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Abstract

Background: In the brain of adult mammals, neural stem cells persist in the subventricular zone of the lateral
ventricle and the subgranular zone of the dentate gyrus, which are specialized niches with proliferative capacity.
Most neural stem cells are in a quiescent state, but in response to extrinsic stimuli, they can exit from quiescence
and become reactivated to produce new neurons, so neural stem cells are considered to be a potential source for
cell replacement therapy of many nervous system diseases. We characterized the expression of Ndel1 during the
differentiation of neural stem cells induced by hippocampus exosomes, and assessed the effect of Ndel1 on neural
stem cells differentiation.

Methods: Hippocampal exosomes were isolated and extracted, and co-cultured exosomes with neural stem cells.
Western blot, flow cytometry, and immunofluorescence analyses were used to analyze expression of neuronal
markers. Further, utilizing high-throughput RNA sequencing technology, we found that nudE neurodevelopment
protein 1-like 1 was significantly upregulated in exosomes derived from denervated hippocampus, and then
characterized its mechanism and function during neural stem cells differentiation by qRT-PCR, western blot, flow
cytometry, and immunofluorescence analyses.

Results: Our results revealed that exosomes of denervated hippocampus promoted the differentiation of neural
stem cells into neuron. Hence, we identified that nudE neurodevelopment protein 1-like 1 was significantly
upregulated and highly expressed in the nervous system. In addition, we found that miR-107-3p may regulate
neural stem cell differentiation by targeting Ndel1.

Conclusions: Our results revealed that deafferentation of the hippocampal exosomes co-cultured with neural stem
cells could promote them to differentiate into neurons. Hence, we found that miR-107-3p may regulate neural stem
cells differentiation by targeting Ndel1. Importantly, Ndel1 enhanced spatial learning and hippocampal
neurogenesis in rats after fimbria fornix transection in vivo. These findings set the stage for a better understanding
of neurogenesis, a process that 1 day may inspire new treatments for central nervous system diseases.
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Introduction
The hippocampus originates from the medial pallium of
the dorsal telencephalon and plays important roles in
learning, memory, and affective behaviors [32]. The sub-
granular zone of the hippocampal dentate gyrus (DG) is
one of the stem-cell-containing niches in the adult
mammalian brain [1]. This thin band between the gran-
ule cell layer and the hilus provides a unique microenvir-
onment for the adult neural stem cells (NSCs)
population [7]. Heterogeneous pools of NSCs in the
adult mammalian brain are the source of new neurons
that contribute to brain maintenance and regeneration
[17]. Most adult NSCs are quiescent and show a low
metabolic rate and a high sensitivity to their microenvir-
onment [29]. The balance of NSC activation and quies-
cence, as well as the induction of lineage-specific
transcription factors, may contribute to the generation
of neuronal or glial progeny cells [8].
Exosomes are nano-sized extracellular vesicles se-

creted by a variety of cell types that have been proven
to be important intercellular messengers and exhibit
molecular profiles that reflect normal and disease
states [19]. A recent study revealed that exosomes in
the brain can play critical roles in central nervous
system (CNS) diseases, such as stroke [23], Alzhei-
mer’s disease (AD) [19], Parkinson’s disease (PD) [22],
prion disease [3], amyotrophic lateral sclerosis (ALS)
[27], Huntington’s disease (HD) [15], and chronic
traumatic encephalopathy (CTE) [20], with both posi-
tive and negative effects. As key mediators of cell-to-
cell and distant communication, exosomes are in-
volved in various biological processes, potentially
through transferring their contents including proteins,
lipids, and RNAs to target cells [5].
Our previous research showed that the deafferent

hippocampus provided a supportive microenvironment
for the survival, migration, and neuronal differentiation
of endogenous hippocampal and implanted NSCs. Im-
portantly, extracts from the denervated hippocampus
promoted more NSCs to differentiate into neurons and
their subsequent in vitro maturation [33, 34]. These re-
sults indicated that deafferentation led to changes in the
hippocampal expression of molecules that regulated
NSC differentiation. However, it remains unknown
whether deafferentation of the hippocampal exosomes
could promote the differentiation of NSCs. Our results
revealed that deafferentation of hippocampal exosomes
co-cultured with NSCs could promote neuronal differen-
tiation. Subsequently, we found that nuclear distribution
protein like 1 (Ndel1) was significantly upregulated and
highly expressed in the nervous system. Additionally, we
found that Ndel1 enhanced spatial learning and hippo-
campal neurogenesis in rats after fimbria fornix (FF)
transection in vivo. These findings revealed a novel

mechanism and identified specific targets for treating
CNS diseases.

Materials and methods
Animals and surgery
Pregnant Sprague-Dawley rats, 1-day-old neonatal
Sprague-Dawley rats, and adult Sprague-Dawley rats
(weighing 220–250 g) were obtained from the Experi-
mental Animal Center of Nantong University (Certificate
No: SYXK (SU) 2012-0031). All experimental procedures
were approved by the local Animal Care Committee and
were conducted in accordance with the guidelines of the
National Institutes of Health (NIH) on animal care and
with other relevant the ethical guidelines.
FF transections were performed as described by Hefti

[10]. Briefly, after chlorpent anesthesia (2 mL/kg body
weight, intraperitoneal), adult SD rats were transferred
to the stereotaxic apparatus, and then, FF transection
was performed with a wire knife at the CA1 layer of the
dorsal hippocampus, at coordinates of bregma: AP = 1.4,
ML = 1.0 and AP = 1.4, ML = 4.0, and depth 5.6 mm.
There were no restrictions on the sex of the experimen-
tal animals.

Exosome isolation
Seven days following FF transection, deafferented and
normal hippocampi were quickly dissected, trypsinized,
and homogenized into ice-cold phosphate-buffered sa-
line (PBS). Exosomes were precipitated using Total Exo-
some Isolation reagent (Invitrogen, Carlsbad, CA, USA)
according to the manufacturer’s instructions. Homoge-
nates were centrifuged at 2000×g at 4 °C for 30 min to
remove cells and debris, and then, supernatants were
passed through a 0.22-μm filter to remove extracellular
vesicles larger than exosomes. The supernatants were
transferred to a new tube without disturbing the pellet
and mixed with 0.5 volumes of Total Exosome Isolation
reagent and incubated overnight at 4 °C. The mixture
was then centrifuged at 10,000×g for 30 min, and the
supernatant was decanted, while the exosome pellet was
resuspended into 100 μL PBS.

Cell culture
The isolation, culture, and differentiation of NSCs were
performed as previously described with some modifica-
tions [9]. Briefly, pregnant SD rats were anesthetized,
and the embryos were removed by cesarean section.
Hippocampi were dissected from embryonic day 14.5
(E14.5) embryos and were then mechanically dissociated
into a single-cell suspension. After centrifugation and re-
suspension, the cell suspensions were plated into flasks
with a 1:1 Dulbecco’s modified Eagle’s medium (DMEM)
and Ham F-12 mixture (both, Gibco, Grand Island, NY,
USA) containing 2% B27 (Gibco), 20 ng/mL epidermal
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growth factor (EGF; Sigma-Aldrich, St. Louis, MO,
USA), and 20 ng/mL basic fibroblast growth factor 2
(bFGF; Sigma-Aldrich). Cells were passaged every 6 days
to obtain neurospheres that originated from a single pri-
mary cell. For in vitro differentiation, cell suspensions
were plated with DMEM/F-12 medium supplemented
with 2% B27 and 2% fetal bovine serum (FBS, Gibco).
For the mixed co-culture experiments, isolated exosomes
were mixed with NSCs and processed in different ways
after cocultivation.
Primary neurons were isolated using standard

methods, as previously described [31]. Briefly, hippo-
campi were dissected from E14.5 embryos, and the re-
sultant single cell suspensions were diluted in serum-
free neurobasal medium (Gibco) containing 2% B27 and
0.5 mM L-glutamine (Gibco). The cells were then seeded
onto plates precoated with poly-D-lysine. Half of the
medium was replaced every 3 days.
Primary astrocytes were derived from cerebral cortices

of 1-day-old neonatal rats as previously described [31].
Briefly, dissociated cortical cells were suspended in
DMEM/F-12 containing 10% FBS and plated in flasks.
After 3–4 days, the heterogeneous primary cells were or-
bitally shaken to remove microglia and oligodendrocytes.
Astrocytes were dissociated by trypsinization and then
replated into flasks.

Transfection, lentiviral transduction, and injection
Prior to transfection or transduction, cells were cultured
in plates overnight. Cells were transfected with the miR-
107-3p/NC mimic or miR-107-3p/NC inhibitor (Ribo-
bio, Guangzhou, China) using Lipofectamine 3000 (Invi-
trogen) according to the manufacturer’s instructions.
Cells were transduced with lentivirus that was con-
structed by GeneChem Company (Shanghai, China), in-
cluding overexpression lentivirus (abbreviated as LV-
Ndel1) and interference lentivirus (abbreviated as LV-
Ndel1i), corresponding to the negative control lentivi-
ruses (LV-NC and LV-NCi) following the manufacturer’s
instructions. Green fluorescence expression was then ob-
served under a fluorescence microscope (Axio Scope A1,
Zeiss, Oberkochen, Germany). The cells were cultured
with lentivirus for 12 h to obtain the best infection com-
plex value, after which the lentivirus was removed and
replaced with fresh medium.
In total, 60 SD rats were used for lentivirus injections

into the hippocampus. Briefly, after chlorpent anesthesia,
adult SD rats were transferred to the stereotaxic appar-
atus. On day 7 after FF transection, injections of virus
into the left and right hippocampal DG at two points
were performed at the following coordinates: 3.6 mm to
bregma, 1.39 mm to the right or left of the midline, and
3.9 mm in depth. Five microliters of virus was loaded
into an internal cannula needle with cannula tubing

connected to a Hamilton syringe mounted onto a micro-
injection pump (Harvard Apparatus, Dover, MA, USA).
The speed of the injection was 0.5 μL/min. The needle
was kept in position for an additional 10 min after com-
pleting the injection and then was slowly retrieved from
the brain.

RNA preparation and qRT-PCR
Isolation of total RNA from tissues and cells was per-
formed using TRIzol reagent (Vazyme Biotech, Nanjing,
China) according to manufacturer’s instructions. For
mRNA expression analysis, 1 μg of RNA was reverse
transcribed into cDNA using the HiScript Q RT Super-
Mix for qPCR (+gDNA wiper) Kit (Vazyme Biotech).
The SYBR green (Roche, Basel, Switzerland) method was
performed using a StepOnePlus RealTime PCR system
(Applied Biosystems, Waltham, MA, USA) according to
the manufacturer’s instructions. The sequences of
primers used for qRT-PCR are displayed in Table S1.
For miRNA expression analysis, the miRcute Plus

miRNA First-Strand cDNA Synthesis Kit (Tiangen Bio-
tech, Beijing, China) and the miRcute miRNA qPCR De-
tection Kit (SYBR Green; Tiagen Biotech) were used.
According to the manufacturer’s protocol, 1 μg of total
RNA was used. Forward primers for miRNAs were ob-
tained from Ribobio (Guangzhou, China), and the re-
verse primer was commercially available and supplied in
the miRcute miRNA qPCR Detection Kit. The 2−ΔΔCT

method was used to calculate expression levels from
qPCR data.

Western blot analysis
Briefly, proteins were extracted, quantified, isolated by
10% SDS-PAGE, transferred to 0.2 mm polyvinylidene
fluoride membranes, and then blocked with 5% skim
milk for 2 h. After incubating with primary antibodies
overnight at 4 °C, the membranes were incubated with
HRP-linked secondary antibodies for 2 h. Immunoreac-
tive bands were viewed by enhanced chemiluminescence
reagents (Bio-Rad, Hercules, CA, USA). The primary
antibodies used included anti-Tuj1 (1:1000; Millipore,
Billerica, MA), anti-MAP2 (1:1000; Abcam, Cambridge,
UK), anti-Ndel1 (1:1000; Abcam), and anti-β-actin (1:
1000; Abcam).

Immunofluorescence and immunohistochemistry
Cells and tissues were fixed with 4% paraformaldehyde
for 30 min, washed with PBS three times, permeabilized
and blocked with 10% normal goat serum containing
0.3% Triton X-100 and 1% BSA for 2 h, and then incu-
bated with primary antibody overnight at 4 °C. For im-
munofluorescence, cells and tissues were washed three
times with PBS and incubated with the corresponding
fluorescent secondary antibody at room temperature for
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2 h. Nuclei were counterstained with Hoechst 33342 (1:
1000; Pierce, Rockford, IL, USA). Primary antibodies in-
cluded anti-Tuj1 (1:1000; Millipore) and anti-MAP2 (1:
1000; Abcam). Images were captured by using a fluores-
cence microscope.
Immunohistochemistry was performed using a Super-

Sensitive Horseradish Peroxidase Immunohistochemistry
Kit (rabbit; Sangon Biotech, Shanghai, China). Sections
were incubated with rabbit anti-Ndel1 antibody (1:1000,
Abcam) at 4 °C overnight followed by incubation with
poly-HRP-conjugated anti-rabbit IgG. After rinsing in
PBS, sections were detected using a DAB working
solution.

Flow cytometry
Cells were fixed in a 1× Fix/Perm Buffer working solu-
tion at 4 °C for 40 min. After washing with 1× Perm/
Wash Buffer, the cell samples were mixed with 80–
100 μL of 1× Perm/Wash Buffer and incubated with
APC-conjugated anti-Tuj1 antibody or APC-conjugated
IgG2A Control (BD Biosciences) (Figure S1A) at 4 °C for
2 h. Cells were centrifuged and resuspended in flow cy-
tometry stain buffer and then analyzed using a flow
cytometer.

Luciferase reporter assay
The luciferase reporter vectors were constructed by
GeneChem. For the luciferase reporter assays, HEK-293
cells plated in a 24-well plate were co-transfected with
100 ng plasmid and 100 ng luciferase construct. Lucifer-
ase and Renilla signals were measured 72 h after trans-
fection using the Dual-Luciferase Reporter Assay Kit
(Promega, Madison, WI, USA) according to a protocol
provided by the manufacturer.

Statistical analysis
Statistical analyses were mainly conducted using Graph-
Pad Prism 6.0 (GraphPad Software Inc., San Diego, CA,
USA). Differences between two groups were compared
using an unpaired Student’s two-tailed t test, and differ-
ences among multiple groups were analyzed by one-way
ANOVA. The results were considered statistically sig-
nificant when *P< 0.05, **P< 0.01, and ***P< 0.001.

Results
Effects of hippocampal exosomes on NSC differentiation
To identify the isolated exosomes, we applied transmis-
sion electron microscopy. As shown in Figure S1B,
hippocampal-derived exosomes were lightly stained and
had diameters within 30~200 nm. To confirm that these
exosomes could be transferred to cells, we co-cultured
CM-Dil-labeled exosomes with NSCs. After incubation
with exosomes, the CM-Dil fluorescence signal was ob-
served in most NSCs (Figure S1C). As shown in Fig. 1a,

Western blotting showed that Tuj1 and MAP2 were sig-
nificantly upregulated in the transected group. Similarly,
flow cytometric analysis showed that there were more
Tuj1-positive cells in the transected group than in con-
trol (Fig. 1b, c). Immunofluorescence staining showed
that percentage Tuj1- and MAP2-positive cells were up-
regulated (Fig. 1d, e). Our results also revealed that exo-
somes derived from deafferented hippocampi facilitated
neuronal differentiation of NSCs.

High-throughput functional screening for differentially
expressed mRNAs
To identify and characterize the differentially expressed
exosomal mRNAs, RNA-seq was implemented in three
pairs of hippocampal exosomes. When we set the filter
criteria to be fold-change ≥ 2 and a p value < 0.05, we
found 770 differentially expressed mRNAs, among which
764 were upregulated and six were downregulated in
hippocampal exosomes (Table S2). The heat map of dif-
ferentially expressed genes is shown in Fig. 2a. Next, a
bioinformatics analysis was performed to characterize
the mRNA profile of hippocampal exosomes. Gene
ontology (GO) analyses suggested the differentially
expressed genes were associated with protein transport,
gene expression, cellular metabolic processes, and other
important functions (Fig. 2b). Pathway analyses sug-
gested that oxidative phosphorylation, spliceosome, and
ubiquitin-mediated proteolysis were most enriched
among the differentially expressed genes (Fig. 2c). Fig-
ure 2d presents the relationships between enriched
pathways.

Identification and characteristics of Ndel1
Among the upregulated mRNAs, we focused on Ndel1,
which was enriched in neuron projection development,
microtubule cytoskeleton organization, nervous system
development, and central nervous system neuron axono-
genesis according to GO analysis. As shown in Fig. 3a, b,
differential expression of exosomal Ndel1 was consistent
with the trends observed using RNA sequencing. Fur-
thermore, after being co-cultured with NSCs, we found
that Ndel1 expression was increased in the transected
group (Fig. 3c, d). To explore the Ndel1 expression pat-
tern, we extracted RNA from tissues derived from the
ectoderm (cerebrum, cerebellum, brain stem, and hippo-
campus), mesoderm (heart and muscle), and endoderm
(liver) and then performed a RT-qPCR analysis. As
shown in Fig. 3e, Ndel1 was significantly overexpressed
in the nervous tissues compared with other tissues. Add-
itionally, Ndel1 showed its highest expression in NSCs,
followed by neurons, and minimally in astrocytes
(Fig. 3f). We then examined the expression pattern of
Ndel1 in the hippocampus by immunohistochemistry.
The results showed that Ndel1 was more highly localized
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to the somata of some polymorph layer cells, but was
also expressed in the granular layer of the DG (Fig. 3g).
Seven days after FF injury, we found that the number of
Ndel1-positive cells had increased in the denervated
hippocampus (Fig. 3h). These data suggested that Ndel1
played an important role in neurogenesis.

Effects of Ndel1 on NSC differentiation
To examine the precise functions of Ndel1 in NSCs, we
transfected NSCs with lentiviral vectors encoding Ndel1
(Figure S1D-S1G). To explore whether Ndel1 regulated

NSC differentiation, we measured the expression levels
of two commonly used nerve-specific molecules, Map2
and Neurod1. The results showed that Ndel1 upregula-
tion promoted Map2 and Neurod1 expression. Knocking
down Ndel1 had the opposite effect (Fig. 4a). Western
blotting showed that overexpressing Ndel1 notably in-
creased Tuj1 and MAP2 expression. Conversely, knock-
ing down Ndel1 induced decreased Tuj1 and MAP2
expression (Fig. 4b). Consistent with these results, flow
cytometry and immunofluorescence revealed that over-
expressing Ndel1 notably increased the number of

Fig. 1 Effects of hippocampal-derived exosomes on NSC differentiation. a Western blot analysis of Tuj1 and MAP2 protein levels. (normal) NSCs
treated with normal hippocampal exosomes; (transected) NSCs treated with deafferented hippocampal exosomes. b, c The percentage of Tuj1-
positive cells detected by flow cytometry. d, e Immunofluorescence analysis of Tuj1 (green) and MAP2 (green) cells in the transected and normal
group. Nuclei were stained with Hoechst. Scale bar = 200 μm. Values are mean ± SEM from three biological replicates; *P < 0.05,
**P < 0.01, ***P < 0.001
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Fig. 2 Differentially expressed mRNAs in hippocampal-derived exosomes. a Clustered heatmap of differentially expressed mRNAs. b GO analysis
of differentially expressed mRNAs. c KEGG pathway analyses of differentially expressed mRNAs. d The relationships between enriched pathways,
where red represents upregulated pathways in exosomes
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Fig. 3 Identification and characteristics of Ndel1. a, b RT-qPCR and Western blot analysis confirming the changes of Ndel1 in exosomes. (normal-
exo) exosomes of normal hippocampi; (transected-exo) exosomes of hippocampi after fimbria fornix (FF) transection. c, d Ndel1 expression
measured by RT-qPCR and Western blots after incubation. e Analysis of Ndel1 expression in different tissues. f Ndel1 expression in NSCs, neurons
and astrocytes. g Immunohistochemical staining showing the distribution of Ndel1 in the adult rat hippocampus. h Immunofluorescence staining
showing Ndel1 expression in the adult rat hippocampus after FF transection. Nuclei were stained with Hoechst. Scale bar = 200 μm. Values are
mean ± SEM from three biological replicates; *P < 0.05, **P < 0.01, ***P < 0.001
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neurons. Conversely, knocking down Ndel1 induced a
decrease of neurons. (Fig. 4c–f). Together, these results
implied that Ndel1 promoted the neuronal differenti-
ation of NSCs.

The miR-107-3p suppressed NSC differentiation by
targeting Ndel1
To probe the underlying molecular mechanisms of
Ndel1, we first used three algorithms (miRWalk, Tar-
getScan, and miRDB) to predict potential upstream
miRNA of Ndel1. For all three algorithms, miR-107-3p
was the commonly predicted target. We also found that

miR-107-3p exhibited high expression in the nervous tis-
sues (Fig. 5a). To further investigate the potential bio-
logical function of miR-107-3p, we constructed a miR-
107-3p mimic and inhibitor. qRT-PCR results showed
that miR-107-3p expression was significantly upregu-
lated and downregulated in NSCs transfected with the
miR-107-3p mimic and inhibitor, respectively (Figure
S1H). Next, we investigated the impact of miR-107-3p
on Ndel1 expression by qRT-PCR and western blot. The
results showed that overexpression and knockdown of
miR-107-3p resulted in the downregulation and upregu-
lation of Ndel1 in NSCs, respectively (Fig. 5b, c).

Fig. 4 Effects of Ndel1 on NSC differentiation. a RT-qPCR analysis of Map2 and Neurod1 expression. (LV-NC) NSCs treated with negative control of
overexpression lentivirus; (LV-Ndel1) NSCs treated with overexpression lentivirus of Ndel1; (LV-NCi) NSCs treated with negative control of
interference lentivirus; (LV-Ndel1i) NSCs treated with interference lentivirus of Ndel1. b Western blot analysis of Tuj1 and MAP2 protein levels. c, d
The percentage of Tuj1-positive cells detected by flow cytometry. e, f Cell differentiation was detected by immunofluorescence. Nuclei were
stained with Hoechst. Scale bar = 200 μm. Values are mean ± SEM from three biological replicates; *P < 0.05, **P < 0.01, ***P < 0.001
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Luciferase reporter assays showed that miR-107-3p
inhibited the luciferase activity of wild type Ndel1 but not
mutant Ndel1 (Fig. 5d). As shown in Fig. 5e, overexpress-
ing miR-107-3p significantly decreased Map2 and Neu-
rod1 expression levels, whereas restoring Ndel1 rescued
their expression. Similarly, western blotting showed that
overexpressing miR-107-3p suppressed Tuj1 and MAP2
expression. Conversely, overexpressing Ndel1 caused in-
creased Tuj1 and MAP2 expression (Fig. 5f). Moreover,
flow cytometric analysis and immunofluorescence showed
that upregulating miR-107-3p inhibited the neuronal dif-
ferentiation of NSCs, while increasing Ndel1 expression

had the opposite effect (Fig. 5g–j). Together, these results
suggested that miR-107-3p suppressed the differentiation
of NSCs into neurons by targeting Ndel1.

Ndel1 enhanced hippocampal neurogenesis in vivo after
FF transection
The Morris water maze test was performed in the last 5
days before sacrifice (35 days post injury) to evaluate
spatial learning. Compared with rats in the LV-Ndel1
group, the escape latency of rats in the PBS and LV-NC
rats to reach the platform was significantly longer
(Fig. 6a, b). Furthermore, LV-Ndel1 group rats crossed

Fig. 5 The miR-107-3p regulated NSC differentiation by targeting Ndel1. a Analysis of miR-107-3p expression in different tissues. b, c RT-qPCR and
Western blot analysis confirming the changes in Ndel1 expression. (miR-NC) NSCs treated with negative control of miRNA mimic; (miR-107-3p)
NSCs treated with miR-107-3p mimic; (miR-NCi) NSCs treated with negative control of miRNA inhibitor; (miR-107-3pi) NSCs treated with miR-107-
3p inhibitor. d Luciferase reporter assay in HEK-293 cells co-transfected with Luciferase-miR-107-3p fusion and Ndel1-Wild or Ndel1-Mut, 72 h
post-transfection. e RT-qPCR analysis of Map2 and Neurod1 expression. (miR-NC) NSCs treated with negative control of miRNA mimic; (miR-107-
3p) NSCs treated with miR-107-3p mimic; (miR-107-3p+LV-Ndel1) NSCs treated with miR-107-3p mimic and overexpression lentivirus of Ndel1. f
Western blot analysis of Tuj1 and MAP2 protein levels. g, h The percentage of Tuj1-positive cells detected by flow cytometry. i, j Cell
differentiation was detected by immunofluorescence. Nuclei were stained with Hoechst. Scale bar = 200 μm. Values are mean ± SEM from three
biological replicates; *P < 0.05, **P < 0.01, ***P < 0.001
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Fig. 6 (See legend on next page.)
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the platform more frequently (Fig. 6c, d). GFP detection
in the hippocampus proved that the lentivirus success-
fully infected target tissues (Figure S1I). As shown in
Fig. 6e, f, Tuj1 was significantly upregulated. Thus,
Ndel1 expression was associated with significantly im-
proved learning and memory ability and enhanced
neurogenesis in the hippocampus of adult rats following
FF transection.

Discussion
The discovery of NSCs in the adult brain provides evi-
dence that the CNS may have the potential to repair in-
sults by generating new neurons [37]. NSCs are self-
renewing and multipotent cells with the potential to dif-
ferentiate into neurons, astrocytes, and oligodendrocytes
[12]. Adult NSCs continuously generate functional neu-
rons throughout life, and this generation is critical for
biological functions [21]. Under certain pathological
conditions, the endogenous quiescent NSCs become ac-
tive and participate in neurogenesis [12]. However, the
self-repair process is usually inadequate and transient.
Therefore, enhancing endogenous neurogenesis or ap-
plying exogenous NSCs has become hot topics.
Exosomes are small vesicular structures that range

from 30 to 150 nm in diameter and may carry different
types of DNA, RNA, and proteins to transfer informa-
tion between cells [11, 13]. The cargos of CNS exosomes
vary according to the cell of origin as well as the cell’s
health, stress, and disease status and can be changed in
response to environmental situations [28]. Our research
showed that deafferented hippocampal exosomes co-
cultured with NSCs could promote neuronal differenti-
ation of the NSCs. Furthermore, using high-throughput
RNA sequencing technology, we identified Ndel1 to be
significantly upregulated and highly expressed in the
nervous system. This suggested that certain RNA species
occurred within exosomes and played important roles in
neurogenesis.
Ndel1 plays multiple roles in neurodevelopmental pro-

cesses [30]. Ndel1 is broadly expressed in the brain, in-
cluding in the majority of cortical neurons [24]. Ndel1
deficiency results in neuronal migration defects, frag-
mented microtubules, dendritic/synaptic pathologies,
and early embryonic lethality [14, 26]. Additionally,
Ndel1 plays a critical role in neuronal precursor prolifer-
ation and differentiation, neuronal migration, neurite

outgrowth, and neuronal positioning during brain devel-
opment [4, 30]. Here, we demonstrated that Ndel1 pro-
moted the neuronal differentiation of NSCs and
improved learning and memory abilities after FF
transection.
MiRNAs are a class of small noncoding RNAs that

either prevent translation or promote the degradation
of specific targets by binding to target sequences usu-
ally located in the 3′-UTR [6]. To explore the poten-
tial molecular mechanism of Ndel1, we used three
algorithms to predict miRNAs that could bind Ndel1,
which identified miR-107-3p. There are almost no re-
ports on the relationship between miR-107 and NSC
differentiation, and to date, most studies on miR-107
have been related to cancer. A growing body of evi-
dence indicates that aberrant miR-107 expression
plays a key role in cancers, including breast cancer
[18], gastric cancer [16], cervical cancer [36], hepato-
cellular carcinoma [2], and non-small cell lung cancer
[35]. Prendecki et al. indicated that altered miR-107
levels may be a marker of the neurodegenerative
process during the course of AD, which is associated
with amyloid β metabolism and excessive cell cycle
progression [25]. Our study found that miR-107-3p
was highly expressed in nervous tissues; moreover, we
found that Ndel1 was directly regulated by miR-107-
3p. Subsequently, overexpression of miR-107-3p sup-
pressed Ndel1 expression and inhibited the differenti-
ation of NSCs into neurons.

Conclusions
Our results revealed that deafferentation of the hippo-
campal exosomes co-cultured with NSCs could pro-
mote them to differentiate into neurons. Hence, we
identified that Ndel1 was significantly upregulated
and highly expressed in the nervous system. In
addition, these results suggested that miR-107-3p may
regulate NSC differentiation by targeting Ndel1. With
a better understanding of endogenous NSCs under
normal and pathological conditions, we may be able
to employ endogenous NSCs for neuroregeneration in
the future.
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(See figure on previous page.)
Fig. 6 Ndel1 enhanced hippocampal neurogenesis. a Representative trajectory diagrams to reach the platform. (PBS) PBS injectioned into the
hippocampus; (LV-NC) negative control lentivirus injectioned into the hippocampus; (LV-Ndel1) overexpression lentivirus of Ndel1 injectioned into
the hippocampus. b The time to reach the platform between the PBS or LV-NC group and the LV-Ndel1 group. c, d Representative trajectory
diagrams and the number of platform location crosses during a single 120 s trial. e Tuj1 expression was measured by Western blotting. f
Immunofluorescence analysis of Tuj1 (green) and Ndel1 (red)-positive cells in the hippocampus. Nuclei were stained with Hoechst. Scale bar =
100 μm. The data are presented as mean ± SEM of three independent experiments; *P < 0.05, **P < 0.01
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Additional file 1: Figure S1. Representative images and histograms. (A)
The control of flow cytometry. (B) Identification of exosomes by
transmission electron microscopy. Scale bar=100 nm. (C) Representative
image showing the presence of CM-Dil-labeled exosomes after co-culture
with NSCs. Scale bar=200 μm. (D, E) The efficiency of Ndel1 overexpres-
sion was evaluated by RT-qPCR and Western blot. (F, G) The efficiency of
Ndel1 knockdown was evaluated by RT-qPCR and Western blot. (H) The
expression of miR-107-3p was evaluated by RT-qPCR. (I) Representative
images of the hippocampus following lentivirus injection. Scale bar=
400 μm. Values are the mean ± SEM from three biological replicates; *P<
0.05, **P< 0.01, ***P< 0.001.

Additional file 2: Table S1. The sequences of primers used for qRT-
PCR

Additional file 3: Table S2. Differentially expressed mRNAs
upregulated and downregulated in hippocampal exosomes
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