaction within the retina.
The statistical analysis was carried out using the software SPSS 16.0 (SPSS, Chicago, IL).

Three factors were evaluated in this study. The within-subject factors were “Rings (5 rings)”
and “Colours (white and blue)” while the between-subject factor was “Groups (control and

Fig 2. The waveform under the “long-duration”mfERG paradigm showing the parameters measured.

doi:10.1371/journal.pone.0155071.g002
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diabetic groups)”. Three-way mixed design analysis of variance (ANOVA) was used for statisti-
cal analysis. Mauchly’s Test showed that the assumption of sphericity was violated, and conser-
vative Greenhouse-Geisser correction, therefore, was applied. Post-hoc test with Bonferroni’s
adjustment was used to account for the multiple comparisons. Statistical significant level of the
adjusted p-value was set at< 0.05.

If the within-subject factors or their combinations showed significant effect(s) on the mfERG
parameters, two-way repeated measures ANOVA (Factors “Colours” and “Rings”) were carried
out to investigate which mfERG parameters were affected by the within-subject factors in each
subject group. A further one-way ANOVA or unpaired t-test was carried out to locate the effect.

If the between-subject factor or its combination showed significant effect on the mfERG
parameters, a mixed design two-way ANOVA (Factors “Rings” and “Groups”) was carried out
to examine which mfERG parameters were affected in each colour stimulation. A further
unpaired t-test was carried out to locate the significance level between subject groups.

For the percentage change of the mfERG responses, two-way mixed design ANOVA (Fac-
tors “Rings” and “Groups”) were carried out in order to compare the difference between two
subject groups. When there was a significant group difference, further unpaired t-tests were
carried out to find out its location(s).

Results
Among the diabetic subjects, whose fundus photos were graded by the masked retinal special-
ist, 6 out of 20 were classified as “mild NPDR”, 2 as “no DR”, and 12 as between “mild NPDR”
and “no DR” because only trace defects (less than 10 defects per subject) was found on the fun-
dus photos and could not be defined as tiny microaneurysms. The averaged instantaneous
plasma glucose level of the diabetic patients at the time of mfERG measurement was 8.7 ± 4.0
mmol/L (ranged from 5 to 19.2 mmol/L). As 14 out of 20 diabetic subjects had the conditions
below mild NPDR, it was hard to further subdivide into smaller local groups to compare the
mfERG results with the local fundus vascular changes. Hence, ring analysis was performed to
investigate the physiological changes at different eccentricities in the diabetic retina.

Effect of retinal eccentricity
Both the on- and off-responses mfERG amplitudes (N1, P1, N2 and P2) decreased with the
increasing retinal eccentricity (Ring number).

Three-way mixed design ANOVA (Colours x Rings x Groups) showed significant differ-
ences for all of the amplitudes (N1: F = 224.353, df = 1.151, p< 0.001; P1: F = 306.489,
df = 1.161, p< 0.001; N2: F = 283.890, df = 1.185, p< 0.001; and P2: F = 183.391, df = 1.109,
p< 0.001) with p< 0.05 (Fig 3A–3D). Further two-way repeated measures ANOVA (Colours
x Rings) revealed a significant difference in both the control and diabetic groups. Post-hoc test-
ing of ring amplitudes illustrated that the largest mfERG amplitudes for all measures was in
Ring 1, the second largest in Ring 2 and the smallest in Ring 5 (p< 0.02) under both white and
blue stimulation conditions. The third largest amplitudes under both stimulations were in Ring
3 (p< 0.01) in the control and diabetic groups except for the N2 amplitude under the blue
stimulation in the control group.

In general, there was no obvious trend of the implicit times for the on- and off-response
components across retinal eccentricity for either the control or diabetic groups. Three-way
mixed design ANOVA showed that the factor “Rings” affected the on-response mfERG
implicit time of N1 (F = 5.294, df = 2.730, p< 0.005), P1 (F = 35.248, df = 3.161, p< 0.001)
and N2 (F = 9.026, df = 2.272, p< 0.001), while no significant difference was found in the
implicit time of the off-response P2 (F = 0.673, df = 3.118, p> 0.5). Further two-way repeated
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measures ANOVA (Colours x Rings) and one-way repeated measures ANOVA (Rings) with
Bonferroni’s post-hoc test indicated that the implicit time of P1 for the central Ring 1 was sig-
nificantly longer than the peripheral Rings 3 and 4 (p< 0.01) in the control group under both

Fig 3. (a) The N1 amplitude (mean ± SD) in the DM and control groups under both the white and blue conditions; (b) The P1 amplitude (mean ± SD) in the
DM and control groups under both the white and blue conditions; (c) The N2 amplitude (mean ± SD) in the DM and control groups under both the white and
blue conditions; (d) The P2 amplitude (mean ± SD) in the DM and control groups under both the white and blue conditions (* indicates parameters that
achieved statistically significant level with p < 0.05)

doi:10.1371/journal.pone.0155071.g003
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stimulation conditions. In the diabetic group, the implicit times of P1 in central Rings 1 and 2
were found to be longer than in peripheral Rings 3 to 5 (p< 0.05) under blue stimulation only.

Effect of chromatic (white and blue) mfERG stimulations
Three-way mixed design ANOVA indicated that the factor “Colours” had significant differen-
tial effects on the on- and off-response amplitudes with p< 0.01 (N1: F = 8.666, df = 1,
p< 0.01; P1: F = 22.997, df = 1, p< 0.001; N2: F = 21.181, df = 1, p< 0.001; P2: F = 13.612,
df = 1, p< 0.001).

In the control group, two-way repeated measures ANOVA (Colours x Rings) showed that
the blue stimulation triggered larger P1 (p< 0.01), N2 (p< 0.05) and P2 (p< 0.05) amplitudes
than the white stimulation. Further paired t-tests on the ring amplitudes were performed. For
the P1 amplitude, a significant chromatic effect was found at Rings 2 to 4 (p< 0.05) (Fig 3B,
left panel); for the N2 amplitude, a significant chromatic effect was found at Rings 2, 4 and 5
(p< 0.02) (Fig 3C, left panel); for the P2 amplitude, a significant chromatic effect was found at
Rings 2 to 5 (p< 0.05) (Fig 3D, left panel).

In the diabetic group, two-way repeated measures ANOVA (Colours x Rings) showed that
the blue stimulation triggered larger amplitudes for all mfERG responses than the white stimu-
lation (p< 0.04). Further paired t-tests on the ring amplitudes revealed the location of the sig-
nificant effect. For the N1 amplitude, there was a significant chromatic effect in Rings 4 to 5
(p< 0.01) (Fig 3A, right panel); for the P1 amplitude, this effect was found in all five rings
(p< 0.02) (Fig 3B, right panel); for the N2 and P2 amplitudes, the chromatic effect was mainly
found at Rings 3 to 5 (p< 0.01) (Fig 3C and 3D, right panels).

Under different chromatic stimuli, it was observed that the implicit times of the on-
responses (P1 and N2) of the blue stimulation were shorter than those of the white stimulation
in the diabetic group only. The chromatic factor had a statistically significant effect on the
implicit time of P1 at Rings 3 and 4 only in the diabetic group. The P1 implicit time in response
to the white stimulation was longer than the blue stimulation (p< 0.01) (Fig 4). No other con-
sistent trend in implicit time was observed for the remaining mfERG components.

Comparison between the control and diabetic groups
Three-way mixed design ANOVA showed no significant difference in the implicit time of the
mfERG parameters (p> 0.20 with low observed power of 0.051), while the diabetic subjects
showed significantly larger N2 amplitudes (F = 4.517, df = 1, p< 0.05) than did the healthy
controls. Two-way mixed design ANOVA illustrated that there was a significant “Groups” dif-
ference only for white stimulation (p< 0.03). Unpaired t-tests showed that this effect achieved
a statistical significant level at Ring 2 (p< 0.05) and Ring 4 (p< 0.001) (Fig 5).

Considering the amplitude changes of major components (in percentage) when the stimulus
was changed from white to blue, the P1 amplitude consistently showed a larger percentage increase
across retinal eccentricity in the diabetic than in the control group (Fig 6A), while the on-response
component N2 showed the opposite. Two-way mixed design ANOVA (Rings x Groups) revealed
that the N2 amplitude of the diabetic group had a significantly smaller degree of increase than the
control group (p< 0.02) especially for Ring 5 as demonstrated by the unpaired t-tests (Fig 6B).

For the P2 amplitude change, when the stimulation changed from white to blue, the diabetic
group also had a greater increase than the control at Rings 1 and 2 but a lesser increase for
Rings 3 to 5 as shown in Fig 6C; however, no statistical significance was shown in the two-way
mixed design ANOVA (p> 0.05). No consistent trend was observed in the N1 amplitude
change. Both the diabetic and control groups showed an increase in the P2 implicit time, but
no consistent change was observed in the implicit time of the other mfERG components.
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Discussion
By using white and blue stimuli in the “long-duration”mfERG paradigm, waveforms contain-
ing two positive peaks were generated. These are similar to the resultant waveform in the long-
duration full-field electroretinogram. This “long-duration”mfERG paradigm is based on the
Ganzfeld full-field electroretinogram with a long-duration stimulus. The mfERG stimulus
applied in this study was not a true continuous flash, but a series of flash impulses at high fre-
quency. Saeki and Gouras [48] demonstrated that a high frequency flash series produces an
effect similar to that produced by a light pulse of long-duration, which can generate a positive
off-response.

In this study, the blue stimulus generally triggered a stronger mfERG signal in both diabetic
and control groups. The mfERG paradigm was conducted at the same luminance level under
white and blue conditions. The white stimulus has a broad-band spectrum which stimulates
the long (L)-, middle (M)- and short (S)-wavelength sensitive cones; while the blue stimulus
has a narrow-band spectrum and it mainly stimulates the SW sensitive cones. The Wratten
47A filter we used (λmax = 450um) minimized but did not totally eliminate the involvement of
the L- and M-cone pathways. This would reduce the lateral antagonism between different cone
pathways [41] and the reduction is expected to enhance the mfERG responses.

Due to the similarity of the “long-duration” protocols in the full-field electroretinogram and
mfERG [36,41,48], it was proposed that the N2 trough found beyond the first P1 peak origi-
nates from the inner retinal layer, probably a region near the ganglion cell layer [41]. Under the
“long-duration”mfERG paradigm, the overlap between the on- and off-pathway responses was
minimized. However, the on- and off-responses were not completely dissociated. The on-
response was predominantly from the depolarizing bipolar cells shaped by the hyperpolarizing

Fig 4. The P1 implicit time (mean ± SD) in the diabetic group under both the white and blue conditions (* indicates
parameters that achieved statistically significant level with p < 0.05)

doi:10.1371/journal.pone.0155071.g004
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bipolar cells, while the off-response was predominantly from the hyperpolarizing bipolar cells
shaped by the depolarizing bipolar cells [36–37,41,49–50].

Under both the white and blue stimulation conditions, the N2 amplitude in the diabetic
group was larger than that in the control group. The on-response component under blue stim-
ulus conditions increased in the diabetic group. Four possibilities may lead to an increase of the
N2 amplitude in the DM patients: 1) Stronger activity of the inner retina (near the ganglion
cell layer); 2) Reduced on-pathway activity; 3) Enhanced off-pathway activity; 4) Weakening of
the lateral antagonistic interaction. However, the first three points appear to be unable to
explain the changes in the DM patients in our study. Previous morphological studies have
shown that the inner retinal structure was altered in diabetic patients [13–16,51–56]. With
increased neural apoptosis, a reduced rather than an increased inner retinal responses were
reported [18–20,24–28,30–32,57]. Besides, the P1 and N1 amplitudes in the diabetic group
were generally greater than the control group. This is counter to increase the on-pathway activ-
ity. Thus, the increased N2 amplitude cannot be simply explained solely by the changes in the
activities of the ganglion cells, the on- or off-pathways. It is possible that the antagonistic inter-
actions within retinal cellular components play a role in the enhancement of the N2 amplitude.

Considering the hypothesized changes in lateral antagonism, when the stimulus was
changed from white (broad-band) to blue (narrow-band), it was proposed that there was a
reduction in antagonistic interaction [41] and this resulted in an increase of the mfERG ampli-
tude. This was reflected by the positive percentage amplitude change found in our results as
seen in Fig 6A–6C.

The higher the percentage value of the mfERG amplitude change calculated in the results
(Fig 6), the greater the reduction in lateral antagonistic interaction would be, due to the change

Fig 5. The N2 amplitude (mean ± SD) in the control and diabetic groups under the white condition (* indicates parameters that
achieved statistically significant level with p < 0.05).

doi:10.1371/journal.pone.0155071.g005
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of stimulus colours from white to blue. Comparing the percentage change of the mfERG ampli-
tude in both subject groups, the control group initially showed a greater percentage change
than the diabetic group in terms of the on-response P1, but a reverse trend was observed in the
later on-response component N2 and the off-response component P2. It is suggested that both
the components N2 and P2 may share the common origin, most likely the off-pathway, which
exerts less antagonistic interaction to the on-pathway in the early stage of DM. These effects
were consistent across the retina, but only reached significance at ring 5 (see Fig 6B). Whether
the peripheral retina is more prone to this functional loss still needs further investigation.

Fig 6. (a) The amplitude changes (in percentage) of the P1 amplitude (mean ± SD) due to the change from
white to blue stimulus between the control and the diabetic groups; (b) The amplitude changes (in
percentage) of the N2 amplitude (mean ± SD) due to the change from white to blue stimulus between the
control and the diabetic groups; (c) The amplitude changes (in percentage) of the P2 amplitude (mean ± SD)
due to the change from white to blue stimulus between the control and the diabetic groups (* indicates
parameters that achieved statistically significant level with p < 0.05)

doi:10.1371/journal.pone.0155071.g006
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Moreover, although the trends of the changes were shown, the significant findings might
depend on how the responses were grouped for analysis due to the relatively small sample size
in our study.

Previous electroretinogram studies [18–20,24–34,57–63] reported a decrease in the inner
retinal responses rather than an enhanced response. However, in this study, greater amplitude
was recorded from the diabetic subjects when the blue stimulus was used. The dissociation of
the on- and off-retinal pathway activities by the long-duration paradigm can allow detection of
subtle changes in responses of the diabetic retina. It is believed that the changes or weakening
of the inhibitory cross-talk between different retinal pathways will be reflected by this mfERG
response paradigm. This may also explain why our findings did not show any obvious delay in
the implicit time as compared to previous studies, which measured conventional mfERG response
with the overlapping of the on- and off-responses. The relatively small sample size may also be an
issue where a delay of response was not demonstrated. In the full-field electroretinogram, a
decrease of photopic negative response has been reported for a brief blue flash stimulus [64]. The
dark frames in this mfERG paradigm help eliminate the temporal adaptive effect of the successive
flash stimuli, but there may be still a certain lateral effect from the neighboring hexagons which
may affect the high-order retinal response. Thus the N2 component may not be directly compara-
ble to the photopic negative response in the conventional full-field electroretinogram. Further
studies on the long-duration full-field electroretinogram on diabetic animal models using phar-
macological dissection of the response [23,37,41,50] should be performed in order to enhance our
understanding of the cellular origin of the N2 component and to determine the possible surrogate
biomarkers for the detection of early changes in DR.

Conclusion
In this study, the “long-duration”mfERG paradigm showed that the on-response component
N2 “increased” in the early stage of DM. By the use of broad- and narrow-band stimuli, it was
further suggested that the weakened lateral antagonistic mechanism leads to an increase of the
N2 amplitude. These response changes indicate that the middle retinal layers may be worthy of
study in understanding the underlying pathological mechanism in the early stages of DM. This
will also promote the development of novel therapies for DR in the future.
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