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A B S T R A C T

The hair follicle (HF) is a significant skin appendage whose primary function is to produce the hair shaft. HFs are 
a non-renewable resource; skin damage or follicle closure may lead to permanent hair loss. Advances in bio
materials and biomedical engineering enable the feasibility of manipulating the HF-associated cell function for 
follicle reconstruction via rational design. The regeneration of bioengineered HF addresses the issue of limited 
resources and contributes to advancements in research and applications in hair loss treatment, HF development, 
and drug screening. Based on these requirements, this review summarizes the basic and recent advances in hair 
follicle regulation, including four components: acquisition of stem cells, signaling pathways, materials, and 
engineering methods. Recent studies have focused on efficiently combining these components and reproducing 
functionality, which would boost fabrication in HF rebuilding ex vivo, thereby eliminating the obstacles of 
transplantation into animals to promote mature development.

1. Introduction

The hair follicle (HF) is the fundamental unit of hair growth, un
dergoing periodic changes that contribute to hair circulation. HFs serve 
various physiological functions, including temperature sensing, tactile 
sensation, and skin repair [1,2]. Meanwhile, hair loss may further raise 
the challenges of psychological issues including social identity, dimin
ished self-esteem, and difficulties in social interactions [3,4]. Currently, 
there are three FDA-approved medicines, minoxidil, finasteride, and 
baricitinib, for hair loss treatments, as well as fundamental research, 
such as botanical extracts [5,6], platelet-rich plasma (PRP) [7,8], adi
pose stem cells (ASCs) [9,10], keratinocyte-conditioned media [11], 
nano-drug delivery [12]. Nevertheless, their therapeutic efficacy is still 
based on animal models, which may not accurately predict effects when 
used in hair regrowth. Hair transplantation, as an alternative effective 
treatment, is usually hindered by insufficient autologous HFs, which 
would be further limited by the immune rejection with allogeneic HFs. 
Therefore, ex vivo HF regeneration presents a promising approach for 

HF regeneration, further providing a platform for drug screening and 
anticipation to address the shortage personally and commercially.

The morphogenesis and circulation of HF within the full-thickness 
skin involve approximately 50 types of cells, necessitating intricate in
teractions between epithelial and mesenchymal cells [13–15]. Cells 
serve as the foundation for HF formation, and the extracellular matrix 
(ECM) regulates cell growth and differentiation by transmitting bio
logical signals [16]. ECM is a complex network structure that plays a 
crucial role in regulating cell signaling, function, characteristics, and 
morphology [17]. Biomaterials have been utilized to mimic the ECM, 
supporting and facilitating cell interaction and signal communication 
between cells and their microenvironments. The technology for con
structing tissues and organs is a crucial aspect of tissue engineering 
research. Commonly employed techniques for HF fabrication include 
cellular self-assembly [18,19], microfluidics [20,21], and 3D printing 
[22–24], which enhances the efficiency of HF formation, paving a 
feasible path for high throughput production of HF ex vivo.

This review highlights four essential components for HF engineering: 
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stem cells, signaling pathways, materials, and engineering methods, as 
depicted in Fig. 1. Qualified seed cells should possess a high potential for 
efficient hair follicle induction and be obtainable facilely. Additionally, 
the various interactive biological signals transduction involved in hair 
follicle regeneration are essential for guiding the hair follicle regener
ation. The biological signals exchanged between cells are the driving 
force behind the successful induction of hair follicles in vitro. Bio
materials can be prepared in various forms to provide physical support 
and create an appropriate cell microenvironment. Additionally, they can 
serve as carriers for biological signaling molecules that regulate cell 
behavior. Engineering techniques integrate cells, biological signals, and 
materials by adjusting the concentration and type of biological signals, 
which could significantly improve hair follicle regeneration. The pri
mary challenge in hair follicle regeneration is restoring comprehensive 
structural and biological characterization ex vivo, mainly from the 
complexities associated with mimicking microenvironments in vivo. 
This review aims to explore the novel patterns in current research on HF 
preparation and strive to accurately simulate and reconstruct the func
tion of natural HFs in the laboratory.

2. Stem cells

Essentially, stem cells participate in the process of HF formation in 
vivo. Among various follicle cells, some stem cells can be used for hair 
follicle tissue engineering and are potential seed cells; however, 
obtaining and cultivating stem cells remains a challenge. Fig. 2 illus
trates three methods for obtaining seed cells: 1) extraction from the 
tissue, 2) induction from stem cells, and 3) somatic cell reprogramming. 
The following outlines methods for extracting and identifying functional 
cells, which are anticipated to mitigate the shortage of HF seed cells.

2.1. Hair follicle stem cells

Hair follicle stem cells (HFSCs) with a minor percentage are located 
in the bulge region of the HF but regulate the cyclical growth and 
renewal of HF (Fig. 2a–i). The current research with HSFCs has pre
dominantly focused on mouse or rat models. In humans, the bulge area 
housing HFSCs is highly inconspicuous, posing challenges for extraction 
and identification [25]. It is widely acknowledged that HFSCs are 
slow-cycling, with markers including K15 [26,27], CD133 [1], and Lgr5 
[28–30], among others. Loss of Lgr5+ cells in mice results in impaired 
hair regrowth, while activating the Wnt signaling pathway regulates 
Lgr5+ cells and initiates hair germ recovery [31]. HF-associated 
pluripotent stem cells have demonstrated in vitro differentiation into 
neurons, glial cells, keratinocytes (KCs), smooth muscle cells, melano
cytes, and beating cardiomyocytes [32,33]. Researchers are investi
gating the cultivation conditions of HFSCs to maintain their 
differentiation within a controllable range for potential application in 
HF tissue engineering.

Developing tissue-engineered HFs using HFSCs relies on replicating 
their behavior in vitro and establishing a culture system for accurate 
monitoring and manipulation. Wen et al. [34] successfully established 
an effective short-term culture system for primary human HFSCs with 
human fibronectin (FN) and the ROCK inhibitor Y-27632, which pro
moted human HFSCs proliferation by maintaining their stem cell char
acteristics with the ability of HF regeneration in vivo. Carlos et al. [35] 
optimized the traditional 2D medium by culturing HFSCs in KGM-3D 
substrate containing Y27632, FGF-2, and VEGF-A, leading to a signifi
cant increase in the population of CD34+α6+ HFSCs in mouse HFs. They 
revealed that this bidirectional interconversion of HFSCs and their 
progeny achieved population equilibrium. Takeo et al. [36] identified a 
subpopulation of mouse HFSCs expressing triple-positive markers 
(CD34+/CD49f+/integrin β5+) in HF protrusion for in vitro HF regen
eration. Presently, there is no consensus on the markers for mammalian 

Fig. 1. Schematic illustration of the components involved in the fabrication of hair follicles.
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HFSCs, leading researchers to choose different markers for screening 
and study.

HFSCs initiate the HF cycle by receiving external signals from the 
dermal papilla, regulating the surroundings of HF. Dormant HFSCs 
reside in quiescent ecological niches in the bulge near the HF and are 
quickly activated to divide during the new hair cycle [37]. Upon suc
cessful activation, HFSCs exit their ecological niche to generate outer 
root sheaths. Some progeny of the outer root sheath cells return to the 
microniche and revert to the stem cell state [38]. Senescence and 
depletion of HFSCs cause contraction of the hair shaft ecological niche, 
resulting in hair loss [39,40]. HFSCs are regulated by signaling from the 
skin microhabitat through short-range cell contact or paracrine action. 
DPCs, immune cells, adipocytes, and macrophages participate in regu
lating the bioactivity of HFSCs [41,42]. Furthermore, HFSCs can 
contribute to remodeling the skin microenvironment [43,44], which 
have great potential to differentiate into various types of HF cells, while 
their application is hindered by challenges in large-scale cultivation.

2.2. Dermal papilla cells

Dermal papilla cells (DPCs) constitute a cluster of MSCs that are 
crucial for starting a new hair cycle activation (Fig. 2a–i). Once the 
number of papilla cells drops to a native level, initiating a new hair cycle 
becomes impossible [45–47]. Extracting and culturing DPCs has been 
ongoing since 1981, which currently could be obtained from hair folli
cles using different methods [48,49]. DPC clusters can be isolated from 
HFs through either microscopic manipulation or enzymatic digestion. 
Under suitable culture conditions, these cells undergo limited expansion 
[50]. Current markers for DPCs cultured in vitro include ALP [51,52], 
α-SMA [53], Versican [54,55], Corin [56], and CD133 [57], among 
others. Extensive research has been conducted on the extraction and in 
vitro maintenance of DPCs in rodents. Human DPCs pose more differ
entiation and cultivation challenges in vitro compared to those from 
rodent HF extracts.

Primary DPCs have the advantage of being easy to obtain, but 
maintaining their biological characteristics in vitro is challenging due to 
the loss of epithelial signals. With increasing in vitro culture genera
tions, hair induction ability weakened. The quest for suitable cultural 
conditions for DPCs remains ongoing. 3D cell spheres were observed to 
mimic the in vivo environment compared to traditional 2D cell culture, 

consequently restoring some of the hair-inducing capacity [58,59]. In 
addition, supplying epithelial signals during DPC culture enhances their 
ability to induce hair growth. The conditioned medium collected from 
interfollicular KCs proves more effective than traditional 3D culture, as 
evidenced by DPCs expressing more biologically active markers and 
displaying increased aggregation capacity [60]. DPCs have emerged as 
the most promising seed cells in tissue-engineered HF regeneration 
owing to their abundant availability.

In addition to cell harvesting from HFs, there are two other methods: 
stem cell induction and somatic cell reprogramming. These approaches 
involve transforming cells with unlimited passaging capacity into 
seeding cells capable of initiating HF regeneration. ASCs can be 
prompted to differentiate into DPC-like cells when cultured with CAO1/ 
2FP medium and DPCs extracellular vesicles [10] (Fig. 2b–i). Three 
small molecules-CHIR99021, TTNPB, and Forskolin have been discov
ered to induce the transformation of human dermal fibroblasts (HDFs) 
into DPC-like cells due to the high similarity between dermal fibroblasts 
and hair papilla cells [61,62] (Fig. 2c). When mixed with mouse dermal 
cells, these DPC-like cells induced hair regeneration on the back of nude 
mice. The effective induction of HFs by DPC-like cells derived from stem 
cells and somatic cells greatly expands the source of seed cells.

2.3. Induced pluripotent stem cells

Shinya Yamanaka utilized viral vectors to transfer a combination of 
four transcription factors (Oct4, Sox2, Klf4, and c-Myc) into differenti
ated fibroblasts, thereby reprogramming them to resemble embryonic 
stem cells. These reprogrammed cells were defined as induced pluripo
tent stem cells (iPSCs) [63]. iPSCs have been successfully induced and 
derived from somatic cells of various species, including mice, rats, 
rhesus monkeys, pigs, and humans [64,65]. iPSCs exhibit a gene 
expression profile and pluripotency similar to embryonic stem cells. 
Human iPSCs have been shown to differentiate into various cell types, 
including endothelial cells (hiPSC-ECs), fibroblasts (hiPSC-FBs), and 
keratinocytes (hiPSC-KCs) [66,67]. Theoretically, iPSCs have the po
tential to differentiate and generate all HF lineages, offering a method to 
produce large quantities of seed cells for HF tissue engineering [68,69].

Generally, iPSCs can induce the production of functional seed cells 
for skin repair and HF regeneration (Fig. 2b–ii). Zhou et al. [70] 
employed a human acellular amniotic membrane with iPSC-derived 

Fig. 2. Three methods for obtaining seed cells. (a) Extraction from tissue. (a–i) Dermal papilla cells (DPCs) are obtained from the base of the HF, while hair follicle 
stem cells (HFSCs) are extracted from the bulge of the HF. (a-ii) Extraction from neonatal skin. Neonatal skin tissue is directly digested to obtain skin-derived 
precursors (SKPs). When the epithelial and mesenchymal layers of the tissue are digested separately, epithelial stem cells (EpSCs) and mesenchymal stem cells 
(MSCs) can be harvested. (b) Stem cell induction. (b–i) Adipose stem cells (ASCs) are induced to differentiate into DPC-like cells by cultured with CAO1/2FP medium 
and DPC extracellular vesicles (DPC-EVs). (b-ii) Hair follicle cell-inducing potential of induced pluripotent stem cells (iPSCs). IPSCs can differentiate into neural 
progenitor cells (NPCs), which can further differentiate into DPC-like cells. Alternatively, iPSCs can differentiate into induced mesenchymal cells (iMCs) and then into 
DP-substituting cells (iDPSCs). Additionally, iPSCs can be directly induced into skin organoids with intact HFs. (c) Reprogramming of somatic L929 cells into DPC- 
like cells using CHIR99021, TTNPB, and Forskolin.
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CD200+/ITGA6+ epithelial stem cells (EpSCs) to address full-thickness 
skin damage. Their findings indicated successful restoration of both 
the skin and its appendages. Typically, iPSCs are induced to differentiate 
into intermediate cells before further differentiation into DPC-like cells 
[71]. For instance, human iPSCs were differentiated into mesenchymal 
stem cells (MSCs), which were then exposed to retinoic acid and 
DPC-activated medium to attain DP properties. Upon co-transplantation 
with human KCs in vivo, fibrous structures resembling the hair shaft 
with a hair cuticle were produced [72]. Skipping differentiation into 
seed cells, iPSCs can also be directly induced in vitro to become 
hair-bearing skin organoids. Transplanting these skin organoids into 
nude mice has led to the reconstruction of flat skin with normal hair 
[73–76]. However, iPSCs’ prolonged induction time and the potential 
tumorigenic risk associated with residual, incompletely differentiated 
iPSCs are the primary factors limiting their application [77]. If these 
limitations can be overcome through technological advancements in the 
induction process, it could serve as an excellent source of seed cells for 
personalized hair follicle preparation.

2.4. Other potential cells

Several types of seed cells with multiple differentiation potentials 
can be extracted from the skin tissue of embryos or newborns, including 
skin-derived precursor cells (SKPs), EpSCs, and MSCs (Fig. 2a–ii). The 
following will introduce the applications of these cell types in HF 
regeneration.

SKPs are a population of neural crest-derived stem cells originating 
from the skin exhibiting diverse differentiation potentials. The HF 
papilla serves as an enriched niche for SKPs. Derived from dermal cells, 
SKPs possess dermal stem cell functional properties, usually utilized as a 
cell source for constructing engineered dermal components of the skin 
[78,79]. Chen et al. [80] developed a 3D co-culture system for SKPs and 
found that amphiregulin augmented the proliferation and HF induction 
activity of SKPs via PI3K and MAPK pathways. SKPs and EpSCs were 
mixed in Matrigel and grafted into excisional wounds in nude mice after 
being cultured, leading to the development of HFs, sebaceous glands, 
and other skin appendages [81]. At present, the extraction, cultivation, 
and induction of differentiation of SKP are not fully understood, which is 
still an obstacle to HF tissue engineering.

EpSCs and MSCs can be extracted from the epidermal and mesen
chymal layers of embryos or newborns (Fig. 2a–ii). While EpSCs possess 
the capability to differentiate into various cell types within the 
epidermis, they cannot regenerate HFs independently if mesenchymal is 
absent. DPCs, in particular, belong to the MSCs category. EpSCs and 
MSCs were combined in Matrigel to generate HF-like structures exhib
iting typical morphological characteristics in vitro, achieving a hair stem 
induction rate approaching 100 % [82]. In addition to MSCs derived 
from skin tissue, those from other tissues can also positively affect HF 
induction. Treatment with exosomes from bone marrow-derived MSCs 
enhances the proliferation and migration of DPCs and facilitates the 
transition of HFs from telogen to anagen in mice [83,84]. Dermal 
papilla-like tissues can be cultivated in vitro using human bone marrow 
or umbilical cord MSCs, and their capacity to induce hair growth has 
been validated in nude mice [85]. HF regeneration is not just the cell 
recombination process; it also involves the differentiation of stem cells. 
The driving force behind intercellular recombination and differentiation 
is various biological signals.

3. Signaling regulation in hair morphogenesis and circulation

Biomolecular signals regulate gene expression and cell behavior 
through a variety of molecules or compounds. The cycling of the HF 
from neogenesis to the hair cycle is mediated by different signals that 
regulate the physiological function of the HF. Signaling pathways 
determine the number and location of HFs in the epidermis and their 
spacing [86,87]. The development of HFs in the embryo initiates with 

the onset of Wnt signaling, followed by the gradual involvement of other 
signals. This progression includes follicular placode formation, the hair 
germ stage, hair peg development, bulbous peg formation, and finally, 
the maturation of the HF. The biosignals involved in HF neogenesis and 
the hair cycle are shown in Fig. 3.

3.1. Wnt signaling pathway

The Wnt signaling pathway is highly conserved and pivotal in bio
logical growth and development, tissue homeostasis, and carcinogenesis 
[88]. The Wnt pathway is transmitted in cells through the classical 
Wnt/β-catenin pathway, the Wnt/Ca2+ pathway, and the planar cell 
polarity pathway. In the classical pathway, two scenarios exist: in the 
absence of Wnt, cytoplasmic β-catenin can be degraded by a destruction 
complex consisting of Axin, adenomatous polyposis coli tumor sup
pressor protein (APC), glycogen synthase 3 (GSK3), and casein kinase 1 
(CK1); in the presence of Wnt, Wnt binds to its receptors Frizzled and 
LRP5/6, forming a receptor complex that targets and disrupts the 
APC/Axin/GSK3 complex. β-catenin stabilizes and accumulates in the 
cytoplasm, then translocates to the nucleus to form active complexes 
with lymphoid enhancer factor/T cell factor (LEF/TCF), thereby regu
lating target gene expression [89,90] (Fig. 4a). From the development of 
the HF during the embryonic period to the cyclic cycle of the HF, ac
curate involvement of the classical Wnt signaling pathway is an indis
pensable link.

Wnt signaling initiates the development of placodes and hair shafts 
during the embryonic period [91–93]. If Wnt is deleted during 
embryogenesis, placode formation is blocked. Deletion of Wnt after HF 
formation leads to complete hair loss after the first hair cycle. HF in
duction and formation are generally regulated by 
epithelial-mesenchymal interactions (EMI). Epithelial β-catenin and 
Wnt ligands activate dermal Wnt/β-catenin signaling, thereby regu
lating fibroblast proliferation and initiating follicular plate formation 
[94–96]. The Wnt/β-catenin pathway interacts with the 
Eda/Edar/NF-kB signaling pathway, where Edar expression inhibits 
BMP, guiding proper stromal development [97]. HFs are primarily 
formed during the embryonic period. Still, activation of the Wnt 
pathway in the skin near wounds can also lead to the development of 
new HFs [98–103]. Correct activation of the Wnt pathway is crucial for 
stimulating the formation of the correct follicular structures in skin 
tissue.

Activation of the Wnt pathway serves as an initiator in the hair 
growth cycle, and its dysregulation is strongly linked to follicle- 
associated diseases. The Wnt pathway typically maintains HFSCs in a 
quiescent state, and the specific activation of β-catenin results in new 
hair growth [104,105]. The activity of β-catenin in DPCs also regulates 
hair morphogenesis and regeneration [106–108]. Hair loss arises when 
the signaling of the HF is disturbed. Sufficient activation of the Wnt 
pathway in the HFSCs or DPCs can promote hair regeneration, which 
can be achieved through various means such as plant-derived chemicals 
[109,110], macrophage exocysts [111], or photobiomodulation therapy 
[112].

3.2. HH signaling pathway

The Hedgehog (HH) proteins are part of a small family of secreted 
signals, which include Indian Hedgehog (IHH), Desert Hedgehog (DHH), 
and Sonic Hedgehog (SHH). The classical HH signaling pathway has two 
scenarios [113] (Fig. 4b). In the absence of HH, the receptor patched 
(Ptch) inhibits the expression of the receptor smoothened (Smo). Gli 
binds to fused (SuFu) suppressor to form Gli repressor (GliR), sup
pressing the target genes’ expression. In the presence of HH, Ptch binds 
to HH, relieving the inhibition of Smo, which leads to the dissociation of 
SuFu from Gli. This results in the formation of a Gli activator (GliA), 
which promotes the expression of target genes. Among the three types, 
the SHH pathway directly affects HF neogenesis and the hair cycle.
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The SHH signal is not an initiating factor for HF neogenesis but is 
involved in regulating HF development. During hair germ tissue neo
genesis, the expression of SHH, Ptch, and Ptch2 is induced approxi
mately six to tenfold [114]. When HF development is inhibited, these 
signals are also suppressed. Treatment of mice with SHH-blocking 
monoclonal antibodies during gestation resulted in abnormal follicular 
development and hair shaft deficiency in the offspring [115,116]. SHH 
and platelet-derived growth factor-A (PDGF-A) are vital signals for the 
precise formation of dermal papilla structures [117]. During wound 
repair, activation of SHH appropriately inhibits scar formation and 
promotes HF regeneration [118].

The SHH pathway maintains the HFSC population and regulates the 
hair cycle. During anagen, HFSCs generate transit-amplifying cells, 
producing SHH. SHH regulates HFSCs’ proliferation and replenishes the 
stem cell ecological niche [28,119,120]. The dermal papilla triggers 
SHH expression in primed progenitor descendants. As the DP leaves the 
bulge, quiescent stem cells are briefly exposed to SHH, ensuring a short 
period of stem cell activation for regeneration [121]. Additionally, SHH 
can utilize the SHH-Noggin signaling loop and SCUBE3/Transforming 
growth factor β (TGF-β) mechanisms to regulate dermal papilla niche 

function [122,123]. Stimulating SHH activation is an effective method 
for promoting the regrowth of HF.

3.3. FGF signaling pathway

The fibroblast growth factor (FGF) family in mammals has over 20 
members that influence organ development, wound repair, and angio
genesis by directly activating the FGF receptor. Currently known in HFs, 
FGF2, FGF9, FGF10, FGF12, and FGF20 promote hair growth, whereas 
FGF5 and FGF18 exert the opposite effect.

Multiple FGFs positively affect hair regeneration. For example, FGF2 
can effectively increase the expression of versican and TGF-β2, two 
trichogen genes involved in hair follicle germs (HFGs) structure devel
opment, enhancing HF growth [82]. In a full-thickness wound healing 
model in mice, researchers found that FGF9, secreted by dermal γ-δ T 
cells that accumulated at the wound site, induced the expression of Wnt2 
in dermal fibroblasts [124]. This activation of the Wnt pathway in 
dermal fibroblasts promotes hair regeneration. FGF10 enhances the 
proliferation and migration of outroot sheath (ORS) cells and DPCs by 
up-regulating β-catenin levels. Simultaneously, FGF10 antagonizes 

Fig. 3. Signals involved in HF morphogenesis and circulation. HF morphogenesis occurs through six stages with distinct signals. Placode formation is initiated by 
Wnt signals in the dermis, while Wnt/β-catenin, ectodysplasin (Eda)/NF-kB, sonic hedgehog (SHH), and noggin promote HF placode formation. Conversely, bone 
morphogenetic protein 2 (BMP2), bone morphogenetic protein 4 (BMP4), and Notch inhibit placode formation. Wnt/β-catenin facilitates dermal papilla formation, 
platelet-derived growth factor-A (PDGF-A), and SHH signaling. Subsequently, hair peg formation is promoted by Wnt/β-catenin, SHH, and transforming growth 
factor α/epidermal growth factor receptor (TGF-α/EGFR) signaling. Boundary formation of the HF involves Wnt/β-catenin, Notch, BMP2, and BMP4. During anagen, 
follicle formation is stimulated by Wnt/β-catenin, SHH, Notch, fibroblast growth factor 10 (FGF10), and fibroblast growth factor 12 (FGF12). The transition from 
anagen to catagen phase is induced by fibroblast growth factor 5 (FGF5), BMP, and transforming growth factor β (TGF-β). Finally, fibroblast growth factor 18 (FGF18) 
maintains the telogen phase and inhibits the transition of HFs into anagen.
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secreted frizzled-related protein-1 (sFRP1), competitively regulating the 
β-catenin pathway and promoting follicular cycling [125]. Endogenous 
FGF12 is predominantly expressed in ORS cells during the anagen phase 
[126]. Elevated FGF12 levels enhance ORS cell migration and facilitate 
the transition of mice hair from the telogen to the anagen phase. FGF20 
is involved in HF formation through its expression in the hair substrate 
during the initial stages of HF development [127,128]. It also can 
regulate the entire hair cycle and potentially induce hair growth.

FGF5 and FGF18 regulate the HF cycle by inhibiting hair growth. 
FGF5 is overexpressed in the late anagen phase, where it blocks the 
activation of DPCs and acts as a critical regulator in the HF cycle, pro
moting the transition from anagen to catagen [129,130]. FGF18 was 
overexpressed during the telogen phase and primarily regulates the HF 
cycle by sustaining the telogen phase and inhibiting the entry of HFs into 
anagen [129,131]. Inhibition of FGF5 can prolong the anagen phase, 
while inhibition of FGF18 promotes the transition of HFs from the tel
ogen to the anagen phase [132]. In addition to FGF5, FGF18 and FGF13 
are also involved in HF development and may play an inhibitory role. 
During morphogenesis in neonatal mice, the FGF13 protein was initially 
observed in the bulge region of the HF and keratin-forming cells of the 
basal lamina at 3 days postnatal [133]. Subsequently, FGF13 expression 
was mainly concentrated in the bulge region of the HF and peaked 
during the telogen phase of the mature HF [134].

3.4. NOTCH signaling pathway

The Notch signaling pathway is a highly conserved signal trans
duction mechanism evolution, mediating activating effects between 
neighboring cells [135,136] (Fig. 5a). In this pathway, the Notch ligand 

(Delta or Jagged) on the signal-sending cell binds to the Notch receptor 
on the signal-receiving cell. Subsequently, the receptor is cleaved by the 
γ-secretase complex located on the inner side of the cell membrane. This 
cleavage releases Notch protein fragments with transcriptional regula
tory activity (NICD) into the nucleus. In the nucleus, NICD binds to other 
proteins (CBF-1/suppressor of hairless/Lag1 and mastermind-like) to 
regulate downstream target gene expression.

The Notch pathway promotes the differentiation of HFs, sebaceous 
glands, and the interfollicular epidermal spectrum during embryonic 
development, which is crucial in forming the boundaries of HFs 
[137–139]. Operating in the late stages of HF formation, the Notch 
pathway’s activation accelerates the differentiation of HFSCs, thereby 
determining the fate of interfollicular cells [140,141]. Gradually 
decreasing the dose of Notch or in the absence of γ-secretase, the inner 
root sheath cells lose their fate maintenance capability [142,143]. At the 
end of the first growth phase, the epidermal differentiation program in 
the ORS cells is activated. As a result, the HF gradually transforms into 
an epidermal cyst, disintegrating the hair shaft structure and the 
inability to form a sebaceous gland. The presence of the Notch pathway 
is crucial for ensuring the correct differentiation of cells and forming a 
complete HF structure.

The Notch pathway usually interacts with other signals, contributing 
to HF formation. Specifically, the Notch pathway acts downstream of the 
Wnt/β-catenin pathway [144]. Blocking Notch or deleting Jag1 accel
erates HF growth and differentiation, thereby preventing β-catenin from 
inducing neo-follicle formation. Skin-resident regulatory immune T cells 
localized in HFs express high levels of Jagged1, a member of the Notch 
ligand family. This promotes HF regeneration by enhancing HFSC pro
liferation and differentiation [145]. Additionally, the Notch pathway 

Fig. 4. Schematic depictions of the classic Wnt and Hedgehog (HH) signaling pathways. (a) The classic Wnt pathway. In the absence of Wnt, cellular β-catenin is 
targeted for degradation by a complex consisting of glycogen synthase 3 (GSK3), Axin, casein kinase 1 (CK1), and adenomatous polyposis coli tumor suppressor 
protein (APC), resulting in the silencing of targeted genes in the nucleus. In the presence of Wnt, the enzymatic complex fails, leading to the release of β-catenin. 
Subsequently, β-catenin translocates to the nucleus, where it interacts with the lymphoid enhancer factor/T cell factor (LEF/TCF) family, facilitating the normal 
transcription of the target genes. (b) The classic HH pathway. In the absence of HH (e.g., SHH), the Hh receptor Patch inhibits the smoothened (Smo) activity of 
protein kinases that includes protein kinase A (PKA), GSK3, and CK1. This inhibition leads to the cleavage of Gli into the truncated form GliR, acting as a deterrent to 
target gene expression. In the presence of HH, the HH ligand binds to Ptch and derepresses Smo. This action signals Sufu to release the Gli activator (GliA), which 
subsequently migrates to the nucleus and activates the expression of target genes.
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maintains the development and stabilization of melanin stem cells and 
KCs, which enable environmental homeostasis around the HF [146,
147].

3.5. TGF-β/BMP signaling pathway

TGF-β superfamily consists of several subfamilies, including TGF-β, 
activins/inhibitors, growth and differentiation factors, and bone 
morphogenetic proteins (BMPs) [148]. This superfamily is involved in 
various events during epidermal/annexal development, with drosophila 
mothers against decapentaplegic proteins (smads) as the primary signal 
mediators from the membrane to the nucleus [149–151]. In the ca
nonical TGF-β/BMP signaling pathway (Fig. 5b), upon ligand binding to 
its specific receptor complex, the type II receptor kinase is phosphory
lated, activating the type I receptor kinase. The phosphorylated type I 
receptor then phosphorylates the R-Smads, forming a heterodimeric 
complex with Smad4. This complex translocates to the nucleus and 
regulates the expression of TGF-β target genes.

Deleting crucial proteins in the TGF-β/BMP pathway leads to struc
tural and functional defects in HFs. For instance, in the absence of BMP 
receptor 1A activation, the differentiation of the inner root sheath is 
affected [152]. Moreover, deletion of the BMP receptor 1A gene leads to 
continuous activation of stem cells, resulting in HFSCs overactivation 
and niche expansion [153,154]. The loss of slow-cycling cells and the 
formation of tumor-like branches by follicular stem cells were observed. 
Smad4 knockout mice exhibit cutaneous follicular defects along with 
squamous cell carcinoma [155]. Noggin, acting as a negative regulator 
of the TGF-β superfamily and an antagonist of BMP, is typically 
expressed in the mesenchyme of HFs. The absence of Noggin expression 
delays neonatal follicle development and secondary follicle induction 
[156,157]. In contrast, in Noggin transgenic mice, HFs were formed but 
lacked hair shafts, suggesting that BMPs are pivotal in the genetic pro
gram controlling the differentiation of hair shafts in postnatal HFs 

[158]. Therefore, the TGF-β/BMP pathway can prevent the development 
of skin diseases caused by the failure to produce the correct follicular 
structure.

A competitive balance of endogenous BMP/Wnt signaling establishes 
a robust gene network that regulates the homeostasis of HFSCs activa
tion and cycling [159–161]. The HF cycle initiates when the activation 
of Wnt in the HF surpasses the suppression of BMP. Notably, Wnt7b is a 
direct target of BMP signaling in HFSCs [162]. Competition between 
Wnt10b and Bmp6 regulates the activation of HFSCs, with their balance 
controlling the resting-anagen transition of the HF [163]. Secreted 
frizzled-related protein 1 (Sfrp1), acting as a Wnt antagonist, maintains 
tissue homeostasis in the HF through BMP-AKT-GSK3β signaling [164]. 
Additionally, Suzuki et al. [165] demonstrated that the SHH pathway is 
also involved in BMP/Wnt signaling dynamics as a downstream pathway 
of the Wnt pathway. Biological signals form a complex network and each 
stage of HF development results from the coordinated action of several 
biological signals.

HF cells develop and maintain the normal circulation of HFs under 
various positive and negative signals. In the hair loss area, there is an 
observed inhibition of positive regulatory signals for hair growth, pro
motion of negative regulatory signals, and disruption of the HF micro
environment. In our previous research, we developed a polydopamine- 
quercetin nanosystem that synergizes to restore the HF microenviron
ment and promote regeneration [12]. After treating the area of hair loss 
externally and restoring the function of the HFs, the hair returns to its 
normal growth cycle, and it could reach significant treatment when 
intervention begins in the early stages of hair loss. As hair loss pro
gresses, damage to the HFs becomes irreparable. The limited quantity 
and non-renewability of HFs are currently the main challenges. Utilizing 
cells and matrix materials to fabricate HFs in vitro under the influence of 
biological signals represents a novel approach for future HF 
regeneration.

Fig. 5. Schematic depictions of the canonical Notch and transforming growth factor-β/bone morphogenetic protein (TGF-β/BMP) signaling pathways. (a) The Notch 
pathway. The receptor Notch binds to the ligand (Delta or Jagged) and then undergoes cleavage by the γ-secretase complex, releasing the active fragment of the 
Notch protein, NICD. NICD translocates to the nucleus and binds to the transcription factors CBF-1/suppressor of hairless/Lag1 (CSL) and mastermind-like (MAML) to 
regulate downstream gene expression. In the absence of NICD, the CSL co-inhibitor binds to silence target genes. (b) The TGF-β/BMP pathway. TGF-β or BMP binds to 
type I and II receptors, recruiting and phosphorylating downstream Smads (Smad2/3 in TGF-β, Smad1/5/8 in BMP). p-Smads form a trimeric complex with Smad4, 
which translocates to the nucleus to regulate the transcription of target genes.
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4. Materials-based hair follicle regeneration engineering

Advances in materials demonstrated great potential in therapeutics 
and regenerative medicine [166–169]. In hair follicle regeneration en
gineering, hair follicles can be generated in vivo exclusively by cells 
following transplantation. Simply implant the cultured and expanded 
human epidermal and dermal cells into the back wound of immunode
ficient mice [170]. After approximately 12 weeks, distinct hair follicles 
can be observed. At present, the strategy for hair regeneration using cells 
without materials has been extensively studied. These researches 
involve investigating the combination of cell types capable of producing 
hair follicles and improving the hair induction ability of these cells 
through modifications in cell culture methods. In fact, during tissue 
repair, purely cellular strategies often face challenges in achieving 
efficient hair regeneration. Such typical studies currently highlight the 
positive effects of biomaterials on skin tissue engineering and hair 
regeneration [171–173]. The introduction of materials can play the 
function of inherent biological activity during hair regeneration. 
Moreover, the combination of materials and cells enhances the pro
cessability of the cells.

4.1. Extracellular matrix materials

The extracellular matrix, housing a complex network of numerous 
signaling molecules, is closely associated with cell division, differenti
ation, and intercellular information delivery. The main components of 
ECM in mammals are collagen, non-collagenous proteins, elastin, pro
teoglycans, and aminoglycans. The decellularized matrix (d-ECM) ob
tained by physically, chemically, or biologically removing cells from 
tissues serves as a promising scaffold biomaterial [174]. 

Girardeau-Hubert et al. [175] decellularized the pig skin by 
freeze-drying to produce dermal d-ECM and then processed it into a gel 
material for skin reconstruction (Fig. 6a). There is no denying that 
Matrigel is the most common 3D culture d-ECM used in current research, 
with its main component extracted from Engelbreth-Holm-Swarm 
mouse sarcomas.

Regeneration of bioengineered HFs necessitates providing seed cells 
with an extracellular environment akin to that in vivo. There seems to be 
a consensus to include Matrigel in the culture conditions of HF seed cells 
[35,176,177]. The addition of Matrigel enhanced the self-organization 
of EpSCs and MSCs, leading to improved activity and the formation of 
superior spatial structures compared to ultra-low attachment cultures 
[178–180]. Additionally, it preserved the hair-inducing capability of 
high-passage DPCs. Kageyama et al. [82] found that after 2 days of 
culture with Matrigel, EpSCs and MSCs form a specific spatial arrange
ment termed hair follicloids (Fig. 6b–c). After testing, approximately 
half of the gene expression related to ECM and adhesive proteins in the 
hair follicloids showed a significant increase (Fig. 6d–e). Havlickova 
et al. [181] formed another "folliculoid sandwich" system using DPCs, 
ORS keratinocytes, and Matrigel as a tool for testing in vitro. Matrigel 
not only promotes polymerization between cells but also enhances 
printability. When a mixture of EpSCs, SKPs, and Matrigel was printed 
directly onto the injured area, mice could completely heal their wounds, 
resulting in a structure similar to native skin [182].

Based on decellularized extracellular matrices have been developed 
for use in research of over 15 tissue types or organs [183]. Apart from 
Matrigel, other d-ECM may also become potential biomaterials for HF 
regeneration research. However, elucidating decellularized stromal 
components and in vivo biological safety still requires long-term basic 
research.

Fig. 6. Acquisition and application of decellularized matrix. (a) Process for the decellularization and solubilization of porcine skin extracellular matrix. Reproduced 
with permission [175]. Copyright 2022, Elsevier. (b) Localization of EpSCs and MSCs cultured with or without Matrigel supplementation after 2 days of culture. (c) 
Schematic of different structures formed by EpSCs and MSCs in the presence or absence of Matrigel. (d) In hair follicloids constructed from epithelial cells and 
mesenchymal cells, the number of genes up- and down-regulated due to Matrigel supplementation. (e) In hair follicloids, the changes in gene expression of ECM and 
ECM binding related proteins. (b–e) reproduced with permission [82]. Copyright 2022, The American Association for the Advancement of Science.
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4.2. Natural polymers

Natural polymers, characterized by their biocompatibility and de
gradability, have garnered attention in tissue regeneration research. 
Polysaccharides and proteins are currently the most widely studied in 
tissue engineering of HFs [184,185]. The applications of various natural 
polymers for HF regeneration are listed in Table 1.

Various proteins from animal sources have positive effects on skin 
repair and hair follicular structure formation. Among them, collagen is 
the most abundant functional protein in animals and the main compo
nent of ECM. Abreu et al. [186] employed microscopy-guided laser 
ablation (MGLA) to fabricate a subcompartment in rat tail collagen I, 
which effectively guided the aggregation of DPCs and KCs to recreate 
follicular structures. Unlike this, Kageyama et al. [187] directly mixed 
collagen I with mouse embryonic MSCs or human DPCs to form 
dumbbell-shaped hair beads. When transplanted intradermally on the 
back of nude mice, these beads effectively generate HFs. The hydrogel 
derived from collagen I can mimic the natural ECM structure and 
interact with cells for more intricate designs. Zhang et al. [198] devel
oped bilayer tissue-engineered skin substitutes (TESSs) by combining 
type I collagen with adult scalp progenitor cells and epidermal stem cells 
in vitro. This early double-layer TESS was transplanted onto the 
full-thickness skin wounds of nude mice, where hair follicle formation 
was observed after 8 weeks. Gelatin is a collagen hydrolysis product. 
Gupta et al. [173] prepared silk-gelatin (SG) by mixing gelatin and silk 
fibroin solution and crosslinking with tyrosinase. They used SG hydrogel 
to form DPC spheres as the 3D organoid model for drug screening. Silk 
fibroin has been extensively researched and utilized in the field of 
biomedicine because of its exceptional biocompatibility [199,200]. In 
addition, silk fibroin hydrogel containing MSCs has demonstrated the 
ability to facilitate scar-free skin healing and promote HF regeneration 
[188]. Chantre et al. [189] prepared another ECM protein Fn scaffold 

using rotary jet spinning. The structure of the Fn scaffold is similar to 
that of the native ECM (Fig. 7a). In animal models of wound repair, Fn 
demonstrates superior wound healing capabilities, and the morphology 
after repair closely resembles the natural skin (Fig. 7b). Fibrin hydrogel 
derived from human plasma is also being studied in cultivating HF seed 
cells. Fibrin microgels to encapsulate human DPC spheres have been 
found to enhance cell viability, restore cells’ intrinsic properties, and 
induce epidermal invaginations [190]. Chen et al. [191] prepared 
fibrin-based hydrogels with SKPs to induce HF genesis. These hydrogels 
possess a porous structure that aids in preserving the stemness of SKPs in 
vitro and enhances the efficiency of HF induction in vivo (Fig. 7c–f).

Natural polysaccharides and their derivatives are a class of macro
molecules with significant biological activities. Glycosaminoglycans are 
primarily found in animal connective tissues. Fernandez-Martos et al. 
[192] reported that glycosaminoglycan hydrogel can promote the sur
vival of isolated human HFs, resulting in a highly proliferative pheno
type in both the hair bulb and supra bulbar regions. Hyaluronic acid 
(HA) and chondroitin sulfate are both types of glycosaminoglycans. HA 
can stimulate the proliferation of DPCs and promote the formation of a 
more extensive hair germ model [193]. Similarly, chondroitin sulfate 
disaccharides and L-mannose promote the proliferation of dermal fi
broblasts and DPCs by mediating the Wnt signaling pathway and 
inducing the cellular production of ECM molecules such as collagen and 
elastin [194]. Unlike glycosaminoglycans, sodium alginate is a natural 
polysaccharide extracted from algae. The lyophilization scaffold 
composed of silk fibroin and sodium alginate demonstrated excellent 
cytocompatibility and retained the ability to induce HF differentiation 
[195,201]. In the wound repair model, this scaffold facilitated the 
regeneration of HF structures. Lim et al. [196] developed a fibrous 
hydrogel scaffold using sodium alginate combined with chitin. DPCs and 
KC self-assemble in this scaffold, forming a structure similar to that of 
the native hair bulb. Sodium alginate is a negatively charged polymer. 

Table 1 
Summary of natural polymer applications in hair follicle engineering.

Material Concentration Form Cell type Spheres size/cell 
number

Applications Ref

Rat tail collagen I 0.03 mg/mL Hydrogel 3D 
microchannel

Human DPCs, 
Human KCs

258.5 ± 2.5 μm Build a skin model bearing folliculoid structures. [186]

Collagen type I-A 2.4 mg/mL Solution Mouse EpSCs, 
Mouse MSCs, 
Human DPCs

10 × 103 cells/bead Hair generation assays in nude mouse back 
transplantation.

[187]

Silk fibroin/Gelatin 5 wt% Hydrogel Human DPCs, 
Human KCs, 
Human HFSCs

5 × 103 cells each Modulation of the DP spheroids model toward the 
development of the HF organoid.

[173]

Silk fibroin 2 wt% Hydrogel Mouse MSCs – Silk material system for scarless skin regeneration 
with HFs.

[188]

Human ECM protein 
fibronectin

20 mg/mL Nanofiber – – Nanofibers restore dermal papilla and recruit basal 
epithelial cells in full-thickness wound repair.

[189]

Fibrin from human blood 2.4 mg/mL Microgel Human DPCs 280 μm The fibrin microgels system induces epidermal 
invaginations while culturing DP spheroids.

[190]

Fibrinogen 40 mg/mL Hydrogel Mouse EpSCs, 
Mouse SKPs

– Fibrinogen hydrogel-loaded cells in nude mouse 
wounds HF reconstruction.

[191]

Glycosaminoglycans 0.225 mg/mL Hydrogel – – Promoting the maintenance of a highly proliferative 
phenotype in the hair bulb and supra bulbar regions.

[192]

Hyaluronic acid 0.05 mg/cm2 – Human DPCs, 
Human LFs, 
Human KCs

3.5 × 103 cells each Build a hair germ-like organoid for HF biology 
research.

[193]

L-fucose, chondroitin 
sulfate disaccharide

– Solution HDFa, iDPCs – These support and promote the proliferation of 
dermal fibroblasts and DPCs.

[194]

Silk fibroin/Sodium 
alginate

2 wt % Lyophilisation 
scaffold

Human UC-MSCs – Scaffold delivered hUC-MSCs to enhance skin scarless 
healing and HF regeneration.

[195]

Chitin/Sodium alginate 10 mg/mL Hydrogel Human DPCs, 
NHEK

~100 μm Scaffold delivered hDPCs, and NHEK a suitable model 
for studying HF interactions, with possible 
application for in vitro drug testing assays.

[196]

(Gelatin)2/Alginate 0.1 wt % Solution Mouse DPCs, 
Mouse EpSCs

mDPCs: 1 × 106 

cells, mEpSCs: 5 ×
105 cells

LBL nano-coating with (Gelatin)2/Alginate on the cell 
surface included FGF-2 for spot-by-spot HF 
regeneration.

[197]

Abbreviations: hLFs: human lung fibroblasts; HDFa: human dermal fibroblasts cell line; iDPCs: immortalized human dermal papilla cells; hUC-MSCs: human umbilical 
mesenchymal stem cells; NHEK: normal human epidermal keratinocytes.
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Lin et al. [197] loaded sodium alginate and positively charged gelatin 
layer-by-layer (LBL), forming nano-scale ECM on the surface of DPCs. It 
has been found that LBL packaging does not damage cell viability and 
biological characteristics, which can further effectively encapsulate 
active ingredients.

4.3. Synthetic polymers

Synthetic polymers refer to materials obtained through polymeriza
tion reactions of monomers. Several synthetic polymers show promising 

applications in promoting the culture of HF cells and regeneration of 
HFs, including polyethylene glycol diacrylate (PEGDA), gelatin meth
acryloyl (GelMA), polyvinyl alcohol (PVA), and their derivatives. The 
synthetic polymers used in HF fabrication and regeneration are detailed 
in Table 2.

PEGDA is a polyethylene glycol derivative with adjustable mechan
ical properties. Pan et al. [212] fabricated hydrogel microwells using 
PEGDA with center islets using soft lithography. The PEGDA microwells 
had different compartments to culture dermal and epithelial cells 
separately. These microwells can support cell proliferation and cell 

Fig. 7. Natural polymer applications in skin repair and HF regeneration. (a) SEM images of the native dermal ECM and fibronectin (Fn) scaffolds. (b) Representative 
images of the untreated group (Control) and Fn nanofiber-treated group on days 2, 8, and 16 in wound repair experiments. The insets below are shown in the 
enlarged image, showing that the FN treatment group has a better wound healing effect (highlighted with the dashed line). (a–b) reproduced with permission [189]. 
Copyright 2018, Elsevier. (c) Gross appearance of fibrin solution (left) and hydrogel (right) at concentrations of 20, 40, and 80 mg/mL (d) SEM images of fibrin 
hydrogels at concentrations of 20, 40, and 80 mg/mL. (e) Real-time PCR analysis of SKPs cultured with fibrin hydrogels for 3 days and the expression of HF 
induction-associated genes. (f) Representative back images of nude mice after 4 weeks of transplantation. (c–f) reproduced with permission [191]. Copyright 2022, 
The Authors.
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survival for up to 14 days. On this foundation, Justin et al. [213] 
investigated the effect of PEDGA microwell matrix hardness on the ag
gregation of DPCs. DPC spheres exhibit higher expression of HF markers 
on soft matrices than on stiff matrices. Compared with two-dimensional 
cell models and individual types of cell spheres, 3D cell spheres formed 
by multiple HF-related cells can better simulate real HF situations. 
Therefore, Tan et al. [202] sequentially inoculated DPCs, HDFs, and 
HaCaT into PEDGA microwells for cultivation. DP-HaCaT forms a 
core-shell structure, where DPCs gather in the core, and HDFs polarize 
and migrate out of the DP-HaCaT region (Fig. 8a–b). PEGDA micropores 
can facilitate the formation of diverse HF cell spheres, enhancing the 
efficiency of standardized cell sphere production.

GelMA is a polymer material extensively employed in tissue regen
eration that can be cured into a gel through photocrosslinking with the 
aid of a photoinitiator. GelMA has been used in research to construct 
various 3D skin models because of its adjustable mechanical properties 
and printability [214–216]. As a high-performance bioink, GelMA 
hydrogels containing EpSCs and SKPs in situ bioprinting for skin wound 
repair have showcased complex skin regeneration, encompassing the 
epidermis, dermis, blood vessels, HFs, and sebaceous glands [203]. 
Different from in-situ printing, Kang et al. [204] created 3D-printed skin 
equivalents in vitro using GelMA/hyaluronic acid methacrylate (HAMA) 
bioink (Fig. 8c–d). The skin equivalents had a remarkable microporous 
structure, which is suitable for cell adhesion and growth (Fig. 8-e). After 
testing, the cells carried in the skin equivalent exhibit good cell viability 
(Fig. 8f–g), demonstrating its potential as a model for skin tissue engi
neering and HF regeneration. Moreover, the introduction of nano
particles into GelMA to augment hydrogel properties and facilitate HF 
neogenesis was observed in a skin damage model [205,206]. In addition 

to 3D printing, GelMA can be combined with microfluidics to prepare 
cells-loaded microspheres [21].

PVA and its derivative, ethylene vinyl alcohol (EVAL), exhibit low 
cell adhesion. Therefore, the nanofibers and membrane coating pre
pared from these materials can effectively promote the formation of HF 
cell spheres. Zhang et al. [207] prepared a chitosan/PVA nanofiber 
sponge for HFs regeneration (Fig. 8h–i). After three days of cultivation, 
the formation of cell spheres in 3D nanofiber sponges resulted in a larger 
microstructure size than in 2D nanofiber membranes (Fig. 8j). In animal 
experiments, nanofiber sponges loaded with cell spheres demonstrated 
effective hair induction efficiency. When cells were inoculated in 
PVA-coated well plates, DPCs swiftly aggregated into individual spheres 
[208]. Similarly, membrane materials derived from EVAL facilitated the 
self-assembly of DPCs into spherical microstructures measuring 
125–150 μm, which also could induce new HFs [209]. However, it was 
found in the experiment that cell growth was slower, and cell loss was 
more significant after cell inoculation in EVAL. Young et al. [210] 
selected multiple ECM components and found that FN-coated EVAL can 
enhance cell aggregation and keep cells highly mobile. Considering the 
diversity of cells in HFs, single-cell types of cell spheres cannot repro
duce the structure of HFs. Yen et al. [211] used DPCs and KCs to 
establish folliculoid microtissues on EVAL surfaces and explored the 
potential tissue formations of heterologous cells. The aggregation 
exhibited a core-shell structure, with DPCs located at the center, and 
high expression of DPCs characteristic genes was detected.

5. Novel engineered strategy for hair follicle engineering

The close arrangement of cells within tissues is essential for 

Table 2 
Summary of synthetic polymer applications in hair follicle engineering.

Material Form Pore size Mechanical 
property

Cell type Spheres size/cell 
number

Applications Ref

PEGDA Microgel array – ​ Human 
DPCs, 
HaCaT, 
HDFs

hDPCs: 36 × 104 

cells, HaCaT& 
HDFs: 72 × 104 

cells

PEGDA microgel array constructs cell spheres to 
probe cellular interactions.

[202]

GelMA Hydrogel bio- 
ink

– – SKPs, Mouse 
EpSCs,

– In situ, bioprinting of GelMA hydrogels 
containing EpSCs and SKPs onto skin wounds 
showed complete wound healing and functional 
tissue skin regeneration.

[203]

GelMA/ 
HAMA

Hydrogel bio- 
ink

118.40 ± 12.32 
μm

Young’s modulus: 
15.72 ± 3.9 kPa

HDFs, 
Human 
DPCs, 
HaCaT

– 3D-printed skin equivalents containing HF 
structures and epidermal/papillary dermis were 
fabricated using GelMA/HAMA bioink.

[204]

GelMA/Nano- 
cellulose

Hydrogel bio- 
ink

Dermis: 76.98 ±
2.26 μm basal: 
31.44 ± 2.09 μm

Compressive 
modulus: 
16.4 ± 0.9 kPa- 
73.0 ± 10.6 kPa

HaCaT, 
HDFs

– Heterogeneous tissue-engineered skin repaired 
wounds with HFs and early dentate ridge 
structures.

[205]

GelMA-Zn/Si Hydrogel bio- 
ink

~100 μm – HaCaT, 
HUVECs

– GelMA-zinc/silicon-printed hydrogel bioprint in 
situ for treating excisional wounds with HF 
regeneration.

[206]

GelMA/ 
Catechol- 
grafted HA

Core-shell 
microsphere

– – Mouse 
MSCs, 
Mouse 
EpSCs,

~217.5 μm G/HAD microspheres are capable of HFs 
generation upon transplantation into the dorsal 
dermis of nude mice.

[21]

Chitosan/ 
PVA

Nanofiber 
sponge

21− 25 μm – Mouse DPCs, 
Mouse 
EpSCs

1 × 107 cells each DPC spheres formed on Chitosan/PVA nanofiber 
sponge are HF-inducible under the skin of nude 
mice.

[207]

PVA Surface 
coating

– – Human 
DPCs, Rat 
DPCs

0.5 × 104-5 × 104 

cells
Aggregates formed by cell inoculation in PVA- 
coated well plates induce HF neogenesis 
subcutaneously in nude mice.

[208]

EVAL Membrane – – Rat DPCs 125–150 μm EVAL membranes facilitate DP self-assembly into 
many compact spheroidal microtissues that can 
induce new HFs.

[209]

EVAL/ECM 
protein

Membrane – – Rat DPCs – DPC spheres are formed on EVAL or fibronectin- 
coated EVAL membranes.

[210]

EVAL Membrane – – Rat DPCs 
Rat KCs

50–200 μm A method for high-throughput generation of 
organoid hybrid microtissues by biomaterial- 
facilitated self-assembly.

[211]
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facilitating intricate interactions among cells and the ECM. Moreover, 
the functions of HF development, perception, and participation in skin 
regulation cannot be achieved by a single cell type. When attempting to 
replicate the structure and function of HFs, we endeavored to combine 
seed cells into a functional microstructure using various methods. Here, 
we introduce three commonly used methods for preparing HF micro
structures in current research: cellular self-assembly, microfluidics, and 
3D printing.

5.1. Cellular self-assembly

Under low adsorption culture conditions, DPCs can self-assemble to 
form cell spheres. Compared to DPCs cultured in 2D, DPC spheres more 
closely mimic the in vivo environment and demonstrate a partial 
restoration of hair-inducing properties [58,217–219]. DPC spheres can 
be used as an in vitro model for drug screening and mechanism research 
[220]. It is challenging for cells and cell spheres to develop a complete 
hair follicle structure in vitro. Subcutaneously injecting cells into nude 
mice for the patch assay can effectively validate their hair induction 

Fig. 8. Synthetic polymer applications in HF regeneration. (a) The confocal image of RFP-expressing HaCaT surrounding GFP-expressing DP in the middle slice. Scale 
bar: 200 μm. (b) The confocal image of 3D tri-cultured aggregates. The white arrows indicate the position of HDFs that have polarized and migrated around with DP- 
HaCaT aggregates in the middle slice. Scale bar: 200 μm. (a–b) reproduced with permission [202]. Copyright 2019, The Authors. (c–d) Digital images of the 3D 
printed dermis. (c) Top and (d) lateral views of the 3D printed skin equivalent. (e) Scanning electron microscopy (SEM) images of cryo-sectioned GelMA and 
GelMA/HAMA. (f) 3D projection of the live/dead assay in skin equivalent. (g) Depth coding of the live cell signal in skin equivalent. (c–g) reproduced with permission 
[204]. Copyright 2022, Wiley-VCH GmbH. (h) Preparation process of the Chitosan/PVA nanofiber sponge. Scale bar: 5 μm. (i) After 3 days of culture, DP microtissues 
can form within the internal structure of the nanofiber sponge. DP microtissues were mixed with epidermal cells and transplanted into the back of nude mice. After 4 
weeks, HFs can be observed to regenerate. (j) SEM images of the cell morphological change in the 2D and 3D after 1 and 3 days of culture. Scale bar: 25 μm. (h–j) 
reproduced with permission [207]. Copyright 2020, American Chemical Society.
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capability [221]. Furthermore, Lin et al. [18] induce high-passage DPC 
spheroid formation in 3D hanging-drop array plates (Fig. 9a). Compared 
with 2D culture, the expression of hair-induced biomarkers is signifi
cantly increased in 3D cell spheres. Significant hair neogenesis was 
observed by implanting DP microtissues and newborn mouse EpSCs 
subcutaneously in nude mice.

Due to a single type of cell not providing the EMI required for hair 
regeneration, the efficiency of HF formation is lower when DPC spheres 
transfer to subcutaneous tissue. To address this limitation, DPCs and KCs 
are combined to form 3D KC-DPC spheres [2]. Further, Fukuyama et al. 
[177] assembled DPC spheres and KCs into a cylindrical structure with a 
guiding nylon wire. After two weeks of cultivation, they obtained a 

Fig. 9. Fabrication of self-assembled spheres of HF cells. (a) Formation of microtissues from highly passaged DPC cells using the hanging-drop approach. Reproduced 
with permission [18]. Copyright 2016, American Chemical Society. (b) Preparation of vHFGs using DPCs, epithelial cells, and HUVECs after 2 days of 
self-organization using HFG chip. Transplanting vHFGs to the back of nude mice can achieve hair regeneration. (c) Digital image of HFG chip. The inset shows 
cultured vHFGs in microwells. (b–c) reproduced with permission [19]. Copyright 2021, The Authors. (d) Schematic illustration of LBL-DP preparation. DPCs coated 
with gelatin (red) and alginate (green), and then LBL-DPCs were crosslinked with calcium ions to prepare LBL-DP. (e) TEM images of DPCs and LBL-DPs. Red arrows 
indicate the nano-scale ultrathin ECM. (f) Subcutaneous images and HE staining of transplant sites after three weeks post-injection. There is no hair regeneration in 
the DPCs group; in contrast, green arrows indicate LBL-DP can induce a large number of HF-like structures, and yellow arrows indicate numerous de novo hairs were 
generated in vascular DP. Scale bars: 100 μm (HE images) and 500 μm (stereoscopic images). (d–f) reproduced with permission [222]. Copyright 2022, The Authors.
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structure resembling natural HFs. The involvement of DPCs is not 
essential for constructing HFs in vitro, as other cell combinations can 
also induce HF regeneration. According to the research conducted by Su 
et al. [95], hair follicle-like organoids were formed when scalp-derived 
dermal progenitor cells were combined with foreskin-derived epidermal 
stem cells in a 2:1 ratio. Moreover, in vivo transplantation experiments 
have confirmed its potential for inducing hair growth. Kageyama et al. 
[223] developed a method for the large-scale in vitro preparation of 
HFGs using mouse EpSCs and MSCs self-organization. These HFGs effi
ciently generated HFs when transplanted intradermally onto the backs 
of nude mice. Using similar approaches, Kageyama et al. [19] added 
HUVECs to DPCs and mouse EpSCs to form HFGs in the HFG chip 
(Fig. 9b–c). HUVECs, DPCs, and EpSCs spontaneously form 
dumbbell-shaped HFGs from homogeneous aggregates after cultivation, 
with HUVECs located in the papillary area. After testing, HFGs con
taining HUVECs showed a higher expression of hair marker-related 
genes. Additionally, significantly increased levels of hair regeneration 
were observed when transplanted subcutaneously into nude mice.

The absence of cellular matrix involvement in cellular self-assembly 
can impact the efficiency of HF induction. LBL nanocoating technology 
involves coating sodium alginate and gelatin layer by layer on the sur
face of cells under the action of charges and cross-linking with calcium 
ions. This process utilizes biomaterials to mimic ECM components, 

creating a nano-scale ultrathin ECM. DPC spheres formed using LBL- 
DPCs are implanted subcutaneously with EpSCs in nude mice, forming 
HFs renew [224]. Furthermore, Chen et al. [222] co-cultured LBL-DPCs 
with LBL-coated HUVECs to construct vascularized DP spheroids simi
larly, resulting in a threefold increase in hair induction efficiency 
(Fig. 9d-f).

5.2. Microfluidic technology

Microfluidics, a fabrication technology at the microscale, allows for 
the creation of precise microscale structures and biomimetic microen
vironments for engineered tissues [225]. Microfluidics has been applied 
in skin simulation, HF culture, and the basic unit construction of HFs 
[226–228]. Especially, microfluidic technology can combine seed cells 
and matrix materials, making it a promising tool for the standardized 
preparation of HF precursors.

Traditional 2D cultivation is far from the real in vivo environment, 
and microfluidic technology offers flexible design capabilities, enabling 
the construction of in vitro models that closely mimic the in vivo envi
ronment for experimental research. For instance, Ahn et al. [229] 
developed a three-dimensional innervated epidermal keratinocyte layer 
as a co-culture model for sensory neurons and epidermal KCs on a 
microfluidic chip. Especially in the cultivation of HFs, Atac et al. [230] 

Fig. 10. Applications of microfluidics in hair culture and cell spheres preparation. (a) Digital image of multi-organ-chip with built-in micropumps to provide a 
pulsatile flow of the medium. (b) Schematic diagram of labeled areas for culturing in vitro skin models, ex vitro skin, and hair follicular units in transwells. (a–b) 
reproduced with permission [230]. Copyright 2013, Royal Society of Chemistry. (c) Digital image of the T-junction microfluidic chip. (d) The diameters of IGMs vary 
with the oil and aqueous phase flow rates (Flow rate of aqueous phase: flow rate of oil phase). (c–d) reproduced with permission [20]. Copyright 2022, The Authors. 
(e) The GelMA/HAD microspheres encapsulate MSCs and EPCs using the microfluidic method. (f) Picture of the microfluidic chip. (e–f) reproduced with permission 
[21]. Copyright 2009, IOP Publishing.
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described a dynamic microfluidic perfusion bioreactor platform 
(Fig. 10a). The multi-organic chip with a micro pump pumps flow cul
ture medium to achieve in vitro HF cultivation in transwell (Fig. 10b). 
Besides microfluidic chips, microfluidic air-jet spinning technology can 
fabricate large-area, high-strength nanofiber artificial skin, facilitating 
HF regeneration during wound repair [231]. The high efficiency, inte
grated miniaturization, and automation capabilities of microfluidics are 
well-aligned with the requirements of HF engineering.

Microfluidics is a potential tool for fabricating basic units with in
tegrated and high-throughput features. Ji et al. [232] prepared artificial 
HF seeding microspheres containing tideglusib and tamibarotene, which 
can convert fibroblasts into cells with DPC fate. This type of microsphere 
can promote in situ HF regeneration while enhancing wound repair. In 
addition to drug-loaded microspheres, microfluidic technology can also 
be used for high-throughput preparation of microspheres containing 
cells. Zhang et al. [20] prepared GelMA/chitosan microcarriers (IGMs) 
loaded with PRP and inoculated with DPCs on high-throughput micro
fluidic microarrays to efficiently induce the production of HFs. They 
explored the production of IGMs with various diameters by adjusting 
water and oil flow rates using microfluidic chips (Fig. 10c–d). Even 
when loaded with PRP, the induction efficiency of HFs in microspheres 
containing single-cell types is still not high. Huang et al. [21] prepared 

core-shell microspheres containing multiple cell types using 
microfluidic-assisted technology for HF regeneration (Fig. 10e–f). The 
future direction of microfluidics is moving towards modularity and deep 
integration with other technologies, presenting novel opportunities for 
engineered HF.

5.3. 3D printing technology

3D printing is an emerging technology in recent years that constructs 
objects by adding materials layer by layer, also known as additive 
manufacturing. 3D printing in the medical field can be divided into 
biological 3D printing and non-biological 3D printing based on the 
presence of biological components. 3D bioprinting, which enables the 
printing of bio-inks loaded with seed cells in specific shapes and struc
tures, represents one of the most promising emerging technologies for 
the in vitro production of engineered HFs. Selecting bio-inks suitable for 
cell growth is crucial in 3D bioprinting to create an adjustable micro
environment [233,234]. This technology offers advantages in both skin 
repair and hair regeneration [235–237].

3D bioprinting can be used to construct regenerative tissues in situ on 
wounds or manufacture scaffold materials that carry cells for hair 
regeneration at wound repair sites. Chen et al. [238] mixed EpSCs, SKPs, 

Fig. 11. Applications of 3D bioprinting in HF regeneration. (a) Bioprinting robot performs printing work on the back of nude mice. (b) After 4 weeks, HFs were 
generated after robotic bioprinting (P) and hand implantation (H). Scale bar: 2 mm. (a–b) reproduced with permission [182]. Copyright 2022, The Authors. (c–d) The 
mold generated by 3D printing has 255 HF per cm2 in grafts. Scale bar: 4 mm. (e–f) Within 4–6 weeks of grafting high follicle-density HSCs onto immune-deficient 
nude mice, hair grew in the grafts. Scale bar: 2 mm. (c–f) reproduced with permission [22]. Copyright 2018, The Authors. (g) The printed hair microgels (HMG) in 
both macro and micro views. (h) The three separate tissue grafts produce hair shafts. gHMG: guide- HMG, RVE: upper side, mesenchymal bead; bottom side: 
epithelial bead, FWD: upper side, epithelial bead; bottom side: mesenchymal bead, RDM: random directions. Three weeks following the transplant, the dorsal skin of 
the nude mice was examined in the transplanted areas. (g–h) reproduced with permission [23]. Copyright 2023, The Authors.
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and Matrigel and printed in situ onto the defect area of the full-layer skin 
of nude mice to achieve hair regeneration at the wound site. To enable 
personalized in-situ printing based on the wound, Zhao et al. [182] 
described an adaptive multi-DoF in situ bioprinting robot (Fig. 11a). 
Similarly, after 4 weeks of cultivation, the wounds healed to natural 
skin, exhibiting a complete skin structure including HFs (Fig. 11b). 
In-situ printing can meet personalized needs, while 3D-printed 
cell-loaded composite scaffolds can meet standardization re
quirements. Kang et al. [239] printed gelatin and alginate saline gel 
containing fibroblasts, HUVECs, DPCs, and EpSCs into composite scaf
folds in sequence. Due to the appropriate layered structure of the scaf
fold and the dot bioprinting of DPCs, the HF regeneration at the wound 
site of nude mice shows the correct directionality. The above studies 
focus on HF regeneration through wound repair using 3D bioprinting. 
However, creating HFs in the laboratory is still a daunting challenge.

3D printing technology can mimic the structure of HFs, fabricate 
biomimetic HFGs, and provide a foundation for HF transplantation. 3D 
bioprinted HFs are generally in a semi-mature state that needs to be 
transferred to the subcutaneous area for further development. 
Embedded 3D printing can simulate forming HF-like structures by 
printing seed cells into matrix materials and cultivating them [240]. 
Similarly, Motter et al. [241] printed DPC and HUVEC spheres in the 
dermis gel layer and cultured them to form HF-like structure closely 
resembling natural skin tissue. Moreover, Abaci et al. [22] used 3D 
printing to prepare plastic molds for creating a density-adjustable 
microporous array in gel (Fig. 11c–d). When transplanted into nude 
mice, human skin constructs could be formed by DPCs, fibroblasts, KCs, 
and HUVECs in gel micropores could induce hair growth (Fig. 11e–f). 3D 
bioprinting can also be used to prepare HF grafts in specific directions. 
Nanmo et al. [23] employed 3D bioprinting to fabricate ordered 
millimeter-sized HFG-like grafts. They utilized two collagen droplets 
containing MSCs and EpSCs, positioned next to each other and printed 
on surgical suture guides for culturing. These grafts were then trans
planted into the skin of nude mice, resulting in the correct hair direction 
(Fig. 11g–h). 3D printing has the characteristics of high precision and 
repeatability, making it very suitable for HF engineering.

6. Conclusion and prospect

The constraint of hair follicles is attributed to their predetermined 
quantity during embryonic development. Developing tissue-engineered 
hair follicles to overcome constraints on the necessary follicle count 
serves two significant objectives: 1) establishing a model for funda
mental research on hair follicles, and 2) mitigating the scarcity of fol
licles for hair restoration in populations affected by hair loss.

The primary method for obtaining initial seed cells is still the 
extraction from HF tissue [242–244]. However, these cells gradually 
lose their hair growth-inducing ability during in vitro culture. Opti
mizing the culture environment and using 3D techniques can improve 
that, but restoring their hair-inducing ability remains challenging. On 
the other hand, the current research primarily focuses on animal models. 
The positive regeneration effects observed in animal models remain 
unpredictable in humans. Leng et al. [245] transplanted cell mixtures 
into punch biopsy wounds on the backs of nude mice. They found that 
the efficiency of hair follicle formation using human cells was signifi
cantly lower than that observed with mouse cells. HF acts as a regen
erative system with self-renewal capacity, where cells respond to 
biological signals [246]. Various signals play a role in either promoting 
or inhibiting hair growth and regeneration cycles. Targeting regulating 
the signals could trigger compensatory signals to collaborate and 
maintain HF formation and balance. Proper signals could drive the seed 
cells to form the HF structures, while signal dysregulation would lead to 
disease [247,248]. It is worth considering that research on various 
biological signals remains relatively independent; however, the biolog
ical signals involved in hair follicle regeneration form a complex 
network centered around the Wnt signaling pathway. How to precisely 

regulate the behavior of stem cells through alterations in biological 
signals is an area where research remains unclear.

Biomaterials fulfill diverse roles in HF rebuilding, such as developing 
microgel arrays, hydrogel bioinks, cell-loaded microspheres, membrane 
materials, and surface coating. Optimal materials aim to promote seeded 
cell proliferation ex vivo and enhance HF induction efficacy in vivo 
[249]. The components found in dECM are highly suitable for hair fol
licle regeneration. Compared to synthetic polymers, dECMs consist of 
structural proteins and glycosaminoglycans, which enhance intercel
lular interactions and signal transmission within three-dimensional 
structures [250]. Presently, Matrigel is extensively utilized in HF 
research in laboratory settings. Nonetheless, its application and trans
plantation in vivo raise concerns about heterogeneity. Screening or 
designing safer and more effective biomaterials represents a current 
research direction. Among these, natural polymers with well-defined 
compositions, particularly collagen, hold significant potential as sub
stitutes for the extracellular matrix in the future. Depending on specific 
requirements, functional groups can be introduced into natural poly
mers through doping or grafting techniques to enhance the biological 
activity of the material and establish a robust foundation for stem cell 
regeneration within hair follicles.

The commonly used method for assessing the potential of hair fol
licles is transplanting constructed HFGs into subcutaneous or full- 
thickness wounds in animals for further development. This approach 
presents several challenges, including a low survival rate of hair folli
cles, invasive trauma, and complex procedures. The current engineering 
methods also concentrate on effectively preparing HFGs and improving 
the hair follicle regeneration process. Self-assembled cell spheres have 
shown insufficient homogeneity and low production efficiency. Inte
grating microfluidics and 3D bioprinting holds promise for enhancing 
the fabrication of HFGs, posing new opportunities in this field [251]. 
However, constructing mature hair follicles with full life activity ex vivo 
remains a significant challenge. Under optimal in vitro culture condi
tions, mature hair follicles can grow to a maximum length of 3 mm, 
which is still significantly less than the growth potential of hair follicles 
in the organism itself [82]. It would be an alternative strategy that 
integrating the micromachining, including microfluidics with 3D 
printing, will boost hair follicle regeneration.

This review summarizes a basic description of stem cells, signaling 
regulation, materials and methods in HF engineering, and further re
views the accelerated regeneration strategies of tissue-engineered HFs 
by considering these components. It is believed that through further 
research on the process of HF regeneration and circulation, the 
advancement of diverse techniques for acquiring seed cells, the identi
fication of biocompatible and bioeffective materials supported by 
advanced technology, and the simulation of in vivo regeneration pat
terns, the creation of customized HFs will soon be achievable.
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