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Abstract

Introduction

The global effort to eradicate malaria requires a drastic measure to terminate relapse from

hypnozoites as well as transmission via gametocytes in malaria-endemic areas. Primaquine

has been recommended for the treatment of P. falciparum gametocytes and P. vivax hypno-

zoites, however, its implementation is challenged by the high prevalence of G6PD deficient

(G6PDd) genotypes in malaria endemic countries. The objective of this study was to profile

G6PDd genotypic variants and correlate them with malaria prevalence in Ghana.

Methods

A cross-sectional survey of G6PDd genotypic variants was conducted amongst suspected

malaria patients attending health care facilities across the entire country. Malaria was diag-

nosed using microscopy whilst G6PD deficiency was determined using restriction fragment

length polymorphisms at position 376 and 202 of the G6PD gene. The results were analysed

using GraphPad prism.

Results

A total of 6108 subjects were enrolled in the study with females representing 65.59% of the

population. The overall prevalence of malaria was 36.31%, with malaria prevalence among

G6PDd genotypic variants were 0.07% for A-A- homozygous deficient females, 1.31% and

3.03% for AA- and BA- heterozygous deficient females respectively and 2.03% for A- hemi-

zygous deficient males. The odd ratio (OR) for detecting P. falciparum malaria infection in

the A-A- genotypic variant was 0.0784 (95% CI: 0.0265–0.2319, p<0.0001). Also, P. malar-

iae and P. ovale parasites frequently were observed in G6PD B variants relative to G6PD A-

variants.
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Conclusion

G6PDd genotypic variants, A-A-, AA- and A- protect against P. falciparum, P. ovale and P.

malariae infection in Ghana.

Introduction

Plasmodium falciparum malaria is the most lethal disease estimated to cause 400,000 deaths

annually in sub-Saharan Africa [1, 2]. Humans have been under evolutionary and or selective

pressure due to malaria infection [3]. The geographical distribution of erythrocyte genetic

polymorphisms in malaria endemic countries have been suggested to provide survival advan-

tages against severe and complicated forms of malaria [3, 4]. The red blood cells which support

the erythrocytic life cycle of Plasmodium parasites have evolved with diverse genetic polymor-

phisms such as various hemoglobinopathies, including the sickle cell trait and α/β-thalasse-

mia’s as well as the selection of various blood group antigen variants such as blood group O

that confer protective advantages against cerebral malaria and other disease states of malaria

[5, 6]. Glucose-6-phosphate dehydrogenase deficiency (G6PDd) is another erythrocyte poly-

morphism reported to offer protection against malaria. G6PDd has a similar geographical dis-

tribution as P. falciparum and P. vivax infections [7–9].

Globally, about 400 million people are affected with more than 400 variants of G6PDd

caused by 200 known mutations in the gene encoding the human G6PD [10]. The enzymopa-

thy, G6PDd is an X-linked disease associated with various degrees of reduced G6PD enzyme

activities [11]. A single amino acid substitution at position A376G converts the genotypic vari-

ant B to variant A, and a second amino acid substitution at position G202A result in a change

from the A variant into the A- (A376G/G202A) variant [12, 13]. The B, A, A- G6PDd variants

are the most predominant in sub-Saharan Africa [14–16]. The B variant exhibits complete

G6PD enzyme activity, the A variant possesses about 85% G6PD enzymatic activities, whiles

the A- variants exhibit 10% enzymatic activity [17, 18]. Other A- variants such as A376G/

A543T, A376G/G680T and A376G/T968C are also present in some countries in sub-Saharan

Africa [17]. The heterozygotes A-A- trait has been suggested to provide a selective advantage

against severe malaria in females [19–21]. The protection offered by G6PDd A- against malaria

infection is not well understood. It is unclear however, if both hemizygotes (A-) and heterozy-

gotes (AA-) offer protection against severe malaria or bias towards females [9, 22]. Although a

recent case-control study conducted in Africa has reported a 46–58% reduced risk in severe

malaria by both hemizygotes and heterozygotes G6PDd A- [23] and heterozygotes G6PDd A-

but not hemizygotes G6PDd A- has been reported to protect against acute malaria among chil-

dren in Nigeria, suggesting sex-specific malaria protection [24, 25]. The variations in the inac-

tivation of enzymatic activities observed among the G6PDd phenotypes is a challenge for

assessing the protective effects offered by G6PDd against malaria [26, 27].

Host-parasite interactions result in a complex balance of pro-oxidant and antioxidant mole-

cules in both host and parasite [28]. However, the G6PDd erythrocytes may not sufficiently

counterbalance oxidative stress generated by the erythrocytes stage malaria parasites observed

in drugs such as primaquine, dapsone, sulfonamides, quinolones, chloramphenicol, nitrofur-

antoin (antibiotics), and phenazopyridine (analgesics) used by affected individuals [29].

G6PDd decreases the risk of cerebral malaria but increases the risk of severe anaemia in

malaria infection [10, 30].
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The global effort on eradication of malaria requires drastic measures to terminate relapse

from hypnozoites and kill off gametocytes in the malaria-endemic areas [31, 32]. However, pri-

maquine (the only 8-aminoquinoline) recommended for the treatment and elimination of P.

vivax hypnozoites and P. falciparum gametocytes has limited usage among G6PDd conditions

[33]. The implementation of the recommendation to use primaquine in malaria-endemic

regions with the high prevalence of G6PDd phenotypes is a challenge [32, 34]. As primaquine

can trigger oxidative stress in G6PDd affected erythrocytes, making them more susceptible to

oxidative haemolysis and subsequently increases physiopathogenesis in the host [8].

The geographical distribution of G6PDd in the malaria-endemic regions suggests that it is

naturally selected to offer protection against severe forms of malaria [16]. The global preva-

lence of G6PDd based on DNA analysis is estimated at 7.1%, with Africa estimated to have a

prevalence of 24%, [35] and a prevalence of 12.4% in Ghana [17]. However, the protective role

of G6PDd remains unresolved as hemizygotes G6PDd A- males seem unprotected from severe

malaria although majority of heterozygote deficient A- females are protected [8, 21]. The

objective of this study was to identify the prevalence and distribution of G6PD genotypic vari-

ants in Ghana as well as determine whether G6PDd genotypic variants protect against symp-

tomatic malaria infection.

Methods

Study site and sampling

Samples used for this study were collected in 2018, from 10 health facilities scattered across

each of the 10 regions of Ghana, making a total of 100 facilities (S1 File) as part of a cross-sec-

tional study that recruited 19896 suspected malaria patients [36, 37]. The study was performed

in accordance with the Declaration of Helsinki. Ethical approval (# 068/17-18) was obtained

from the Institutional Review Board, NMIMR, University of Ghana. Written parental consent

was obtained from parents or guardians for all the children recruited in this study. All children

aged 12 years old and above were also made to endorse a child assent form. All methods were

carried out in accordance with relevant guidelines and regulations.

A total volume of 2 ml of whole blood was collected and an aliquot was used to prepare

dried filter paper blood spots (DBS) and prepare thick and thin blood films. Thick and thin

blood films were prepared from the original blood samples according to standard protocols

[38–40] and read by two WHO certified expert microscopists, with all discordant results clari-

fied by a third WHO certified malaria microscopist. Parasite densities from each slide were

determined by multiplying the total number of parasites identified per 200 white blood cells by

40. Stratified random sampling method was applied to the recruited samples where each study

region was considered as an individual group and randomly selected from each region to

ensure equal representation in the sampling for the study. A total sample of 6108 participants

were randomly selected from all the regions and for use in this study. The demographic details

(age and sex) and the infecting malaria parasite species of the participants whose samples were

used in this study were obtained from the larger study [36, 37].

DNA extraction from dried blood blots

DNA was extracted from two 3 mm disks of filter paper dried blood spots (DBS) using the

saponin chelex method [41, 42]. Briefly, 1 ml of 1X Phosphate Buffered Saline (PBS) supple-

mented with 0.5% Tween was added to the microcentrifuge tube containing the disks. The

tube was vortexed briefly and incubated overnight at room temperature with shaking. The

tube was then centrifuged for 2 mins at 14,000 rpm and the supernatant decanted. Subse-

quently, 1 ml of ice-cold 1X PBS was added to the tube and incubated at 4˚C for 30 mins. The
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tube was spun at 14,000 rpm for 2 min followed by aspiration of the supernatant. Finally,

150 μl of 13.3% chelex-100 in water was then added to the tube and incubated at 95˚C for 10

mins. The tube was then spun for 8 mins at 14,000 rpm and the supernatant containing the

DNA was aliquoted into a sterile labeled 0.5 ml microfuge tube and either used immediately or

stored at -20˚C.

G6PD genotyping

A protocol similar to that reported by Amoah et al. [17] was used for this. Briefly, the A376G

polymorphism was genotyped by PCR followed by restriction fragment length polymorphism.

In the PCR reaction, 3 μl of each of the extracted DNA was amplified in a 10 μL reaction con-

sisting of 1X AmpliTaq Gold1 Fast PCR Master Mix, UP (Applied Biosystems, USA), 0.2 μM

of forward and reverse primers A376GF and A376GR respectively. The cycling conditions for

the PCR included a polymerase activation step at 95˚C for 10 minutes followed by 35 cycles of

denaturation step at 96˚C for 30 seconds, primer annealing step at 61˚C and extension at 68˚C

for 30 seconds. This was followed by a final extension at 72˚C for 10 minutes. The amplicons

from the PCR reaction were digested in a 15 μl reaction containing 8 μl of amplicon and 1 unit

of Fok1 (New England Biolabs, UK). The digest reaction was incubated at 37˚C for 1 hour and

products resolved on a 2% (w/v) agarose gel pre-stained with Ethidium bromide. The agarose

gel was visualized under UV using a Vilber gel documentation system.

All samples that yielded a digested product for the A376G reaction were further selected for

the genotyping of the G202A polymorphism, using similar PCR conditions as the A376G but

with the primers G202AF and G202AR (forward and reverse primers respectively) and an

annealing temperature of 65˚C. The PCR amplicons were digested with 1 unit of NlaIII (New

England Biolabs, UK) under the same conditions as Fok1 but with an incubation period of 20

minutes. The digest products were resolved just as indicated above.

Lambda DNA was used as a positive control for both the FokI and the NlaIII digestion reac-

tions. Distilled water was used as a negative control template for the A376G and G202A PCR

reactions.

Statistical analysis

All the data acquired from the study were entered into Microsoft Excel (Microsoft software)

and the statistical analyses were performed with GraphPad Prism software, version 8.4.3

(GraphPad Software). The data were grouped based on G6PD genotypic variants and vari-

ants prevalence was determined. The prevalence of malaria parasites among the individual

G6PD genotypic variants was determined. Association of malaria infection and G6PD

genotypic variants were tested using odds ratio, receiver-operation characteristics (ROC)

curve, type III ANOVA, Turkey’s multiple comparison test and restriction cubic spline

curve statistical tests were used to analyze data. Statistically significant were considered at p-

value < .05.

Results

Demographic characteristics of the study subjects

A total of 6108 subjects from 10 regions of Ghana were enrolled in the study. The Eastern

region had the highest number of subjects (N = 787) enrolled in the study, out of which

34.31% were male and 65.59% were female. The Volta region had the least number (N = 465)

of subjects out of which 41.51% were male and 58.49% female (Table 1).
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Glucose-6-phosphate dehydrogenase deficiency (G6PDd) genotypic variant

A-A- protects against malaria infections in malaria-endemic regions in

Ghana

The total prevalence of malaria across the 10 regions of Ghana was 2,218 (36.31%) with

60.43% recorded at Volta and 6.48% recorded in the Eastern region (Table 1). The prevalence

of malaria parasites in samples with G6PDd A-A- (0.07%), AA- (1.31%) and A- (2.03%) was

low (Fig 1A and Table 2). Similarly, the overall prevalence of malaria in A- and BA- genotypic

variants was 2.26% and 3.03% respectively (Table 2). The prevalence of the G6PD A- genotype

ranged from 13.97% in the Central region to 25.37% in the Upper West region. The heterozy-

gous G6PD A- (AA-, BA-) was highest in the Greater Accra region (17.78%) and lowest in the

Central region (9.31%). Also, the homozygous G6PD A- (A-A-) ranged from 4.66% in the

Central region to 7.74% in the Western region (Table 3).

The odds of detecting malaria via microscopy among the A- variant was 0.764 (0.5818–

1.0035), p = 0.0453 and 0.4841 (0.3917–0.5988), p<0.0001 in the BA- variant (Table 4). The

accuracy of detecting malaria parasites among the individual G6PDd genotypic variants was

tested using the receiver operating characteristic (ROC) curve (Fig 1B). This showed that there

were high specificity and sensitivity in the association between malaria infection and the

G6PDd genotypic variants. The likelihood ratio for the association between malaria and

G6PDd genotypic variant ranged from 1.33 to 5.00 with sensitivity (95% CI) of 72.73 (43.44–

90.25) to 45.45 (21.27–71.99) and specificity (95% CI) of 45.55 (21.27–71.99) to 90.91 (62.26–

99.53). The highest sensitivity of 72.73 (43.44–90.25) and specificity of 72.73 (43.44–90.25)

with a likelihood ratio of 2.667 (Fig 1B and S1 Table). The homozygote G6PDd A-A- female

exhibited a stronger protection against malaria OR (95% CI) = 0.00784 (0.0265–0.2319),

p<0.0001 compared to the heterozygote G6PDd AA- female OR (95% CI) = 0.6741 (0.4878–

0.9316), p = 0.0169 and the hemizygote G6PDd A- male OR (95% CI) = 0.764 (0.5818–

1.0035), p = 0.0453 (Table 4). The type III ANOVA statistics showed a significant difference

among the G6PDd genotypic variants and their association of malaria infection cases and

malaria negative cases samples among the study subjects (S2 Table).

The association of G6PDd genotypic variants, malaria infections and age were modelled

using restriction cubic spline curve for the stratified age categories of� 20 years, 15–19 years,

10–14 years, 5–9 years and 0–4 years. The result showed a high malaria infection among B

types G6PDd genotypic variants with increasing expansion of A-, AA- and A-A- genotypic

variants which offered protection against malaria infections at lower age categories of 0–4

years and 5–9 years compared to the other age categories (S1A and S1B Fig). Highly significant

Table 1. Demographic characteristics of study subjects.

Brong Ahafo Ashanti Eastern Central Northern Greater Accra Upper West Upper East Volta Western

Sex, n (%)

Male 305 (41.50) 299 (40.57) 270 (34.31) 184 (37.25) 213 (38.31) 245 (41.88) 240 (35.61) 190 (31.83) 193 (41.51) 213 (44.56)

Female 430 (58.50) 438 (59.43) 517 (65.69) 310 (62.75) 343 (61.69) 340 (58.12) 434 (64.39) 407 (68.17) 272 (58.49) 265 (55.44)

Age mean (SEM), yrs

Male 12.93 (0.98) 13.99 (0.91) 18.50 (1.13) 13.44 (1.09) 14.38 (1.14) 20.69 (1.07) 18.52 (1.26) 22.11 (1.54) 14.69 (0.77) 18.64 (1.28)

Female 21.61 (1.02) 20.82 (0.87) 29.43 (0.95) 23.43 (1.07) 21.42 (0.96) 28.01 (0.99) 24.85 (0.96) 30.34 (1.14) 19.87 (0.77) 21.72 (0.95)

Malaria + n (%)

Male 152 (49.84) 128 (42.81) 15 (5.56) 105 (57.07) 67 (31.46) 55 (22.45) 93 (38.75) 67 (35.26) 127 (65.80) 135 (63.38)

Female 179 (41.63) 186 (42.47) 36 (6.96) 186 (60.00) 99 (28.86) 71 (20.88) 129 (29.72) 86 (21.13) 154 (56.62) 151 (56.98)

Total 331 (45.03) 314 (42.61) 51 (6.48) 291 (58.91) 166 (29.86) 126 (21.54) 219 (32.49) 153 (25.63) 281 (60.43) 286 (59.83)

https://doi.org/10.1371/journal.pone.0257562.t001
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protection against malaria infection was observed in A-A- genotypic variant (S2 File). The

associations observed between the G6PDd genotypic variants, malaria infections and age were

further analysed using scatterplots of residuals at the different restricted cubic spline knots at

1, 2, 3, 4 & 5, random intercepts and slopes to assess the goodness-of-fit to capture the hetero-

geneity in the selection of G6PDd genotypic variants in malaria infection-age curves among

the associations. The display of residuals implied that variance of the error was standardized

across age (S1C Fig). The sigmoidal 4PL of least squares fit analysis showed that the R squared

Fig 1. Malaria prevalence among G6PD genotypic variants. A) Prevalence of individual G6PD genotypic variants and their corresponding

malaria prevalence. B) Specificity and Sensitivity of detecting malaria infection among the different G6PD genotypic variants using ROC.

https://doi.org/10.1371/journal.pone.0257562.g001

PLOS ONE G6PD deficiency protects against human malaria

PLOS ONE | https://doi.org/10.1371/journal.pone.0257562 September 27, 2021 6 / 17

https://doi.org/10.1371/journal.pone.0257562.g001
https://doi.org/10.1371/journal.pone.0257562


T
a

b
le

2
.

T
h

e
re

g
io

n
a

l
d

is
tr

ib
u

ti
o

n
o

f
G

6
P

D
g

en
o

ty
p

ic
v

a
ri

a
n

ts
a

n
d
Pl
as
m
od

iu
m

fa
lc
ip
ar
um

in
G

h
a

n
a

.

R
eg

io
n

s
B

ro
n

g
A

h
a

fo
A

sh
a

n
ti

E
a

st
er

n
C

en
tr

a
l

N
o

rt
h

er
n

G
re

a
te

r
A

cc
ra

U
p

p
er

W
es

t
U

p
p

er
E

a
st

V
o

lt
a

W
es

te
rn

n
(%

)
n

(%
)

n
(%

)
n

(%
)

n
(%

)
n

(%
)

n
(%

)
n

(%
)

n
(%

)
n

(%
)

G
en

o
ty

p
ic

v
a

ri
a

n
ts

G
6

P
D

P.
fa
lc
ip
ar
um

o
th

er

m
a

la
ri

a

G
6

P
D

P.
fa
lc
ip
ar
um

o
th

er

m
a

la
ri

a

G
6

P
D

P.
fa
lc
ip
ar
um

o
th

er

m
a

la
ri

a

G
6

P
D

P.
fa
lc
ip
ar
um

o
th

er

m
a

la
ri

a

G
6

P
D

P.
fa
lc
ip
ar
um

o
th

er

m
a

la
ri

a

G
6

P
D

P.
fa
lc
ip
ar
um

o
th

er

m
a

la
ri

a

G
6

P
D

P.
fa
lc
ip
ar
um

o
th

er

m
a

la
ri

a

G
6

P
D

P.
fa
lc
ip
ar
um

o
th

er

m
a

la
ri

a

G
6

P
D

P.
fa
lc
ip
ar
um

o
th

er

m
a

la
ri

a

G
6

P
D

P.
fa
lc
ip
ar
um

o
th

er

m
a

la
ri

a

F
em

al
e

B
B

1
8

(2
.4

5
)

7
(2

.1
8

)
-

1
0

9

(1
4

.7
9

)

3
3

(1
0

.6
1

)
-

4
8

(6
.1

0
)

1
1

(2
1

.5
7

)
-

8
0

(1
6

.1
9

)

6
3

(2
2

.5
0

)
-

4
1

(7
.3

7
)

3
9

(2
8

.2
6

)
-

1
2

(2
.0

5
)

7
(5

.7
4

)
-

1
9

(2
.8

2
)

5
(2

.4
6

)
-

9

(1
.5

1
)

7
(4

.8
3

)
-

2
5

(5
.3

8
)

1
9

(8
.1

5
)

3

(1
5

.7
9

)

7

(1
.4

6
)

7
(2

.4
9

)
-

B
A

-
6

2

(8
.4

4
)

2
4

(7
.4

8
)

-
6

3

(8
.5

5
)

3
3

(1
0

.6
1

)
2

(6
6

.6
7

)

6
8

(8
.6

4
)

8
(1

5
.6

9
)

-
3

7

(7
.4

9
)

1
4

(5
.0

0
)

2

(6
6

.6
7

)

6
9

(1
2

.4
1

)

1
5

(1
0

.8
7

)
-

8
1

(1
3

.8
5

)

2
0

(1
6

.3
9

)
-

8
5

(1
2

.6
1

)

2
8

(1
3

.7
9

)
-

6
3

(1
0

.5
5

)

1
4

(9
.6

6
)

-
3

7

(7
.9

6
)

1
4

(6
.0

1
)

3

(1
5

.7
9

)

4
0

(8
.3

7
)

1
7

(6
.0

5
)

1

(3
3

.3
3

)

B
A

1
1

9

(1
6

.1
9

)

6
2

(1
9

.3
1

)
-

1
1

0

(1
4

.9
3

)

5
6

(1
8

.0
1

)
-

1
6

9

(2
1

.4
7

)

9
(1

7
.6

4
)

-
8

7

(1
7

.6
1

)

6
9

(2
4

.6
4

)
-

1
1

5

(2
0

.6
8

)

2
(1

.4
5

)
3

(7
5

.0
0

)

9
0

(1
5

.3
8

)

1
7

(1
3

.9
3

)
-

1
2

6

(1
8

.6
9

)

2
8

(1
3

.7
9

)
2

(2
8

.5
7

)

1
2

0

(2
0

.1
0

)

2
2

(1
5

.1
7

)
-

6
7

(1
4

.4
1

)

3
2

(1
3

.7
3

)
3

(1
5

.7
9

)

6
3

(1
3

.1
8

)

3
8

(1
3

.5
2

)
-

A
-A

-
5

(0
.6

8
)

-
-

4

(0
.5

4
)

-
-

8

(1
.0

2
)

1
(1

.9
6

)
-

2

(0
.4

0
)

-
-

5

(0
.9

0
)

1
(0

.7
2

)
-

3

(0
.5

1
)

-
-

3
5

(5
.1

9
)

2
(0

.9
9

)
-

5

(0
.8

4
)

-
-

6

(1
.2

9
)

-
-

2

(0
.4

2
)

-

A
A

-
2

6

(3
.5

4
)

1
3

(4
.0

5
)

-
4

4

(5
.9

7
)

2
3

(7
.4

0
)

-
2

3

(2
.9

2
)

2
(3

.9
2

)
-

9

(1
.8

2
)

3
(1

.0
7

)
-

2
6

(4
.6

8
)

5
(3

.6
3

)
-

2
3

(3
.9

3
)

9
(7

.3
8

)
-

6

(0
.8

9
)

6
(2

.9
6

)
-

1
8

(3
.0

2
)

5
(3

.4
5

)
-

6

(1
.2

9
)

6
(2

.5
8

)
-

2
6

(5
.4

4
)

1
4

(4
.9

8
)

-

A
A

3
7

(5
.0

3
)

1
8

(5
.6

1
)

-
4

1

(5
.5

6
)

2
3

(7
.4

0
)

-
4

9

(6
.2

3
)

3
(5

.8
8

)
-

1
7

(3
.4

4
)

1
3

(4
.6

4
)

-
1

1

(1
.9

8
)

6
(4

.3
5

)
-

2
9

(4
.9

6
)

5
(4

.1
0

)
-

3
4

(5
.0

4
)

9
(4

.4
3

)
-

2
6

(4
.3

6
)

1
0

(6
.9

0
)

-
1

5

(3
.2

3
)

8
(3

.4
3

)
1

(5
.2

6
)

2
8

(5
.8

6
)

2
0

(7
.1

2
)

-

M
al

e

B
3

5
3

(4
8

.0
3

)

1
2

9
(4

0
.1

9
)

1

(1
0

0
.0

)

2
5

6

(3
4

.7
3

)

7
6

(2
4

.4
3

)
1

(3
3

.3
3

)

3
2

1

(4
0

.7
9

)

1
1

(2
1

.5
7

)
-

2
0

6

(4
1

.7
0

)

7
9

(2
8

.2
1

)
1

(3
3

.3
3

)

2
0

8

(3
7

.4
1

)

5
0

(3
6

.2
3

)
-

2
4

2

(4
1

.3
7

)

4
2

(3
4

.4
3

)
-

2
6

3

(3
9

.0
2

)

9
0

(4
4

.3
3

)
4

(5
7

.1
4

)

2
8

6

(4
7

.9
1

)

6
6

(4
5

.5
2

)
1

(1
0

0
)

2
6

3

(5
6

.5
6

)

1
5

3
(6

5
.6

7
)

7

(3
6

.8
4

)

2
4

3

(5
0

.8
4

)

1
4

2
(5

0
.5

3
)

2

(6
6

.6
7

)

A
-

4
9

(6
.6

7
)

2
9

(9
.0

3
)

-
3

6

(4
.8

8
)

2
3

(7
.4

0
)

-
3

9

(4
.9

6
)

1
(1

.9
6

)
-

2
1

(4
.2

5
)

1
0

(3
.5

7
)

-
3

5

(6
.2

9
)

1
0

(7
.2

5
)

1

(2
5

.0
0

)

3
8

(6
.5

0
)

8
(6

.5
0

)
-

4
5

(6
.6

8
)

1
8

(8
.8

7
)

1

(1
4

.2
9

)

3
4

(5
.7

0
)

9
(6

.2
1

)
-

1
6

(3
.4

4
)

-
-

2
5

(5
.2

3
)

1
6

(5
.6

9
)

-

A
6

6

(8
.9

8
)

3
9

(1
2

.1
5

)
-

7
4

(1
0

.0
4

)

4
4

(1
4

.1
5

)
-

6
2

(7
.8

9
)

5
(9

.8
0

)
-

3
5

(7
.0

9
)

2
9

(1
0

.3
6

)
-

4
6

(8
.2

7
)

1
0

(7
.2

5
)

-
6

7

(1
1

.4
5

)

1
4

(1
1

.4
8

)
-

6
1

(9
.0

5
)

1
7

(8
.3

7
)

-
3

6

(6
.0

3
)

1
2

(8
.2

8
)

-
3

0

(6
.4

5
)

1
(0

.4
3

)
2

(1
0

.5
3

)

4
4

(9
.2

1
)

2
7

(9
.6

1
)

-

T
o

ta
l

7
3

5

(1
2

.0
3

)

3
2

1
(1

5
.7

8
)

1
(2

.4
4

)
7

3
7

(1
2

.0
7

)

3
1

1

(1
5

.2
9

3
)

3
(7

.3
2

)
7

8
7

(1
2

.8
8

)

5
1

(2
.5

1
)

-
4

9
4

(8
.0

9
)

2
8

0
(1

3
.7

7
)

3
(7

.3
2

)
5

5
6

(9
.5

8
)

1
3

8
(6

.7
8

)
4

(9
.7

6
)

5
8

5

(9
.5

8
)

1
2

2
(6

.0
0

)
-

6
7

4

(1
1

.0
3

)

2
0

3
(9

.9
8

)
7

(1
7

.0
7

)

5
9

7

(9
.7

7
)

1
4

5
(7

.1
3

)
1

(2
.4

4
)

4
6

5

(7
.6

1
)

2
3

3
(1

1
.4

6
)

1
9

(4
6

.3
4

)

4
7

8

(7
.8

3
)

2
8

1
(1

3
.8

1
)

3
(7

.3
2

)

h
tt

p
s:

//
d
o
i.o

rg
/1

0
.1

3
7
1
/jo

u
rn

al
.p

o
n
e.

0
2
5
7
5
6
2
.t
0
0
2

PLOS ONE G6PD deficiency protects against human malaria

PLOS ONE | https://doi.org/10.1371/journal.pone.0257562 September 27, 2021 7 / 17

https://doi.org/10.1371/journal.pone.0257562.t002
https://doi.org/10.1371/journal.pone.0257562


value of genotypic variants of A (0.7039), A- (0.7143) and AA- (0.5806) and a span (95% CI) of

20.93 (-2.08e+50 -1), 6.00 (-76.88 -1) and 96.50 (-782.9 -1) for A, A- and AA- respectively

across the age categories shows a low malaria infection rate compared to the B or BB, BA, BA-

genotypic variants (S1C Fig).

Plasmodiummalariae and Plasmodium ovale preferentially invade G6PDd

B variant

Females with the BB, BA & BA- G6PD genotypic variants had a higher prevalence of Plasmo-

dium falciparum infection relative to the females with the AA, AA- A-A- variants, whilst males

with the B genotype had higher infection prevalence relative to those with the A, & A- variants.

Table 3. The regional distribution of individuals with varying G6PD genotypic variants in Ghana.

Ashanti,

n (%)

Brong

Ahafo,

n (%)

Eastern,

n (%)

Central,

n (%)

Greater

Accra, n

(%)

Northern,

n (%)

Upper

West, n

(%)

Upper

East, n

(%)

Volta,

n (%)

Western,

n (%)

Female

BB 109

(14.79)

18

(2.45)

48 (6.1) 80

(16.19)

12 (2.05) 41 (7.37) 19

(2.82)

9

(1.51)

25

(5.38)

7 (1.46)

BA- 63 (8.55) 62

(8.44)

68 (8.64) 37 (7.49) 81

(13.85)

69 (12.41) 85

(12.61)

63

(10.55)

37

(7.96)

40 (8.37)

BA 110

(14.93)

119

(16.19)

169

(21.47)

87

(17.61)

90

(15.38)

115 (20.68) 126

(18.69)

120

(20.10)

67

(14.41)

63 (13.18)

A-A- 4 (0.54) 5 (0.68) 8 (1.02) 2 (0.4) 3 (0.51) 5 (-0.9) 35

(5.19)

5

(0.84)

6

(1.29)

2 (0.42)

AA- 44 (5.97) 26

(3.54)

23 (2.92) 9 (1.82) 23 (3.93) 26 (4.68) 6

(0.89)

18

(3.02)

6

(1.29)

26 (5.44)

AA 41 (5.56) 37

(5.03)

49 (6.23) 17 (3.44) 29 (4.96) 11 (1.98) 34

(5.04)

26

(4.36)

15

(3.23)

28 (5.86)

Male

B 256

(34.73)

353

(48.03)

321

(40.79)

206

(41.70)

242

(41.37)

208 (37.41) 263

(39.02)

286

(47.91)

263

(56.56)

243

(50.84)

A- 36 (4.88) 49

(6.67)

39 (4.96) 21 (4.25) 38 (6.50) 35 (6.29) 45

(6.68)

34

(5.70)

16

(3.44)

25 (5.23)

A 74

(10.04)

66

(8.98)

62 (7.89) 35 (7.09) 67

(11.45)

46 (8.27) 61

(9.05)

36

(6.03)

30

(6.45)

44 (9.21)

https://doi.org/10.1371/journal.pone.0257562.t003

Table 4. The odds of detecting malaria microscopically among the glucose-6-phosphate dehydrogenase genotypic

variants.

G6PD Malaria N (%) OR (95% CI) z-statistic p

Males

A 216 (3.58) 0.8151 (0.6543–1.0153) 1.824 0.0681

A- 136 (2.26) 0.764 (0.5818–1.0035) 1.935 0.0453

B 675 (11.19) 0.8045 (0.7108–0.9106) 3.441 0.0006

Females

AA 111 (1.84) 0.74 (0.5485–0.9983) 1.971 0.0487

AA- 91 (1.51) 0.6741 (0.4878–0.9316) 2.389 0.0169

A-A- 4 (0.07) 0.0784 (0.0265–0.2319) 4.602 <0.0001

BB 462 (7.66) 0.5992 (0.5211–0.6891) 7.183 <0.0001

BA 353 (5.85) 0.5603 (0.4787–0.6559) 7.21 <0.0001

BA- 183 (3.03) 0.4841 (0.3917–0.5983) 6.714 <0.0001

https://doi.org/10.1371/journal.pone.0257562.t004
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Males with the B genotype had the highest prevalence of P. falciparum infection (N = 675) fol-

lowed by females with the BB variant (N = 418). To control the false discovery rate between

G6PDd genotypic variants and P. falciparum malaria was tested using a two-stage-up proce-

dure of Benjamini, Krieger & Yekutieli test without assuming a constant standard deviation.

The results showed a significant difference in the means of P. falciparum infections between

the individual G6PDd genotypic variants with A vs B (-287.40; p<0.0398), A vs A- (44.73;

p<0.0284), & A- vs B (-332.20; p<0.0185) among the male subjects and A-A- vs BB (-633.30;

p<0.0166) & AA- vs BB (-543.40; p<0.001) among the female subjects. Again, Plasmodium

malariae and Plasmodium ovale malaria which is less prevalent in Ghana preferentially

infected BB, BA, BA- in females and the B genotype in males, with only a few infections identi-

fied in males with A, A- genotypes and females with the AA genotype (Fig 2).

The pattern of distribution of G6PDd genotypic variants and malaria

distribution across the ten regions in Ghana

The prevalence of the different G6PDd variants was significantly different (χ2 = 60.77, p<0.0001)

but this was very similar in the 10 regions (χ2 = 6.005, p = 0.7344 for A-A-; χ2 = 5.243, p = 0.8127

for AA-; χ2 = 1.677, p = 0.9956 for A- and χ2 = 3.694, p = 0.9304 for BA-). Plasmodium falciparum

infection follows a similar pattern of the distribution of G6PDd genotypic variants except for P.

falciparum infection patterns observed in the Eastern region of Ghana (Fig 3A). The A-A- geno-

typic variant consistently showed protection against malaria infections across the 10 regions of

Ghana (Fig 3B). The overall prevalence of P. malariae (1.22%) and P. ovale (0.72%) were recorded

in the study. The P. malariae parasites were uniformly distributed in 8 out of the 10 regions, except

for the Eastern and Greater Accra region. Whereas P. ovale parasites were observed in four

regions, Brong Ahafo, Upper West, Volta and Western regions of Ghana (Fig 3C).

Discussion

The distribution and selection of genetic variants of the G6PD gene in malaria-endemic

regions and its associated protection against severe malaria remain controversial [41–43]. No

Fig 2. The prevalence of non-falciparum and or mixed falciparum infection among G6PD genotypic variants in Ghana.

https://doi.org/10.1371/journal.pone.0257562.g002
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specific G6PDd allelic genotype has been selected for balancing selection and fixed advantage

against severe malaria [10, 30].

A nationwide prevalence of G6PDd genotypic variants based on the polymorphisms at 376

and 202 positions of the coding region of the human G6PD gene and the pattern of malaria

infections was conducted. The result showed that G6PDd genotypic variants were homoge-

nous throughout Ghana. The prevalence of G6PDd A- variants (including male hemizygous,

female homozygous and heterozygous) recorded in this study (1225/6108, 20.06%) is similar

to the previous reports from Ghana and other parts of West Africa [15, 44–47].

This study also assessed the association of G6PDd A- variants and protection against

malaria in Ghana. The individual G6PDd A- variants (BA- and AA- heterozygous female,

A-A- homozygous female and A- hemizygous male) and the pattern of malaria infections ana-

lyzed showed a significant association. The results showed that both hemizygous male (A-)

and heterozygous female (AA-/BA-) G6PDd variants had significantly lower frequencies of

malaria infections. This result agrees with previous reports that A- male and AA-/BA- female

G6PDd variants protect P. falciparum-infected individuals from severe malaria [16, 48].

Although there were significant associations between both the BA- and AA- heterozygous

alleles and the protection against malaria [49], the AA- heterozygous allele offered stronger

protection against malaria than the BA- allele. Previous reports that treated and analyzed the

two females heterozygous G6PDd genotypes (BA- and AA-) as a combined genotype did not

find any association between the female heterozygous G6PDd A- and protection against

malaria [19, 20, 48].

Also, the female homozygous A-A- G6PDd variant was highly associated with protection

against malaria infections. The protective effects of A-A- homozygous was observed through-

out all the regions in Ghana. The prevalence of the G6PDd variant A-A- was 0.42% in the

Western and 5.19% in the Upper West region in Ghana. The A-A- homozygous deficiency at a

prevalence of 0.5% offer protection against severe malaria among female in the Gambia [50,

51]. The rarely reported association of homozygous A-A- and protection against malaria has

to do with the limited prevalence for statistical power for correlation analysis. The observation

made in this study is an indication that A-A- female homozygous G6PDd A- variants may

offer higher protection against malaria infection compared to hemizygous and heterozygous

G6PDd A- variants. The reason for the low rise in frequency of the A-A- homozygous allele

for the positive selection of malaria remains obscured. However, a previous report in Ghana

has shown that G6PD deficient males (A-) and females (A-A-) combined exhibited about 44%

normal G6PD enzymatic activities whiles heterozygous A- showed 55% [17]. Homozygous

A-A- G6PDd females had the strongest protection against malaria compared to either hemizy-

gote A- G6PDd males or heterozygotes BA- or AA- G6PDd females. Although, the current

data cannot explain why homozygous A-A- G6PDd exhibited a stronger protective effect than

hemizygote A- G6PDd males, it may be due to the levels of ‘self-limited haemolysis’. A similar

observation was reported among persons with the G6PDd Mahidol variant, where females

with the heterozygous Mahidol G6PDd variant had a 30% reduction in P. vivax infection.

Whereas females with the homozygous G6PDd Mahidol variant and males with the hemizy-

gous G6PDd Mahidol variant exhibited a 61% and 40% reduction in P. vivax infection respec-

tively [52].

Fig 3. The regional distribution of G6PD genotypic variants and their associated P. falciparum infections in

Ghana. A. The pattern of distribution of the G6PD prevalence across the 10 regions of Ghana. B. The G6PD genotypic

variant A-A- protect against P. falciparum malaria infection across the 10 regions of Ghana. C. The regional

distribution of P. ovale and P. malariae in Ghana.

https://doi.org/10.1371/journal.pone.0257562.g003
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The underlying mechanisms offered by the G6PDd A- variants against severe malaria is

unknown [16, 20, 27]. The result of this study agrees with the previously reported decrease in

parasitization rate between 2–80 times lower in heterozygous G6PDd A- alleles compared to

normal erythrocytes [53]. However, it is well established that G6PDd A- exhibits a reduced

enzymatic activity up to about 10% for the regulation of excessive stress generated through

PPP by the erythrocytic stage Plasmodium parasites [54, 55]. There is a possibility of high oxi-

dation of glutathione (GSH) to decrease malaria parasite survival in G6PDd A- erythrocytes,

even though in vitro results have yielded conflicting results [55]. Several factors such as the lev-

els of G6PD enzyme activity, the method used to determine the deficiency and the small num-

ber of samples employed in previous studies could have resulted in the conflicting reports on

the protection offered by G6PDd against malaria [10, 56].

The prevalence of non-falciparum malaria observed in this study was 1.22% for P. malariae

distributed in 8 regions and 0.72% of P. ovale identified in 3 regions. Interestingly, no study

has reported the association between G6PDd A- variants and the P. malariae or P. ovale

malaria. Possibly due to the lower prevalence of these species of malaria parasites [57, 58]. The

hypnozoites of P. ovale and P. vivax are responsible for the relapse of malaria infection months

after complete treatment [59, 60]. Primaquine (PQ) is the recommended antimalarial used for

clearing these hypnozoites, however, PQ may cause haemolysis in G6PD deficient individuals

[9, 61, 62]. Although some studies have reported the association between G6PDd A- variants

and protection against P. vivax malaria [60–63]. This study observed that P. malariae and P.

ovale are more likely to infect the normal G6PD B variant compared with the G6PDd A vari-

ant. No infection of P. malariae or P. ovale was identified in samples from females with

G6PDd (homozygous A-A- and heterozygous AA- G6PDd variants). There was, however, a

single P. ovale infection detected in one male with the hemizygous G6PDd A- variant. Though

the prevalence of P. malariae and P. ovale were too low to attain statistical power for the associ-

ations between P. ovale or P. malariae and G6PDd A- variants, the complete absence of infec-

tion in A-A- and AA- variants are suggestive of possible protection against the severe forms of

this non-falciparum malaria in Ghana.

Limitations

Malaria infection was determined using microscopy, as such infections containing submicro-

scopic densities of infection were not captured under the malaria infected group.

Conclusions

This study has shown the nationwide distribution and prevalence of G6PD genotypic variants

as well as the pattern of P. falciparum infectivity among individuals harboring different G6PD

variants. The results showed that homozygous deficient female A-A-, hemizygous male A-,

heterozygous female BA- and AA- G6PDd variants protect against malaria infections across all

the study regions. Again, non-falciparum malaria, P. ovale and P. malariae were more preva-

lent in G6PD B variants with no infections identified in individuals with the A-A- and AA-

variants. Suggesting that G6PDd A- variants similarly offer protection against P. ovale and P.

malariae malaria in Ghana.

Supporting information

S1 Fig. Age associated selection of malaria influence the selection of G6PD genotypes. A.

Restricted cubic spline curve showing the effects of age categories on malaria infections and

their effects on the selection of G6PD genotypic variants. The spline curve was generated with

20 points across the age categories ranging from 1 to 5 for >20 years, 15–19 years, 10–14 years,
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G6PD genotypic variants associations. C. Residual of malaria infections calculated across the

categories with the corresponding G6PD genotypic variants. The residual for age category 0–4
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