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Abstract
Background: Mosquitoes commute between blood-meal hosts and water. Thus, heterogeneity in
human biting reflects underlying spatial heterogeneity in the distribution and suitability of larval
habitat as well as inherent differences in the attractiveness, suitability and distribution of blood-meal
hosts. One of the possible strategies of malaria control is to identify local vector species and then
attack water bodies that contain their larvae.

Methods: Biting and host seeking, not oviposition, have been the focus of most previous studies
of mosquitoes and malaria transmission. This study presents a mathematical model that
incorporates mosquito oviposition behaviour.

Results: The model demonstrates that oviposition is one potential factor explaining
heterogeneous biting and vector distribution in a landscape with a heterogeneous distribution of
larval habitat. Adult female mosquitoes tend to aggregate around places where they oviposit,
thereby increasing the risk of malaria, regardless of the suitability of the habitat for larval
development. Thus, a water body may be unsuitable for adult mosquito emergence, but
simultaneously, be a source for human malaria.

Conclusion: Larval density may be a misleading indicator of a habitat's importance for malaria
control. Even if mosquitoes could be lured to oviposit in sprayed larval habitats, this would not
necessarily mitigate – and might aggravate – the risk of malaria transmission. Forcing mosquitoes
to fly away from humans in search of larval habitat may be a more efficient way to reduce the risk
of malaria than killing larvae. Thus, draining, fouling, or filling standing water where mosquitoes
oviposit can be more effective than applying larvicide.

Background
Malaria is responsible for 700,000 to 2.3 million deaths

each year, mainly among children [1]. It is caused by four
species of Plasmodium, protozoan parasites that are most
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common in the tropics, especially Africa, and are trans-
mitted between humans by the bites of female Anopheles
mosquitoes. Thus, the distribution of Anopheles mosqui-
toes is an important factor in determining the prevalence
of Plasmodium infections in humans. At large spatial scales
(i.e. 100–1,000 kilometers), the distribution of malaria is
best described by climate: warm, humid places with
standing water support large mosquito populations and
high malaria prevalence. At local scales (i.e. 100 metres to
one kilometre), the risk of malaria is determined by mos-
quito behaviour and ecology, especially the distribution
of blood-meal hosts and water. Mosquitoes alternate
between blood feeding and oviposition, and suitable
hosts and water are heterogeneously distributed [2]. Thus,
human biting reflects the mosquitoes' commute to com-
plete its gonotrophic cycle, as well as inherent differences
in the attractiveness, suitability and distribution of blood-
meal hosts [3]. Here, mathematical models are used as
conceptual tools to explore mosquito oviposition behav-
iour and the availability of water as an explanation for var-
iability in the risk of malaria.

Mathematical models have played an important role in
malaria epidemiology. The mathematical models of Ross
illustrated the role of mosquitoes in the dynamics of
malaria, placing mosquito control at the centre of anti-
malaria intervention strategies [4]. The basic concepts of
the entomological inoculation rate (EIR), vectorial capac-
ity and the basic reproductive number for malaria (R0)
were all based on mathematical models of malaria trans-
mission, linking entomology and malaria epidemiology
[5]. Several studies and mathematical models have
emphasized the role of heterogeneous biting in the
dynamics and control of malaria [6,7]. Approximately
20% of the human population contributes 80% of the net
transmission of malaria, because mosquitoes bite some
people more than others [8].

Heterogeneous biting is due, in part, to the ecology and
behaviour of Anopheles mosquitoes. A number of surveys,
field and lab experiments have been carried out to better
understand which cues are responsible for mosquitoes'
differential attraction [9]. Mosquitoes emerge from water
sources and then fly to a blood-meal host, locating a host
using a set of cues, including host movement, odour, CO2
and body temperature. Thus, the proximity of households
to larval habitat [10], domestic animals [11,12], human
avoidance and defensive behaviour [13,14] and individ-
ual attractiveness, depending mainly on odour [15,16] or
infection status [7], help to explain why some humans are
bitten more often than others. Studies have most consist-
ently reported gradients in vector density away from the
breeding sites: in the vicinity of the aquatic habitat, the
number of adult mosquitoes is higher [17,18] as is
malaria prevalence [19,20] without being always corre-

lated with clinical illness [21]. Thus, vector dispersal is
driven by the search for oviposition sites as well as the
search for hosts: the distance vectors have to fly to lay their
eggs influences the radius of control measures [22].

One factor that has been neglected in these studies is the
oviposition behaviour of mosquitoes. The cues used by
any Anopheles species to select the sites at which they ovi-
posit between blood-meals remain poorly understood,
except in very general terms. For example, Anopheles arabi-
ensis and Anopheles gambiae s.s. typically breed in very tran-
sient habitats like shallow sunlit fresh water pools or
human-made habitats [23], though they may also be com-
mon in rice fields [24,25]. In contrast, Anopheles funestus
breeds mainly in marshes and other types of sheltered
habitats that contain vegetation [26,27]. What is suitable
one week may become unsuitable the next, due to abiotic
(e.g. drying or flooding) or biotic factors (e.g. increased
predation or competition). Furthermore, eggs, larval
instars and pupae may have different ecological require-
ments. The standard way to locate the "breeding sites" of
malaria vectors is to look for larvae, sample them and
identify their species. Often, most of the sites that seem
most suitable may be unoccupied by immature Anopheles
of any stage, at least temporarily. Breeding sites are prone
to change, e.g. in accord with agricultural development,
deforestation or irrigation [28]. Environmental manage-
ment [29] allows for vector control focusing on long-term
change in vector habitat (draining breeding sites) or on
using means that reduce vector reproduction, survival or
abundance (i.e. spraying breeding sites with larvicide)
[30]. Water source reductions may have played a role in
eliminating malaria from Israel, the United States and
Italy [31].

It seems clear that larval habitat should be a focal point for
malaria transmission, but what are the effects of non-pro-
ductive water sources where mosquitoes oviposit but eggs
fail to develop to adults (e.g. if sprayed with larvicide or
desiccated), compared to truly productive water sources
(breeding sites)? Does the presence of these unsuitable
water sources increase or decrease malaria prevalence?
Here, the heterogeneous distribution of water and mos-
quito oviposition behaviour are explored as factors in het-
erogeneous biting.

Methods
1. Model
Here, a recent spatial model for malaria epidemiology on
heterogeneous landscapes was modified by incorporating
a more detailed description of the gonotrophic cycle into
models for mosquito infection dynamics [32] (Figure 1).
Let S denote the density of susceptible (i.e. uninfected)
mosquitoes, L denote the density of latent (i.e. in the incu-
bation period: from the onset of infection to the
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beginning of the infective period) and I the density of
infective mosquitoes. Whatever her state of infection, the
mosquito alternates between the activities of blood-meal
feeding and ovipositing. Fed, gravid mosquitoes, denoted
with subscript f, have taken a blood-meal and seek a place
to oviposit, while unfed mosquitoes, denoted with sub-
script u, have recently oviposited and seek a blood-meal
host.

Spatial heterogeneity was incorporated by subdividing the
landscape into i patches in an array or grid (see below),
with subscripts denoting the mosquito location and state.
Thus, Ii, f describes the density of fed, infective mosquitoes
in patch i (Eq. 1). Let Ai,u, denote the rate (speed of an
event over time) at which unfed mosquitoes feed on a
human host in patch i, if one is available; upon biting, the
mosquito changes state from "unfed" (u) to "fed" (f). Sim-
ilarly, let Ai,f denote the rate at which fed mosquitoes ovi-
posit in patch i, if water is available; upon ovipositing,
mosquitoes change state from fed to unfed. Thus, if hosts
and water are available in patch i, the expected time to
find a host is Ai,u

-1, and the expected time to oviposit is Ai,f
-

1, so the duration of one gonotrophic cycle in patch i is Ai,f
-

1 + Ai,u
-1. Note that the human biting rate (HBR) in each

patch includes biting only by unfed mosquitoes: HBRi =
Ai,u (Si,u + Li,u + Ii,u) / Hi, where Hi denotes human density
in the ith patch. In this model, the entomological inocula-

tion rate (EIR) in each patch includes biting only by infec-

tive, unfed mosquitoes, . Similarly, the

sporozoite rate in unfed mosquitoes is defined as ratio of
unfed infective mosquitoes to total number of unfed mos-

quitoes .

Let εi denote the local emergence rate of adults. If εi > 0, a
patch was considered to be a productive source for mos-
quitoes. Some patches might have water where mosqui-
toes can oviposit, but no adults emerge. Thus, if Ai,f > 0,
but εi = 0, the patch was called a non-productive water
source. Obviously εi = 0 if no water was available. Thus, it
is implicitly assumed that the emergence rate of adult
mosquitoes is regulated at the pre-adult stages, not lim-
ited by the availability of eggs.

It is assumed that mosquitoes move among patches [33],
depending on their gonotrophic state and the availability
of hosts and water. Since water or hosts might not be
available in some patches, Ai,f and Ai,u denote the local bit-
ing rates, subject to host availability [34] and local ovipo-
sition rates subject to the availability of oviposition
habitat [35]. If humans were not available, Ai,u = 0, and if
water was not available, Ai,f = 0: a mosquito in an unfed or

Malaria transmission dynamics within a patch between mosquito and human populationFigure 1
Malaria transmission dynamics within a patch between mosquito and human population. Mosquito population (in 
blue): Mosquitoes emerge from a water source uninfected and unfed (Su). Susceptible, unfed mosquitoes feed at rate Au and 
they are then considered fed and susceptible (Sf), unless the blood-meal infects the mosquito with malaria (with probability cX) 
in which case they become latent and fed (Lf). Latent mosquitoes become infectious at the rate θ, regardless of whether they 
are fed or unfed (Lf to If, or Lu to Iu). Fed mosquitoes, regardless of their infection status, return to being unfed after ovipositing, 
at rate Af. (Su to Sf, Lu to Lf, or Iu to If). All mosquitoes die at a rateµ. Human population (in green): Susceptible Human (H) may 
become infective (X) after an infective bite at a rate b.Au. They would return to the susceptible state at a rate r.
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fed state, respectively, would migrate to another patch in
search of a blood-meal host or larval habitat (see below).
Thus, the residence time in each disease state is longer if
no host or no water is available. Otherwise, the parame-
ters assume a positive value (Table 1). It is assumed that
emigration of mosquitoes depends on the presence of
water for fed mosquitoes and on human density for unfed
mosquitoes. Let w denote the per-capita emigration rate of
a fed mosquito, which depends on water availability: it
describes the expected number of patches a mosquito
would cross in one day if no water were available w = 0 if
water is available). Similarly, it is assumed that the migra-
tion of unfed mosquitoes is a function of local human
density, Hi. Let γ denote the per capita emigration rate of
an unfed mosquito; thus γ = ςe-ψHi, where ς corresponds to
the maximum daily number of patches a mosquito would
visit in a day if no humans were available and ψ describes
her responsiveness to human density. Another parame-
terωi, j describes the proportion of mosquitoes leaving

patch j that fly into patch i; thus, . It is assumed

that ωi,j = 0 unless two patches are adjacent and that mos-
quitoes move in a random direction. The same migration
rates were applied for mosquitoes without regard for
infection status. Let Ω(Cij) denote the total migration rate
for mosquitoes in state C and location i; for example,

 represents the net migra-

tion of fed susceptible mosquitoes moving from patch i,

and  the net migration of

unfed susceptible mosquitoes from patch i.

Finally, it is assumed that a susceptible mosquito biting
an infective human becomes infected with probability c,
that latent mosquitoes become infective at the rate θ and

that mosquitoes die at rate µ. Let Xi denote the proportion
of humans in patch i who are infective, assuming no
latency (i.e. no pre-patent period) and no delay between
the appearance of merozoites and gametocytes. Let b
denote the probability that a bite by an infective mosquito
produces a human infection, and r denote the rate at
which a human infection is cleared; in other words, it is
assumed that the recovery period is exponentially distrib-
uted with average duration r-1. The infection dynamics of
malaria in mosquitoes and humans over time and space,
including the mosquito gonotrophic cycle, are described
by the following equations:

Parameter values are listed in Table 1. The emergence rate
was manipulated such that the overall ratio of mosquitoes
to humans was 2. The equations were numerically solved
over a period of four years; by that date, the system of

equations was at the equilibrium . The

resulting static spatial distributions of the variables were
plotted on two kinds of hypothetical landscapes.

Table 1: Values, definition and bounds of the parameters used in the model and for the sensitivity analysis (* indicates the parameters 
used in the multivariate sensitivity analysis). The parameters' values were chosen to mimic an infection by Plasmodium falciparum 
carried by An. gambiae s.s. in an adult.

Symbol Definition Values (bounds) References

r-1 Human recovery period 100 days [47, 48]
Au Human biting rate 0.5 bites.mosquitoes-1.day-1 [1, 7, 47]
b Probability that a bite leads to infection among humans 0.5 [49]
c Probability that a bite leads to infection among mosquitoes 0.15 [49]
ς ψ Migration rate during host seeking 10 patches, 2 (This paper)
w* Migration rate during oviposition 10 (1–17) patches (This paper)
Af

-1* Resting period before oviposition 2 (1–3) days [1, 45, 46]
µ-1* Mosquitoes lifespan 10 (5–20) days [47, 48]
θ-1 Incubation period 10 days [7, 47-49]
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First, simulations of malaria dynamics were performed on
a linear array of 17 patches. Humans were uniformly
distributed in patches 2 to 16 and absent from the edges.
For mosquitoes, three scenarios were considered:

(a) Patch 1 was a productive water source. No water was
available elsewhere.

(b) Patch 1 and Patch 9 were productive water sources. No
water was available elsewhere.

(c) Patch 1 was a productive water source. Patch 9 was a
non-productive water source. No water was available
elsewhere.

This landscape is similar to that in a recent study in Tan-
zania that evaluated mosquito dispersion within three
hamlets and showed that marked vectors dispersed differ-
ently in relation to the distribution of breeding sites [36].

Second, simulations of malaria dynamics were performed
on a square grid of 100 patches (10 × 10). All 10 patches
on the left side of the grid were productive water sources
(e.g. a stream or pond edge). A non-productive water
source was located near the centre of the grid and the
human population was uniformly distributed on all the
patches except on the left side of the grid. Among the total
number of mosquitoes leaving a patch, it was assumed
that 80% were randomly flying to patches that shared a
side (up, down, left and right patches) and 20% to patches
that shared a corner (on the diagonal). This scenario is
based on a real-world example: we simulate a village away
from a river where the breeding sites are mainly located
[37] and with a water source in its centre that is non-pro-
ductive because it was sprayed with larvicide or prone to
desiccation.

2. Sensitivity analysis
A sensitivity analysis on the linear array from the scenario
(c) above was performed. The evaluation of the influence
of water on mosquito migration and distribution focused
on the segment of the mosquito population that was fed
and seeking a site to oviposit. A multivariate sensitivity
analysis [38] to assess the impact of the parameters that
describe the behaviour of fed mosquitoes on the propor-
tion of infected humans was performed; parameters
examined were the migration parameter w (the expected
number of patches a mosquito would fly without water),
the oviposition parameter Af

-1 (the time between taking a
blood-meal and oviposition) and mortality µ-1 (mosquito
lifespan). These three parameters were sampled in accord
with a Latin Hypercube Sampling (LHS) scheme [39]. The
distribution of malarial infections in humans was com-
puted using 10,000 sets of parameters drawn from a uni-
form distribution, with bounds described in Table 1. To

evaluate the impact of uncertainty in these parameters we
calculated the 5th and 95th percentile of the resulting dis-
tribution of the human malaria prevalence for each patch.
The Partial Rank Correlation Coefficients (PRCCs) were
also calculated using the 10,000 values for each parameter
and the 10,000 predicted values in malaria prevalence
over each patch. A univariate sensitivity analysis on the
three parameters described above was performed using
the extreme values.

Results
The distribution of risk along the linear array of patches,
as measured by EIR, is related to the distribution of pro-
ductive water sources and non-productive water sources.
EIR is proportional to the density of unfed, infective mos-
quitoes (see Methods) and thus followed the same distri-
bution (Figure 2). When mosquitoes emerged from a
single productive point source (scenario a), EIR peaked in
the vicinity of the source (daily EIR = 0.22 in patch 2, Fig-
ure 2a). The presence of a second productive water source
at an intermediate distance (scenario b) produced a bi-
modal distribution of infective mosquitoes (EIR = 0.13 in
patch 2 and EIR = 0. 17 in patch 9, Figure 2b). A similar
bi-modal distribution was observed when a non-produc-
tive water source was located at the same intermediate dis-
tance (scenario c, EIR = 0.18 in patch 2 and EIR = 0.14 in
patch 9, Figure 2c). Thus, a non-productive water source
near a mosquito productive water source acts as a focal
point for malaria transmission, even if no adults emerge.

The proportion of infected humans (PIH) followed the
same trend as the distribution of EIR. The presence of a
productive water source (Figure 2b) or a non-productive
water source in patch 9 (Figure 2c) led to similar distribu-
tions of the proportion of infected humans, ranging from
85% to 90% in patches 2 and 9. Thus, productive and
non-productive water bodies generate similar levels of
increased risk of malarial infection. The sporozoite rate in
unfed mosquitoes increases slightly with distance from a
productive water source (Figure 2a). The presence of a
non-productive water source at an intermediate distance
results in a substantially increased sporozoite rate (Figure
2c). The difference between the two is the absence of
young, non-infectious mosquitoes at the non-productive
source.

Among the various scenarios, the overall maximum ratio
of infective mosquitoes (fed plus unfed mosquitoes) to
humans ranged from 0.85 (patch 2, Figure 2a) to 1.2
(patch 9, Figure 2b) at the maximum point for malaria
transmission. In this model, the distributions of fed and
unfed mosquitoes differed; overall, the distribution of fed
and unfed mosquitoes both reflected the underlying dis-
tributions of productive water sources and non-produc-
tive water sources. Yet, the ratio of mosquitoes to humans
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Distribution of the ratio of infectious mosquitoes (I) to Human (H), of malaria prevalence (PIH: Proportion of infected humans) and of the sporozoite rate for unfed mosquitoes among various aquatic habitatsFigure 2
Distribution of the ratio of infectious mosquitoes (I) to Human (H), of malaria prevalence (PIH: Proportion of 
infected humans) and of the sporozoite rate for unfed mosquitoes among various aquatic habitats. a) One pro-
ductive water source in patch 1. b) Two productive water sources in patch 1 and 9. c) One productive water source in patch 
1 and one non-productive water source in patch 9. Human population was uniformly distributed from patch 2 to 16. The dot-
ted black lines correspond to the ratio of fed infectious mosquitoes (If) and the dashed black lines to the ratio of unfed infec-
tious mosquitoes Iu. The solid black lines correspond to the malaria prevalence (PIH) and solid red lines to the sporozoite rate 
for unfed mosquitoes. Dark gray bars represent the presence of a productive water source and light gray bars the presence of 
a non-productive water source.
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was negatively correlated when water but no humans were
available (patches 1 & 2; Figure 2a, b, c); the ratio of fed
to unfed mosquitoes is high at the productive water
source (Figure 2a; If = 0.78 in patch 1), and the unfed mos-
quitoes were mainly in the adjacent patch (Iu = 0.44 in
patch 2). Thus, no infective unfed mosquitoes were
present where only water but no humans were found.

Similar patterns emerged on the grid. Two areas were
identified as high-risk zones. High values of daily EIR
were observed in the patches next to the stream (ranging
from EIR = 0.09 to EIR = 0.14). A second high-risk area
was focused around the non-productive water source (EIR
= 0.23, Figure 3a). Notably, the highest values of EIR were
observed at the non-productive water source, not next to
the stream where mosquitoes emerged. EIR decreased
with the distance from water, whether it was a productive
water source or non-productive water source (Figure 3a).
Malaria prevalence also reflected EIR. Along the stream,
malaria prevalence ranged from 81.8% to 87.2% and at
the non-productive water source malaria prevalence was
92.1% (Figure 3b). This underlines a high level of spatial
clustering in malaria risk distribution. Note in Figure 3

that the highest variation in malaria prevalence occurred
as annual EIR ranged from 0 to 33 and prevalence varied
from 0% to 82%; such ranges in EIR values were found
over short spatial scales in the simulations, just two
patches away from the productive water sources and one
patch away from the non productive water source. For
larger EIR values, (33 to 86), prevalence changed only
10%, ranging from 82% to 92%.

The results of the multivariate sensitivity analysis on the
linear array demonstrated that the risk of malaria varied,
depending on the value of the parameters. The 5th and
95th percentile curves followed the same trends as the
point estimate. In the vicinity of the non-productive water
source (up to three patches away), malaria prevalence var-
ied up to 49% (figure 4a). Because EIR is sensitive to the
oviposition rate, increasing the resting time has a protec-
tive effect with respect to malarial infection (PRCCs = -
0.18). Increasing the maximum number of patches flown
through in search of an oviposition site (PRCCs = 0.27)
and increasing lifespan (PRCCs = 0.28) increase the prev-
alence of malarial infection. All these correlation coeffi-
cients were significant (p < 0.0001, t-test). The univariate

Malaria risk map in a 10 by 10 grid assumed to be a village:Figure 3
Malaria risk map in a 10 by 10 grid assumed to be a village: Productive water sources are located all along the left side 
of the grid and a non-productive water source is located in the centre of the grid. a) The map is based on annual EIR values. b) 
The map is based on the Proportion of Infected Humans (PIH).
Page 7 of 11
(page number not for citation purposes)



Malaria Journal 2005, 4:23 http://www.malariajournal.com/content/4/1/23
Proportion of infected humans according to various sets of oviposition parametersFigure 4
Proportion of infected humans according to various sets of oviposition parameters. (The number of empty patches 
a fed mosquito would fly over each day in order to oviposit, mortality rate of fed mosquitoes, time to oviposit): One produc-
tive water source is located in patch 1 and one non-productive water source in patch 9 (scenario c). a) Multivariate sensitivity 
analysis. The thick solid line represents the distribution of the PIH using the realistic values. The triangles represent for each 
patch the 95th and 5th percentile of the 10,000 simulations using the sets of simulated parameters. The squares represent the 
median of these 10,000 simulations. b) Univariate sensitivity analysis on the maximum number of patches w. The dashed lines 
represent the prevalence distribution for the extreme values (w = 1 and w = 17) c) Univariate sensitivity analysis on the time to 
oviposit Af

-1. The dashed lines represent the prevalence distribution for two extreme values (Af
-1 = 1 day and Af

-1 = 3 days). d) 
Univariate sensitivity analysis on the mortality rate µ-1: the dashed lines represent the prevalence distribution for two extreme 
values (µ-1 = 5 days and µ-1 = 20 days).
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sensitivity analysis showed the great impact of the maxi-
mum mosquito flight distance; at small values, the second
peak in the non-productive water source was substantially
lower (PIH = 42.5% for w = 1 vs. PIH = 87.5% for w = 10)
(Figure 4b). When mosquitoes flew a longer distance, they
would bite along the way and a larger proportion would
find and stay at a further water site. The impact of the mos-
quito lifespan and the oviposition rate had less impact on
human prevalence (Figure 4c and 4d).

Discussion
It has been demonstrated that the availability of water and
associated mosquito oviposition behaviour can play an
important role in determining the distribution of malaria
risk. In some cases, proximity to water where mosquitoes
oviposit increases the risk of malaria, whether or not the
eggs develop into adults. In other words, a non-produc-
tive site for adult mosquito emergence can be a source for
malaria. More generally, as would be expected, malaria
prevalence would be higher close to water bodies. The
transmission potential of mosquitoes is maximized when
water and humans are both available.

Because mosquitoes return to water to oviposit, water
bodies become a starting point in the search for a blood-
meal host. Since mosquitoes fly until they find a host, EIR
declines sharply away from water in the model and the
heterogeneous distribution of larval habitat produces
large variations in EIR over relatively short distances, in
agreement with the results from field studies [40]. A
review of the literature showed that adult mosquitoes may
exhibit high dispersal rates between villages [41] and may
fly up to 5 km, but half of the flights were within a 1 km
radius [42]. An analysis encompassing surveys from all
over Africa showed that annual EIR ranged from 0 to 702
and the malaria prevalence from 7% to 94.5% and that, as
in this model, beyond a threshold, increases in EIR value
did not affect malaria prevalence [43,44].

The parameter values were consistent with studies of
Anopheles species, but substantial variation exists among
species, locations and at the same location over time
[1,7,45-49]. The aim of the research was to investigate the
influence of oviposition behaviour on the spatial distribu-
tion of infective mosquitoes; substantial uncertainty
remains about strategic aspects of mosquito behaviour,
such as how mosquitoes locate and choose a place to ovi-
posit. Many cues could make mosquitoes oviposit in non-
productive water sources, including larval crowding and
the ability of a mosquito to detect it, the inability to detect
unsuitable habitat, habitat desiccation, wind, mosquito
physiological status, and many other factors. The search
for water in which to oviposit may be a sensitive point in
the gonotrophic cycle because the mosquitoes are heavier,
with higher energy expenditures and perhaps higher mor-

tality. Thus, increases in flight distances for gravid mos-
quitoes may increase per-capita mortality rates and thus
diminish transmission capacity. Another interesting result
involved the effect of the maximum flight distances dur-
ing this search for an oviposition site. For short flight dis-
tances, mosquito distributions reflected the distribution
of larval habitat, true productive water sources. As flight
distances increased, mosquito distributions resembled the
distribution of water, including non-productive water
sources as well as productive water sources (data not
shown). However, increasing maximum flight distances
beyond a threshold (about eight patches per day) had lit-
tle impact on the distribution of EIR.

This research focused on the ecology and behaviour of
Anopheles mosquitoes, and how the heterogeneous distri-
bution of water bodies influences the heterogeneity in
their biting. Mosquito populations fluctuate with weather
and climate, increasing in the wet season and decreasing
in the dry season [50]. Seasonality was ignored to better
focus on the impact of oviposition behaviour on the risk
of malaria transmission. For the same reason heterogene-
ous human populations were not considered [51]. Ovipo-
sition is one of many factors determining the distribution
of risk, but it should be considered as a possible reason for
mosquito aggregation, one that would interact with other
factors such as seasonality and heterogeneous human dis-
tributions. For example, the distribution of oviposition
habitat may become more heterogeneous during the dry
season, leading to increased mosquito aggregation
around water. The availability of larval habitat is some-
times correlated with household density as the number of
breeding sites may increase with density up to some
threshold [52]. Finally, mosquito memory may limit ovi-
position in unsuitable habitats [53]. It has been demon-
strated that mosquito dispersal might be restricted by a
tendency to return to known locations for oviposition,
that is productive water sources. Nevertheless, even if vec-
tor learning counterbalances the possibility that mosqui-
toes oviposit in non-productive sites, short vector life
spans and the ephemeral nature of suitable larval habitat
make aggregation around non-productive sites a poten-
tially important factor. In future research, model refine-
ments could include improvements to the representation
of vector biology by adding an explicit resting compart-
ment and different mortality rates as functions of vector
disease status. These refinements would further improve
our understanding of how far mosquito dispersal can be
observed and how large a control area should be explored.

Based in part on Macdonald's mathematical models, the
Global Malaria eradication campaign focused on increas-
ing adult Anopheles mortality using DDT and more specif-
ically on reducing adult survival rates [47]. Some earlier
workers had also emphasized the importance of
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distinguishing vector from non-vector species and identi-
fying their actual breeding sites, so that targeted, sustaina-
ble anti-vector programs could replace ineffective or
inefficient generalized anti-mosquito approaches. Ross
used a mathematical model to conclude that, "...in order
to counteract malaria anywhere we need not banish
Anopheles there entirely...we need only to reduce their
numbers below a certain figure" [54]. Though few of his
contemporaries paid attention to this idea of threshold
densities of Anopheles, some applied it in successful pro-
grams of environmental management [55]. Eliminating
water in the neighbourhood of humans would force mos-
quitoes to commute longer distances, decreasing the
human feeding rate and increasing mortality during the
extrinsic incubation period, hence, decreasing vectorial
capacity. Because a non-productive water body can be a
source for malaria, an intervention that eliminates water
where mosquitoes may oviposit, or fouls the water to
deter oviposition, would be more effective for malaria
control than using larvicide to reduce mosquito density.
Even though larvicides may have adverse effects by killing
larval predators [56], treating distant water sources with
larvicide might provide a complementary control strategy.
This concept is similar to zooprophylaxis [57]; it has been
argued that cattle, treated with insecticide or not, provide
efficient control if situated between humans and larval
habitat and far enough from dwellings [58].

Conclusion
The approach previously described provides a framework
for mapping the risk of malaria based on fine-grained
maps of water and humans [59]. Such methods provide a
tool for mapping risk and planning intervention. An
important issue in developing these maps is to identify
which biological details are necessary to include and
which details can be omitted. These models suggest that
malaria risk is highest in the vicinity of water where mos-
quitoes oviposit, a useful observation with great public
health implications if true productive larval habitat is
harder to identify.
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