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Abstract: The necessity for automatic monitoring tools led to using 3D sensing technologies to collect
accurate and precise data onsite to create an as-built model. This as-built model can be integrated
with a BIM-based planned model to check the project’s status based on algorithms. This article
investigates the construction progress monitoring (CPM) domain, including knowledge gaps and
future research direction. Synthesis literature was conducted on 3D sensing technologies in CPM
depending on crucial factors, including the scanning environment, assessment level, and object
recognition indicators’ performance. The scanning environment is important to determine the
volume of data acquired and the applications conducted in the environment. The level of assessment
between as-planned and as-built models is another crucial factor that could precisely help define the
knowledge gaps in this domain. The performance of object recognition indicators is an essential factor
in determining the quality of studies. Qualitative and statistical analyses for the latest studies are
then conducted. The qualitative analysis showed a shortage of articles performed on 5D assessment.
Then, statistical analysis is conducted using a meta-analytic regression model to determine the
development of the performance of object recognition indicators. The meta-analytic model presented
a good sign that the performance of those indicators is effective where [p-value is = 0.0003 < 0.05].
The study is also envisaged to evaluate the collected studies in prioritizing future works from the
limitations within these studies. Finally, this is the first study to address ranking studies of 3D sensing
technologies in the CPM domain integrated with BIM.

Keywords: sensing technologies; automated progress monitoring; object recognition; meta-analysis

1. Introduction

Remote sensing has been defined as one of the broadest areas of science because of
its various applications in different fields such as geography, medicine, and engineering.
Researchers labeled remote sensing an inventive science to remotely know information
about an object [1]. In contrast, another study described remote sensing as a “renaissance at
a distance.” [2]. Remote sensing aims to extract remotely sensed images using four crucial
correlated processes. At first, the physical objects involve live beings such as humans or
animals and inanimate beings such as buildings, land, and water. Second, the sensor data is
shaped by recording the electromagnetic radiation emitted or reflected from the examined
object. Moreover, the extracted information analyzes captured sensor data to solve practical
problems. Finally, applications are the last element encompassing many aspects of science,
such as geology, geography, engineering, and medicine [3].

In recent years, remote sensing technologies have played a crucial role in develop-
ing the architectural, engineering, and construction (AEC) industry. These technologies
included global positioning systems (GPS), radio frequency identification (RFID), ultra-
wideband (UWB) tracking system, image-based processing, and laser scanners (LS).
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Several studies have been made to discuss 3D sensing technologies in construction.
At first, researchers developed techniques to change manual inspection to automated
inspection to increase the response time to any delays [4,5]. Then, studies began to suggest
remote sensing technologies in surveying activities. Afterward, restoring historic buildings
was another area for 3D sensing technologies. This area introduced the relationship between
3D sensing technologies and a new paradigm called building information modeling (BIM).
On one hand, BIM accurately assembles “as planned” models into computer-generating
programs to develop a spatial representation of objects [6,7]. 3D BIM-based model is formed
by linking the project’s information with 3D model. On the other hand, remote sensing
technologies could review the status of the building by assembling “as-built” models. As a
result, a developed model was created by integrating those technologies to restore, record,
and improve historic buildings [8,9].

Then, researchers turned to integrating BIM and remote sensing technologies to
monitor the progress of activities in real-time to reduce schedule and cost overrun [10]. The
reason behind that is the usage of BIM through dimensions. For example, a 4D BIM-based
model, which is also referred to as the schedule model. The scheduling dimension has
been specifically designated to establish the activities’ sequence over time. A cost model is
another BIM dimension known as a 5D BIM-based model. The cost dimension is to track
the costs of activities over time.

Moving forward to the latest review articles, they explored different insights to find
knowledge gaps and recommend future directions in the construction industry. For exam-
ple, Patel pointed out some visions into the CPM domain using scientometric analysis to
draw a broad picture of CPM [11]. Another article focused on the BIM research domain
and its development from data collection to information integration and knowledge man-
agement [12]. It also used science mapping-based analysis to draw theoretical and practical
references for future research on BIM. However, other researchers reviewed articles on
machine learning methods for point cloud processing in construction and infrastructure
applications [13]. Another researcher pointed out 3D point cloud data for different con-
struction purposes such as 3D model reconstruction, geometry quality inspection, and
other applications [14].

In contrast, few studies focused on monitoring the automation of indoor progress by
providing a systematic literature survey [15]. However, previous studies intended to pave
the way for advancing different domains in the construction industry. A few topics in the
construction industry still need addressing. One of these topics is surveying a correlation
between certain data acquisition technologies and certain environments. Another topic
is to address the gaps in the BIM integrated with the CPM applications. Another topic is
surveying the performance of object detection algorithms to determine the development of
these algorithms over the years and quantify the quality of studies.

There are two main objectives of this research. Firstly, to present a literature synthesis
and investigate the current state of research on integrated BIM with 3D sensing technologies
in CPM for knowledge gaps and future works. This research was assessed according to the
scanning environment, assessment levels, and performance of object recognition indicators.
Secondly, to investigate the efficacy of object recognition indicators’ performance using
meta-analysis.

Today, such a view is necessary as there is a lack of review of integration between BIM
and sensing technologies in construction progress monitoring. Accordingly, the findings
of this research are expected to partake in the current state of research in the CPM. This
research also highlights the strengths and weaknesses of studies related to BIM and 3D
sensing technologies.

This paper focused on studies between 2007 and 2021. The reason behind that was re-
searchers mainly used a traditional CPM before 2007. The traditional CPM mostly depends
on daily or weekly reports from the site collected manually and uploaded to a computer af-
ter analysis of these reports. After that, Patel pointed out a huge transformation of research
toward automation and visualization in the CPM field [11]. The article proceeds by con-
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ducting a qualitative and statistical analysis of previous studies. This qualitative analysis
was assessed according to the scanning environment, assessment level, and performance of
object recognition indicators.

Those criteria were chosen for particular reasons. For example, the scanning environ-
ment criterion was preferred to investigate how frequently 3D sensing technologies are
used in different environments and whether there is a correlation between certain data
acquisition technologies and different environment sets or not. Another example, the level
of assessment criterion, was selected to investigate the development of CPM-integrated
applications between as-built and BIM-based models. In comparison, the performance of
object recognition indicators criterion was preferred to examine the quality of studies based
on object recognition algorithms’ development.

For further investigation of the performance of object recognition indicators, the article
conducted a statistical analysis of previous studies using meta-analysis(for example, the
steps to conduct a meta-analysis and how they are utilized to analyze the literature findings).
After that, the article results are demonstrated. Finally, the paper concludes with an overall
summary of the results.

2. Research Outlines

This research includes the latest studies published in this area over the past decades.
The literature search focused on highly regarded journals in civil engineering informatics,
construction engineering and management, remote sensing, applied science, and automa-
tion in construction. Papers published in or after 2007 are only involved as before 2007,
papers were used traditional approaches. A total of 46 articles were collected using a litera-
ture search in Google Scholar and the digital library of King Saud University using keyword
search. The keyword used for the literature search is a combination of data acquisition
technologies and integration with BIM in construction progress monitoring. Keywords
representing data acquisition technologies include “RFID,” UWB,” GPS,” Image Process-
ing,” Laser Scanner” (See Section 3). Keywords representing areas include “integrated with
BIM,” monitoring and control, “construction progress monitoring,” Progress tracking.”
Selected papers must use point cloud data integrated with BIM for progress monitoring
purposes. However, these previous procedures are detailed in extracting articles.

Based on the previous literature search, a total of 46 research papers were reviewed
between 2007 and 2021 due to the traditional way to monitor progress before 2007. Figure 1
shows the number of articles per year between 2007 and 2021. Figure 1 shows a continuous
increase in the last ten years. In the last five years, more than 20 papers have been found,
indicating the importance of this research topic.

A critical analysis is then developed to discuss the collected studies according to the
following criteria:

1. Scanning environment: the environment where 3D sensing technology captures the
necessary as-built data (indoors, outdoors, or both)

2. Level of assessment: The level of progress monitoring data between the as-built
model and as-planned model [three-dimensional (3D), four-dimensional (4D), or
five-dimensional (5D)]

3. Performance of object recognition indicators [recall, accuracy, and precision] (see
Section 3)

Furthermore, statistical analysis is discussed to evaluate the efficacy of object recog-
nition indicators’ performance using meta-analysis. The research flowchart is shown in
Figure 2. Further explanation of the methodological steps is provided hereunder.
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3. Overview on 3D Sensing Technologies in Construction

Nowadays, construction projects have many issues. The massive amount of data
and the lack of cooperation between construction departments are two core problems. As
a result, construction firms turned their attention to multidimensional planned models
such as BIM models. For onsite monitoring and control purposes, 3D sensing technologies
also helped form 3D as-built models. As mentioned before, these technologies were Laser
scanners (LS), global positioning systems (GPS), radio frequency identification (RFID),
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ultra-wideband (UWB) tracking systems, and image-based processing [16]. The previous
research urged that laser scanning and image-based processing are the most used 3D
sensing technologies in the construction phase. However, the laser scanner is accurate in
obtaining 3D onsite data. It is expensive and needs experienced operators [10].

Furthermore, image-based methods can generate 3D or 4D models. Image processing
abilities can produce models based on geometrical information. However, like laser scan-
ning, image-based methods have limitations, such as being time-consuming as it needs
more overlapping images in various places in the project area [17].

Moreover, unmanned aerial vehicle (UAV) is another image-based method. A UAV
is an aircraft that flies either autonomously or with remote control. UAV can cover the
investigation area and obtain various data types such as videos or images [18].

The quality of 3D sensing technologies is crucial for developing as-built models [19].
In other words, a classification of predicted and correctly sensed point clouds should be
explained. Therefore, a confusion matrix is used to summarize point clouds’ performances
through different conditions, as described in Table 1. A confusion matrix is mainly used
in machine learning to summarize predictive results on a classification problem. It also
visualizes the algorithm’s performance. It usually contains two rows and two columns
that report the number of should be (true positives, true negatives, false negatives, and
false positives).

Table 1. Confusion Matrix.
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Prediction

N
eg

at
iv

e

True False

True Positive (TP) False Negative (FP)

It happens when the presence of a point cloud is
correctly predicted

It happens when a test fails to reveal the presence
of a point cloud

False Positive (FP) True Negative (TN)

It happens when a test incorrectly shows a point
cloud is present

It happens when a test correctly predicts the
absence of a point cloud

These conditions revealed some common performance indicators. Those indicators
involved recall, accuracy, and precision [20,21]. Firstly, recall rate is the percentage of
correctly sensed model objects present in the scans. Secondly, the accuracy (specificity)
rate is the percentage of all sensed model objects in all observation cases. Finally, the
latest indicator is the precision rate, and it is defined as the percentages of correctly sensed
model objects that are actually in the scan [20]. These benchmarks are interpreted below in
Equations (1)–(3), which would help indicate the performance level of object recognition.

Recall =
True Positive (TP)

True Positive (TP) + False Negative (FN)
(1)

Accuracy =
True Positive (TP) + True Negative (TN)

True Positive (TP) + True Negative (TN) + False Positive (FP) + False Negative (FN)

(2)

Precision =
True Positive (TP)

True Positive (TP) + False Positive (FP)
(3)

3.1. Radio Frequency Identification (RFID)

Radio frequency identification (RFID) is one of the first used 3D sensing technology
in the AEC industry. An RFID system mainly consists of readers, antennas, and tags.
Tags are installed on the assets that need to be tracked. Reading data from tags is the
antennas’ job. Readers transmit collected data for further processing and analysis into
host computers. Readers also are typically pinpointed around the search area [22–24].
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RFID-based systems mainly target tracking and location information for assets construction.
RFID-based systems could also integrate with the multidimensional BIM technique to
auto-update the progress of construction activities in real-time [22–27].

Table 2 depicts the studies conducted by RFID systems in the CPM field between 2007
and 2021. Very few studies were performed using 4D assessment [22,27]. In contrast, the
remaining studies were performed using 3D assessment. While to the best of the authors’
knowledge, no studies were conducted using 5D assessment.

Table 2. Studies of RFID integrated with BIM in CPM: 2007–2021.

References

As-Planned vs.
As-Built

Performance of Object(s)
Recognition

Environment Notes
3D 4D 5D Recall

(%)
Accuracy

(%)
Precision

(%)

1 [22] X X � N/A N/A N/A Indoor

2 [23] X � � N/A N/A N/A Indoor+Outdoor
It was performed using

both RFID and laser
scanner

3 [24] X � � N/A N/A N/A Indoor

4 [25] X � � N/A N/A N/A Indoor

5 [26] X � � 89.6 88.1 84.7 Indoor

6 [27] X X � N/A N/A N/A Indoor

While regarding the number of 3D sensing technology used, [23] was conducted using
an RFID-based system and a laser scanner. However, few studies were performed indoors
and outdoors [23], while the rest were conducted indoors. Amongst studies that used RFID
systems, very few studies revealed object recognition indicators (i.e., recall, accuracy, and
precision measures) [26].

3.2. Ultra-Wideband (UWB)

Ultra-wideband (UWB) is one of the most promising positioning 3D sensing technolo-
gies. UWB-based systems typically consist of tags and sensors. UWB signals are emitted
from tags and received by sensors around the sensing area. The location of objects is tracked
using both the arrival time difference between different sensors and the angle of arrival at
each sensor. A UWB-based system can track resources accurately and improve workplace
safety [28]. Integrating BIM with UWB-based systems would result in a better information
flow between the two systems and auto-monitor and auto-report work progress [29–31].

Table 3 depicts the studies conducted by UWB systems in the CPM field between
2007 and 2021. All studies were performed using a 3D assessment. While to the best of
the authors’ knowledge, no studies were conducted using 4D or 5D assessment. While
regarding the number of 3D sensing technology used, the data acquisition pointed by shahi
was performed using a fusion of UWB and LS-based methods. Nevertheless, some studies
were conducted indoors [31], while very few were implemented indoors and outdoors [29].
In contrast, one study was performed outdoors [30].

Amongst these studies, minimal studies used indicators of object recognition perfor-
mance (i.e., accuracy measure) [31]. The study findings revealed that the accuracy results
obtained using a Light Emitting Device (LED) indicator was higher than those without
an LED.
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Table 3. Studies of UWB integrated with BIM in CPM: 2007–2021.

References

As-Planned vs.
As-Built

Performance of Object(s)
Recognition

Environment Notes
3D 4D 5D Recall

(%)
Accuracy

(%)
Precision

(%)

1 [29] X � � N/A N/A N/A Indoor+Outdoor

2 [30] X � � N/A N/A N/A Outdoor
It was performed using

both UWB and Laser
scanner

3 [31] X � � N/A 100
75 N/A Indoor

The case study was
conducted in two phases.

One phase with LED
indicator while the other

phase without LED
indicator

3.3. Global Positioning System (GPS)

Global positioning system (GPS) is one of the most used 3D sensing technologies for
tracking and pinpointing resources in the AEC industry. It also can retrieve positioning
data from components in different scanning environments [32]. For example, GPS can
track any resource in construction sites with only a GPS device placed on it and obtain
real-time data. Furthermore, the obtained data can be analyzed easily using host computers.
Integrating BIM with a GPS-based method would ease the flow of information between
planned and as-built models and auto-track resources [33].

Table 4 depicts the studies conducted by GPS in the CPM field between 2007 and 2021.
The work performed by Benham pointed out that a 3D assessment was conducted [33].
While to the best of the authors’ knowledge, no studies were conducted using 4D or
5D assessment. Regarding the number of 3D sensing technology used, the same study
conducted by Benham was performed using GPS and image-based methods. While in
terms of the scanning environment, the same study was performed outdoors [33].

Table 4. Studies of GPS integrated with BIM in CPM: 2007–2021.

References

As-Planned vs.
As-Built

Performance of Object(s)
Recognition

Environment Notes
3D 4D 5D Recall

(%)
Accuracy

(%)
Precision

(%)

1 [33] X � �

84.8
73.1
81.1
97.8

80.3
72.1
76.9
94.2

89.6
72.7
83.7
95.7

Outdoor
It was conducted using

both GPS and image-based
method

84.2 80.9 85.4

Furthermore, some indicators of object recognition performance(i.e., recall, accuracy,
and precision measures) were revealed. The study findings showed that the average overall
recall, accuracy, and precision rate of four stages in a linear infrastructure project were 84.2,
80.9, and 85.4, respectively.

3.4. Image-Based Methods

An image-based method is common for providing onsite information by tracking
progress and documenting it. Image-based systems are usually inexpensive and easy to
use compared to other 3D sensing technologies. They can also generate the geometrical
information of the 3D as-built model. Images, however, can be collected in different ways.
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On one hand, cameras collect images from the ground. Cameras can be monocular or
stereo. Researchers pointed out taking several photos in and around the site to overcome
the occlusions and the limited views [19,21,34–45].

On the other hand, UAVs collect images aerially; UAV mainly consists of high-
resolution cameras and sensors. UAVs can fly over the site and cover the site and its
surroundings [18,46–53].In addition, fewer researchers used both cameras and UAV as their
data acquisition technology [54,55].

In all studies mentioned above, image-based methods use BIM to facilitate project
status from site to office. The integration between those systems would also auto-monitor
the project’s progress by comparing the BIM-based and the point-cloud models.

Table 5 depicts the studies conducted by image-based methods in the CPM field
between 2007 and 2021. Some studies were performed using 3D assessment [19,21,34–
36,39,40,42,44,50,54,55]. At the same time, the remaining studies were performed using
4D assessment [18,37,38,41,43,46–49,51–53], while to the best of the authors’ knowledge,
no studies were conducted using 5D assessment. Regarding the number of 3D sensing
technology used, a few studies were performed using image-based and LS-based meth-
ods [39,46,47,55] However, a few studies were conducted indoors [18,35,50], while others
were conducted outdoors.

Table 5. Studies of image-based methods integrated with BIM CPM: 2007–2021.

References

Equipment As-Planned vs.
As-Built

Performance of Object(s)
Recognition

Environment Notes
UAV Camera 3D 4D 5D Recall

(%)
Accuracy

(%)
Precision

(%)

1 [34] X X � � N/A N/A N/A Outdoor

2 [35] X X � � N/A N/A N/A Indoor

3 [21] X X � � N/A 97.1 N/A Outdoor

4 [36] X X � � N/A N/A N/A Outdoor

5 [37] X X X � N/A
87.5
82.89
91.05

N/A Outdoor

Golparvar-Ford performed
three case studies. Code

names were given to these
case studies which are RH1,

RH2, and SD

6 [19] X X � � N/A N/A N/A Outdoor

7 [46] X X X � N/A N/A N/A Outdoor
It was conducted using

image-based methods and
laser scanning

8 [38] X X X � N/A 60.7 N/A Outdoor

9 [40] X X � � N/A N/A N/A Outdoor

10 [39] X X � � N/A N/A N/A Outdoor
It was conducted using

both image-based method
and laser scanning

11 [41] X X X � N/A 95.9 N/A Outdoor

12 [54] X X X � �
N/A
N/A

N/A
N/A

N/A
N/A Outdoor

13 [18] X X X � N/A N/A N/A Indoor

14 [47] X X X � N/A 90 N/A Outdoor
It was conducted using
Image-based and laser

scanning methods

15 [48] X X X � N/A 91 N/A Outdoor

16 [49] X X X � N/A N/A N/A Outdoor
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Table 5. Cont.

References

Equipment As-Planned vs.
As-Built

Performance of Object(s)
Recognition

Environment Notes
UAV Camera 3D 4D 5D Recall

(%)
Accuracy

(%)
Precision

(%)

17 [50] X X � � N/A N/A N/A Indoor

18 [51] X X X � N/A 82~84 50~72 Outdoor

19 [55] X X X � � N/A N/A N/A Outdoor
It was conducted using

both image-based method
and laser scanning

20 [42] X X � �
79.5
79.1

N/A
N/A

93.9
90.7 Outdoor

There were two case
studies, Project 1 and

project 2

21 [43] X X X � N/A N/A N/A Outdoor

22 [52] X X X � N/A N/A N/A Outdoor

23 [53] X X X � N/A N/A N/A Outdoor

24 [44] X X � � N/A N/A N/A Outdoor

Amongst these studies, a few studies revealed some indicators of object recognition
performance (i.e., accuracy measure), as shown in Figure 3. The findings revealed that
the result obtained in [21,41] had the highest accuracy with 97.1% and 95.9%, respectively.
The remaining accuracy results fluctuated between 80%~90%, except the results obtained
in [38], which had the lowest accuracy with 60.7%.
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Figure 3. Accuracy (%) of studies [21,37,38,41,47,50,51] of image-processing in CPM.

3.5. Laser Scanners

In recent years, the AEC industry has developed tremendously in using 3D scanning
technologies in collecting the data of construction scenes, using only a few scans and
images. A laser scanner is one of the best instruments to estimate construction project
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development using 3D point clouds to clarify the construction projects’ status [56]. How-
ever, as mentioned before, laser scanners were primarily used in surveying because of the
large amount of data and the long computational time required. Laser scanners joined
the monitoring and controlling stage as progress checkers due to the accuracy results
of the 3D representation of the objects. The point clouds generated include two crucial
information pieces. Firstly, each point cloud’s position information (x, y, and z). Secondly,
digital cameras inside the laser scanner capture the color information (R, G, and B). Those
are essential to detect buildings’ structure components [10,56]. Integrating laser scanners
with BIM-based models would massively help to auto-detect the project’s progress. The
integration between those systems would flow the information properly between the site
and the office [10,23,30,39,46,47,55–66]. Table 6 depicts the studies conducted by laser
scanners in the CPM field between 2007 and 2021. Some studies were performed using 3D
assessment [23,30,39,47,55,57–60,65]. In comparison, fewer studies were conducted using
4D assessment [10,46,56,62,64,66]. While to the best of the authors’ knowledge, very few
studies were performed using 5D assessment [63]. Shahi pointed out the usage of more
than one 3D sensing technology where UWB-based systems and laser scanners were used
together [30].

Table 6. Studies of laser scanning integration with BIM in CPM: 2007–2021.

References
As-Planned vs. As-Built Performance of Object(s)

Recognition
Environment Notes

3D 4D 5D Recall
(%)

Accuracy
(%)

Precision
(%)

1 [23] X � � N/A N/A N/A Indoor+Outdoor Mentioned before,
in Table 2

2 [10] X X � 98 N/A 96 Outdoor

3 [57] X � � N/A N/A N/A Outdoor

4 [56] X X � 51 N/A 98 Outdoor

5 [58] X � � N/A N/A N/A Indoor

6 [59] X � � N/A N/A N/A Indoor

7 [60] X � � N/A N/A N/A Indoor

8 [30] X � � N/A N/A N/A Outdoor Mentioned before,
in Table 3

9 [61] X � � N/A N/A N/A Outdoor
+Indoor

10 [46] X X � N/A N/A N/A Outdoor Mentioned before,
in Table 5

11 [39] X � � N/A N/A N/A Outdoor Mentioned before,
in Table 5

12 [62] X X � N/A N/A N/A Indoor

13 [47] X � � N/A 68 N/A Outdoor Mentioned before,
in Table 5

14 [63] X X X 100 99.3 99.2 Outdoor The set of results is
only for columns.

15 [64] X X � N/A N/A N/A Outdoor

16 [55] X � � N/A N/A N/A Outdoor Mentioned before
in Table 5

17 [65] X � � N/A N/A N/A Indoor

18 [66] X X � N/A N/A N/A Outdoor
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In contrast, a few studies were conducted using image-based methods and laser
scanners [39,46,47,55]. However, some studies were conducted indoors regarding the
scanning environment [58–60,62,65], while [23,61] was implemented indoors and outdoors.
In contrast, the remaining studies were performed outdoors.

Amongst these studies, a few studies used indicators of object recognition performance
(i.e., recall, accuracy and precision) [10,56,63]. Those studies’ findings showed that the
recall and the precision rates pointed out by Maleek [63] are higher than those pointed
out by Kim and Turkan, as shown in Figure 4. However, the recall and precision results
pointed out by Maleek were for columns only compared to a whole project addressed by
Kim and Turkan.
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4. Critical Analysis for Previous Studies
4.1. Summary of the Current State of the Art

Today, 3D sensing technologies can assist site engineers in automatically monitoring
and controlling activities in construction projects. This article’s literature synthesis has been
conducted for the past fifteen years. Forty-six studies have been collected. The literature
showed that image-based and LS-based methods were the most utilized data acquisition
technology, while GPS-based methods were the least used technology. In addition, studies
that collect data using more than one data acquisition technology have increased in the
last ten years, where the fusion between LS-based and image-based methods was the
most common.

Furthermore, most studies preferred the outdoor environment, as shown in Figure 5.
Figure 5 also revealed that most RFID, UWB, and GPS studies were conducted indoors.
Therefore, researchers intend to use these technologies to track resources that are generally
inside the site. On the contrary, most studies conducted by image-based methods were
performed outdoors. Moreover, LS-based studies were performed in any scanning environ-
ment as the acquisition technology can detect components inside or outside the site. As a
result, there is a correlation based on frequency between specific 3D sensing technologies
and certain environments.
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Moreover, this article revealed that almost all studies conducted with RFID, UWB,
and GPS systems were performed using 3D assessment, as shown in Figure 6. Figure 6
also found that most studies conducted with image processing or laser scanning methods
were performed using 4D assessment. However, only one study used laser scanning for
using 5D assessment purposes. As a result, future work should focus mainly on using
5D assessment in the CPM domain integrated with BIM. There are other additional gaps
in the collected studies. For example, integrating the BIM model and as-built model is
easy to implement but sometimes unreliable. The reason behind that is when the distance
between the as-planned location of the object is larger than the predefined spatial similarity
criteria [63]. Another example is that most companies do not utilize 3D sensing technologies
due to the high cost of technologies and equipment [10]. Software, tools, and algorithms are
limited, and they need development to determine all the factors that could affect automated
progress monitoring [17–20].

4.2. Statistical Analysis Using Meta-Analysis
4.2.1. Meta-Regression Methods and Procedures

Meta-analysis is the evaluation of research findings from several empirical studies
with the help of statistical tools [67]. On one hand, meta-analysis is a quantitative statistical
tool to determine overall trends across studies [68]. On the other hand, the term meta-
analysis is almost the entire systematic review process in a broader sense. Nevertheless,
this article will apply meta-analysis as a statistical tool. The steps of the meta-analysis are
then defined. The steps start with defining the research question, “determine the efficacy of
object recognition indicators’ performance in the CPM”.
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The steps proceed by conducting the eligibility criteria where the evaluation studies
of interest contained at least two estimates of object recognition indicators’ performance
(i.e., recall, accuracy, and precision).

As a result, 39 studies from 46 extracted studies were excluded using the eligibility
criteria. Extracted data was then collected from the seven remaining studies for meta-
analysis. Data were then included describing the evaluation study from which the main
variable was derived. The main variable was expressed as the change in the efficacy of
object recognition indicators’ performance coinciding with CPM applications integrated
with BIM.

The steps moved forward to some concerns considered in this article, such as publica-
tion bias and heterogeneity. Publication bias tends to unpublish study findings if they are
not statistically significant, unwanted, or difficult to explain [69]. In this research, retrieved
data from evaluation studies were assessed for publication bias, where the “trim-and-fill”
method was used numerically for the set of weighted effects [70]. The “trim-and-fill”
method contains two steps. The first step is to trim the studies that cause a funnel plot
asymmetry. As a result, the overall effect estimate produced by the remaining studies
cannot be majorly impacted by the publication bias. The second step is to fill the missing
studies in the funnel plot based on the bias-corrected overall estimate.

A heterogeneity test was also performed in this analysis, and then data were analyzed
using a random effect model as the heterogeneity in these sets of effects was significant.
Using a random effect model is justified. There are no systematic variations in the set of
effects considered in fixed-effect models.

On the contrary, the random effect model recognizes the variation in effects as sys-
tematic. The difference in results between those two models is that the fixed effect model
is unsatisfactorily conservative [71]. On the other hand, the outcomes in random effect
models are conservative estimates of statistical significance to the detriment of the power
to explain variance in effect size [72].
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4.2.2. Evaluation of Effect Size and Relative Weight

The change in object recognition indicators’ performances was interpreted as odd
ratios. Thus, the basic effect was extracted from studies as follows:

E f f ect size (ES) =
TP
FN
FP
TN

(4)

where ES is the effect size, TP point clouds correctly sense the positive cases; FN point
clouds incorrectly fail to reveal the presence of a point; FP wrongly shows a point cloud
is present, and TN point clouds rightly sense the negative cases, for further explanation
(see Section 3). Then, in the meta-analytic model, optimized weights are calculated in the
following equation as these weights are the inverse variance [72]

WRelative =
1

SE2 (5)

where WRelative is the weight of an individual effect, and the SE is the standard error. The
precision of effect size is the standard error index [73]. It was derived as follows:

SE2 =
1

TP
+

1
TN

+
1

FP
+

1
FN

(6)

where SE is the standard error in studies, and TP, TN, FP, and FN are defined in (4).
Moving forward to calculate the overall true mean, the log odds method and the

fixed-effect model was used as follows [73]:

ESoverall = e
(∑ ln ES ∗W)

∑ W (7)

where ESoverall is the weighted mean effect size, e is the exponential function; ln ES, the
estimate of each effect size using natural logarithm; and W is the weight of each effect
estimate (see Equations (4) and (5)). Equation (7) was then generated to estimate the overall
estimates for the whole sample of individual effects.

Finally, the chi-squared distributed statistic Q was generated to evaluate the hypothesis
that there is heterogeneity within study error as follows:

Q =∑ w × [ln ES − ln ESoverall ] (8)

Q can be considered a function of the weighted squared difference between the natural
logarithm of study effect estimates, ln ES and the natural logarithm of the fixed overall
effects. It was assumed that Q was significant (α = 0.01), heterogeneity was assumed, and a
random effect model was chosen to calculate the weighted means.

4.2.3. Deliverables

A meta-analysis of seven studies was conducted to estimate how the efficacy of
object recognition indicators will be performed. Initially, the set of ESs is examined for
heterogeneity using the chi-squared test. A large I2 signals that the percentage of total
variation across studies is heterogeneous. The test results showed the heterogeneity in
studies (I2 = 93.6%, p < 0.01). So, a random meta-analytic model was performed.

Table 7 shows the meta-analysis results to grasp the statistical data intuitively and
visually. The first three columns show the reference of the study, the effect size, and the
relative weight. Further, the table shows each study’s point estimate and 95% confidence in-
tervals. Moreover, the last column shows the calculation of the overall p-value to determine
if the extracted data from studies are statistically significant or not. A statistical significance
exists if the p-value is lower than the significance level (α = 0.05). The results showed
that the extracted data is statistically significant (p-value = 0.0003 < α = 0.05). The overall
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effect (in the last row) of object recognition indicators also showed an (11.84%) increase in
performance in CPM applications (with 95% confidence between +3.12% and +45.22%).

Table 7. Results from Random effect meta-analysis model.

Study Effect Size (ES.)

% Changes in Object Recognition Indicators’
Performance p-Value

Relative Weight Lower 95% Estimate Upper 95%

1 [26] −0.56 0.161 +0.27 +0.6 +1.17

2 [33] 2.78 0.159 +7.30 +16 +36

3 [38] 1.79 0.135 +1.2 +6 +30.63

4 [49] 2.93 0.168 +15 +19 +23.7

5 [57] 4.79 0.129 +19.6 +120 +735

6 [56] 1.66 0.138 +1 +5.3 +24.75

7 [64] 4.89 0.109 +7.29 +133 +1480

2.48 +3.102 +11.84 +45.22 0.0003

Then, publication bias analysis was addressed to identify to which degree it influences
the summary outcomes. Thus, the validity of the core findings was assessed. A funnel
diagram is a common method to determine whether there is any publication bias. Figure 7
presents a funnel diagram drawn by plotting each effect size against its corresponding
sample size to further analyze the publication bias in the whole sample. Figure 6 also
shows that the data is consistent with the distribution of effects on either side of the overall
effect size; however, the tails of the plot are not symmetrical, which is consistent with a
hypothesis of publication bias.
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Another reason is that most studies had a smaller sample size which occasionally
indicates statistically insignificance; therefore, the trim and fill method was conducted
to correct the effect size ES corrected until the funnel was symmetric. The correction of
effect size signifies that the object recognition indicators coincide with an 8.89% increase in
performance in CPM applications where the confidence level is 95%, and the intervals are
between +2.17% and 36.5%.
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5. Conclusions

This research presents an interpretation of BIM in construction and the correlation
between BIM and remote sensing in the CPM between 2007 and 2021. It also displays a
critical analysis of previous studies using three main pillars: the scanning environment,
level of assessment, and object recognition indicators’ performance. Synthesized literature
was presented where forty-six studies were collected for the past fifteen years. Those
studies used RFID, UWB, GPS, image processing, or laser scanning as data acquisition
technology. Specified data was then extracted from these studies. Then, a critical analysis
was performed using a meta-analysis model to evaluate the development of object recogni-
tion algorithms across the studies. This article also presented these studies’ strengths in
different 3D sensing technologies flexibly used in CPM applications. The studies can also
use different environment sets. This article found that most collected studies used either
image processing or laser scanning methods for CPM applications. The article also showed
a robust correlation between specific 3D sensing technologies and certain environment
sets. It is found that there is a lack of studies performed using 5D assessment as well.
Furthermore, the performance of object recognition indicators showed an increase of 8.89%
across the studies where the estimated intervals were [2.17%,36.5%].

From these findings, it is recommended to focus on using the cost level of assessment
in future progress monitoring applications. It is also preferred not to specify using one or
two sensing technologies. The authors also suggest calculating at least one or two indica-
tors of object recognition algorithms to determine the obstacles related to the integration
between BIM and 3D sensing technologies and to propose solutions to better results of
these indicators.
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