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This study aims to systematically reveal the changes in protein levels induced by regular

exercise in mice with ischemic-induced heart failure (HF). Aerobic exercise training

for the ischemic-induced HF mice lasted for 4 weeks and then we used the liquid

chromatography-mass spectrometry method to identify and quantify the protein profile

in the myocardium of mice. As a whole, 1,304 proteins (597 proteins up-regulated;

707 proteins down-regulated) were differentially expressed between the exercise group

and the sedentary group, including numerous proteins related to energy metabolism.

The significant alteration of the component (E1 component subunit alpha and subunit

beta) and the activity-regulating enzyme (pyruvate dehydrogenase kinase 2 and pyruvate

dehydrogenase kinase 4) of pyruvate dehydrogenase complex and poly [ADP-ribose]

polymerase 3, a nicotinamide adenine dinucleotide(+)-consuming enzymes, was further

verified in targeted analysis. Generally, this proteomics profiling furnishes a systematic

insight of the influence of aerobic exercise on HF.

Keywords: aerobic exercise, mice, myocardial infarction, heart failure, proteomics

INTRODUCTION

With the increase of life-expectancy and underlying risk factors, heart failure (HF) is emerging
as a major public health issue with the prevalence estimated to be 56 million patients worldwide
(1). In the past few decades,pharmacotherapeutics has made great progress for HF from initial
neuro-hormonal blockade of the cardiovascular system to additional neurohormonal regulation,
as well as some recent anti-hyperglycemic drugs. However, the prognosis of HF patients remains
less satisfactory. It is a challenge that the reductionist approach in this high clinical heterogeneity
disease is due to the diverse therapy responding and treatment intolerance (2). Further multivariate
therapeutic interventions are essential to improve the clinical outcomes of HF patients.

There is strong evidence that cardiac rehabilitation, especially the achievable non-
pharmacological intervention training, could improve functional ability, relieve symptoms as
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GRAPHICAL ABSTRACT | The heart failure model was induced by myocardial infarction in male C57BL/6N mice and then the mice with established HF were

randomly assigned to the sedentary group or the exercise group in the 12-lane treadmill for 4 weeks. Myocardium samples of both exercise groups mice and

sedentary groups mice were harvested, respectively. The LC-MS method was adopted for identification and quantification of the protein expression profile in the

myocardium of mice. The retrieved protein peak area was used for subsequent statistical analysis. With the predetermined criterion (P < 0.05; fold change >2 or

<0.5), 1,304 differentially expressed proteins were detected between the exercise group and the sedentary group, among which 597 proteins were up-regulated after

exercise training and 707 proteins were down-regulated. Further targeted analysis was conducted to verify the expression changes in several key components of

mitochondrial metabolism identified in the preliminary LC-MS analysis. HF, heart failure; LC-MS, liquid chromatography-mass spectrometry; DEP, differentially

expressed protein; PRM, parallel reaction monitor.

well as reduce hospitalization, mortality, and ejection fraction
for HF patients (3–7). Given the significant effectiveness and
safety, training in the management of HF patients has been
an alternative recommendation by authoritative guidelines (8,
9). Recently, more clinical trials began to focus on exercise
intervention in different HF populations. For example, among
HF patients with preserved ejection fraction, exercise training
also yielded a beneficial effect on cardio-respiratory fitness and
quality of life (10, 11) and the TOPCAT study further suggests
that higher levels of physical activity have the potential to reduce
the risk of adverse outcomes, which may attribute to the better
indices of diastolic function (12, 13). In addition, exercise-
based cardiac rehabilitation was also found to be feasible as
an adjuvant treatment option with multiple HF groups with
diverse complications (14, 15). That is to say, exercise may
benefit more different subgroups of HF patients with discrepant
pathophysiological settings, suggesting the multi-target effects of

Abbreviations: HF, heart failure; MI, myocardial infarction; MS, mass
spectrometry; LC, liquid chromatography; GO, gene ontology; DEPs, differentially
expressed proteins; ATP, adenosine triphosphate; NAD, nicotinamide adenine
dinucleotide; PDC, pyruvate dehydrogenase complex; PARP3, poly [ADP-ribose]
polymerase 3; DCA, dichloroacetate.

exercise training on HF condition. Experimental studies on the
molecular mechanism of exercise intervention in HF may bring
new enlightenment to the treatment strategies.

It was shown that several preclinical studies have already
provided molecular insights for the beneficial effect of exercise
in various induced HF animal models. As a whole, exercise
training can ameliorate HF-induced dysfunctions by acting on
the current standard pharmacological care-targeted pathways
(16, 17) or non-pharmacological available targets correcting the
inflammatory response, skeletal myopathy, and vagal outflow
(16, 17). More recently, exercise was demonstrated to activate
cardio-myogenesis in adult mice and the robust cardiomyogenic
response was also observed in the adjacent area of the infarcted
zone (18). Further, evidence indicates metabolic remodeling also
contributes to the exercise-induced cardio-protection (19, 20).
Chicco et al. demonstrated that low-intensity exercise could
restore the mitochondrial energy metabolism via improving
the activity of mitochondrial cytochrome oxidase (COx) and
increasing the cardiolipin biosynthesis in the failing heart
(20). In line with a previous result, it was also found that
the cardiac function in myocardial infarction (MI)-induced
HF model was improved after moderate-intensity exercise via
upregulating mitochondrial respiration and glycolysis in our
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previous work (19). Just as the extensive effects in different HF
groups, exercise training exerts its beneficial effects via different
molecular mechanisms.

However, the abovementioned experimental trials were
conducted in diverse animal models and the global alteration
at the molecule level in an individual trial is scarce. Whether
there is a critical target responsible for the effect of exercise
on HF condition remains elusive. To date, no study has
systematically revealed a global view for the alteration of protein
expression regarding the cardiovascular adaptive response to
exercise training in the setting of HF. Hence, in the present study,
we used untargetedmass spectrometry (MS)-based proteomics to
explore the moderate-intensity aerobic exercise-induced changes
in expression level of proteins in mice with ischemic HF, aiming
at a comprehensive understanding on the molecular basis for
exercise-induced regulation of HF.

METHODS

Experimental Animals and Models
In this study, only the male mice were used to avoid possible
interference on exercise response from estrogen. Male C57BL/6N
mice (21–25 g; 8–10 weeks) were purchased from Beijing Vital
River Laboratory Animal Technology Co., Ltd. All experimental
mice were treated in a uniform environment (22◦C constant
temperature; 12/12-h light/dark cycle; standard laboratory chow
and tap water). The experimental procedures of animals strictly
comply with the U.S. National Institutes of Health-published
Guide for the Care and Use of Laboratory Animals (NIH
publication no. 85–23, revised 1996). All experiments involving
animals were reviewed and approved by the animal ethics
committee at Zhongshan Hospital, Fudan University, China.
Mice were subjected to either a surgery by ligation of the left
anterior descending artery to induce MI and subsequent HF or
sham surgery as previously described (21). All survived mice
had echocardiography performed 1 week after surgery and mice
with reduced left ventricular ejection fraction (EF<40%) were
regarded as established HF. Then the mice with established HF
were randomly assigned to sedentary group or exercise group. In
addition, the same number of non-HF mice were also randomly
divided into exercise groups and sedentary groups as controls.

Aerobic Exercise Training and Materials
Preparation
The 12-lane treadmill was utilized to conduct aerobic exercise
1 week after MI surgery. The first 3 days were the adaptative
process of the exercise training in treadmill for mice (10m/min; 1
h/day). After the adaptative process, regular exercise began at the
fourth day and last 4 weeks (15 m/min; 1 h/day; 5 days/week).
Mice that did not run in the treadmill were gently pushed and
those manifesting the exhaustion condition (i.e., mice did not
follow the running protocol even after 10 times gently push) were
taken away from the treadmill to rest. The exercise capacity of all
mice was tested by increasing the treadmill speed with a gradient
of 5 m/min until exhaustion condition at the last training and
the total running distance until exhaustion was recorded. Cardiac
function of all mice was further tested by echocardiography

after the exercise training and test process. Then, all mice were
euthanized, and organs were dissected and rapidly frozen in
liquid nitrogen.

Sample Preparation for Mass
Spectrometry-Based Quantitative
Proteomic Analysis
The samples were combined, shredded in phosphate buffer saline,
and ground with liquid nitrogen to mix. The lysate (7M urea,
2M thiourea, 0.1% phenylmethanesulfonyl fluoride-a protease
inhibitor, 65mM dithiothreitol [DTT]) was added at a ratio
of 5:1 (lysate volume: sample weight) and then suspended and
cracked on ice for half an hour. Next, samples were centrifuged
at 12,000 g for 15min. The supernatant was extracted, and the
protein content was determined by the Bradford method. Two
hundred microgram protein dissolved in lysate was taken to react
with 10mM DTT at 37◦C for 1 h, 20mM iodoacetamide in the
dark at room temperature for 0.5 h and 4 times the volume of ice
acetone for overnight precipitation at −80◦C. The supernatant
was extracted after centrifugation at 12,000 g for 15min and
resuspended with the 200 UL 50mM ammonium bicarbonate.
Trypsin was added at 1:50 for enzymolysis overnight at 37◦C,
whichwas terminated when the final concentration of formic acid
was added to 5%. Finally, the final samples were desalted with the
Sepak desalination column (Waters, U.S.) and prepared for mass
spectrometry analysis.

Inverse Separation at High pH
A 100-ug protein was extracted for high pH 2D separation
on chromatographic column (BEH C18,300 Å, 1.7 um, 2.1mm
× 150mm; Waters, U.S.) and concatenated into 20 fractions,
which were finally combined into 4 fractions. Mobile phase A is
water with 5mM ammonium formate (pH 10.3), and B phase
is acetonitrile. Within 20min, B phase increased linearly from
5 to 45%. The fractions were lyophilized and redissolved in an
aqueous solution of 1‰ formic acid.

The Chromatographic Conditions
We performed the second-dimensional separation using nano
Elute liquid chromatography (LC) system (Bruker Daltonics). A
250 mm×75 um column (Inopticks) was employed, in which the
mobile phase A and B were water and acetonitrile of 1‰ formic
acid, respectively. Peptide separation was conducted at a flow rate
of 300 nL/min within 90min. The mobile phase B concentration
increased from 2 to 22% in the first 45min, followed by an
increase to 37% within 5min and another increase to 80% within
5min before the last 5min for maintenance rinsing. A 200-ng
peptide fragment was used for LC-MS analysis.

Mass Spectrometry Conditions
All fractions were analyzed by a hybrid trapped ion mobility
spectrometry (TIMS) quadrupole time-of-flight mass
spectrometer (TIMS-TOF Pro, Bruker Daltonics) using a
nano electrospray ion source with a scanning range of 100–1,700
m/z and a trip range of 0.7–1.3 VS/cm2. The collection time of
a single cycle was 1.16 s comprising 1MS scan and 10 PASEF
secondary scans. The intense threshold is 5,000 and we set the
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accumulation and release time as 100ms, ion source voltage as
1,500V, the auxiliary gas as 3 L/min, and the temperature of the
ion source as 180◦C.

Data Analysis
The data were analyzed by Peaks Online software (Bioinformatics
Solutions, Inc.) with the mouse database downloaded from
SwissProt (17,046 proteins, 20,200,820 download). The MS1
error was 15 ppm, the MS2 error was 0.05 Dalton, and
the trypsinase was set at half enzyme digestion. Carbamido-
methylation protein C-term was set as fixed modification and
acetylation (protein N-term), oxidation (M) and deamidation
(NQ) were set as variable modification. The retrieved protein
peak area was used for subsequent statistical analysis.

Statistical Analysis
Proteins with an overall missing value of more than 50% are
removed, and the remaining blank values are filled with a
random number between 0 and the minimum area. T-test and
fold-change values of proteins were used to screen differential
proteins, and the GO (gene ontology) was analyzed using R
package clusterProfiler, version 3.16.1.

Verify the Differentially Expressed Proteins
To verify the up and down regulated proteins, we use the
prmPASEF method based on the timsTOF Pro mass spectrum
(22). For each protein, we choose a unique and high scored
peptide to perform the prmPASE experiment; then check the
peptide areas manually, and the areas are exported to plot
the histogram.

RESULTS

Study Overview
Aerobic exercise training for the ischemic-induced HF mice
lasted for 4 weeks, and then myocardial samples of both the
exercise group and sedentary group were harvested, respectively.
Significant improvement in cardiac function was observed in the
HF-exercise group compared with the HF-sedentary group as
has been demonstrated in our preliminary work, including EF,
fractional shortening, and exercise endurance (19). All samples
were pre-separated by high pH reverse phase chromatography
after enzymolysis, and each group of samples was finally
combined into four fractions. The LC-MS method was adopted
for further identification and quantification of the protein
expression profile in the myocardium of mice. As a result, a
total of 6,297 proteins were steadily identified in this experiment,
among which proteins with missing values greater than 50%
were directly deleted and the remaining blank values were filled
by KNN algorithm, finally retaining 4,260 proteins for further
differential analysis (Supplementary Table 1).

Evaluation of the Proteomic Results
Reliability of the LC-MS results was evaluated. The peak
intensity distribution of samples was exhibited in Figure 1A.
We observed that the intensity distribution of 4,260 identified
proteins spanning 6 magnitude orders,which was almost similar

and balanced among these different groups, indicating the high
reproducibility and sensitivity of the LC-MS method. Moreover,
reproducibility of the results was also evaluated by calculating
the correlation of peak intensity between any two samples among
exercise groups or sedentary groups. As presented in Figure 1B,
the adopted LC-MS method revealed excellent repeatability
and reliability in the identification and quantification of
protein expression profile in different samples with an average
correlation coefficient (R package corrplot, version 0.84) of 0.8.
The exercise group and sedentary group could be exactly divided
according to the hierarchical clustering analysis (Figure 1C)
and principal component analysis (Figure 1D) based on the
quantitative data of identified proteins.

DEPs and Pathway Analysis
We further analyzed the alterations of the protein expression
profile induced by regularly aerobic exercise in ischemic-
induced HF mice following the predetermined criterion (adj.
P < 0.05; fold change > 2 or < 0.5) (23). As a whole,
1,304 proteins were differentially expressed between the exercise
group and the sedentary group (Figure 2A), among which
597 proteins were up-regulated after exercise training and 707
proteins were down-regulated (Supplementary Table 2). GO
analysis (Figure 2B) for the biological process revealed that
these DEPs play crucial roles in material and energy metabolism
especially the mitochondrial-related energy metabolism. Indeed,
the cellular components analysis (Figure 2B) for the altered
proteins further verified that those DEPs were significantly
enriched in numerous structural and functional components
of mitochondria, including the matrix and inner membrane
of mitochondrial, mitochondrial respirasome, mitochondrial
protein complex, and inner mitochondrial membrane protein
complex. Moreover, ribosome and ribosomal subunit, the
molecular machinery for protein synthesis in cells, are also
significantly enriched by differential proteins. Whereas, the
molecular function analysis (Figure 2B) indicated that those
DEPs were associated with oxidoreductase activity (acting on the
aldehyde or oxo group of donors, NAD or NADP as acceptor),
electron transfer activity, and translation regulator activity. In
summary, our research provided a comprehensive elucidation
for the impact of regular exercise on multiple proteins in the
ischemic-induced HF mice model. Metabolic-related pathways
especially the energy metabolism pathways were significantly
regulated by aerobic exercise training in the HF condition, which
usually was characterized by insufficient energy supply.

Verification of the Expression Changes of
Key Proteins Involved in Energy
Metabolism
The previous analysis has found that a variety of altered
proteins is related to mitochondrial metabolism, which is
usually impaired in a state of HF. Further study of the key
molecules in this vital transition may provide more intuitive
mechanism insight into the metabolic remodeling process of HF
induced by aerobic exercise. Therefore, we conducted targeted
MS analysis to verify the expression changes in several key
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FIGURE 1 | The sensitivity and reliability of the LC-MS results. (A) The peak intensity distribution of all samples. (B) The correlation of all samples using the peak

intensity data. (C) Heatmap of differential expressed proteins within the four experimental groups and hierarchical clustering analysis. (D) O2PLS-DA of the four

experimental groups by the identified protein data. LC-MS, liquid chromatography-mass spectrometry; HF+S, sedentary groups of heart failure mice; HF+E, exercise

groups of heart failure mice; N+S, sedentary groups of non-heart failure mice; N+E, exercise groups of non-heart failure mice.

components of mitochondrial metabolism identified in the
preliminary LC-MS analysis. Finally, we observed that the
expression level off our proteins involving the metabolism
of adenosine triphosphate (ATP) and nicotinamide adenine
dinucleotide (NAD) had consistent direction with the discovery
stage (Figure 3). The expression of pyruvate dehydrogenase
complex E1 component subunit alpha (PDC E1α) and subunit
beta (PDC E1β) were both downregulated to almost the
normal level especially the PDC E1β in the exercise-treated HF
mice compared with the sedentary groups. Two phosphorylase
isoforms of PDC, the pyruvate dehydrogenase kinase 2 (PDK2)
and pyruvate dehydrogenase kinase 4 (PDK4), were also
significantly downregulated in the HF compared to the normal
mice and their levels were further downregulated after exercise.
Whereas, there was no significant change observed for the other
PDK isoforms. The verification of NAD(+)-consuming enzymes
exhibited a dramatic increase of poly [ADP-ribose] polymerase
3 (PARP3) after exercise in HF mice but not poly [ADP-ribose]
polymerase 1 (PARP1).

DISCUSSION

Overall, this study provides a global view of exercise-induced
protein-level alterations by LC-MSmethods in the murine model
of MI-induced HF. The MS analysis finally reveals that the
significant shift of 1,304 functional proteins in the adaptive
regulation was induced by exercise in a failing heart. The
differential proteins were mainly related to cardiac metabolism
especially the structure and function of mitochondria. Further
confirmation experiments by targeted MS analysis demonstrated
the significant downregulation of the component (PDC E1α;
PDC E1β) and activity-regulating enzyme (PDK2; PDK4) of PDC
and the significant upregulation NAD(+)-consuming enzymes
(PARP3). Generally, illustration of the cardiac metabolism-
related changes after regular exercise further deepens our
understanding of the cardio-regulation mechanisms of aerobic
exercise in HF, which may prompt better use of this non-
pharmacological intervention and lead to novel alternative
therapeutic targets for HF patients.
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FIGURE 2 | Differentially expressed proteins (DEPs) and the gene ontology (GO) analysis. (A) Volcano plots presented the DEPs between the sedentary group and the

exercise group in HF mice, in which the x axis presented the fold change and the y-axis presented the p-value after adjustment. The dotted lines show selection

threshold (adj. P < 0.05; fold change >2 or <0.5). (B) GO analysis: (1) Top 10 of enriched biological processes of DEPs; (2) Top 10 of enriched cellular components of

DEPs; (3) Top 10 of enriched molecular function of DEPs.

We employed advancedMS strategies with high sensitivity for
this proteomic study. The results were generally reliable based on
the repeatability and accurate discrimination between groups. As
far as we know, this is the first comprehensive study to explore
the effect of exercise on ischemic-induced HF at the molecular
level, although the results need to be further verified in humans.
Many previous studies have shown the beneficial effect of exercise
training on HF, but our understanding of its mechanism is still
insufficient due to some discrete individual mechanism studies.
Through the analysis of global protein alterations, the study
found significant differences in a large number of metabolism-
related proteins after 4 weeks of aerobic exercise, especially
the proteins involving mitochondrial metabolism, hinting at
the crucial role of metabolism remodeling in the regulation of
exercise on HF. PDC, which has a central effect on the control
of anaerobic metabolism or aerobic metabolic flux, has also been
verified to have significant alteration, which suggests that the
aerobic metabolism impaired in HF condition after exercise has
undergone a significant change after regular exercise.

PDC is the gatekeeper enzyme linking glycolysis and the Krebs
cycle by catalyzing the oxidative decarboxylation of pyruvate to
acetyl-CoA in mitochondria and comprises three proportional

catalytic components including pyruvate dehydrogenase (E1),
dihydrolipoamide transacetylase (E2), and dihydrolipoamide
dehydrogenase (E3) (24, 25). PDC is subject to inactivation
at E1α by four PDK isoforms (PDK 1–4) (24). The E2-lipoyl
domains serve as the binding and integrational regions between
the regulatory enzymes and PDC (26). A growing body of
evidence proved the vital role of the adaptive change in the
total level and activity of PDC understanding severely impaired
energy metabolic conditions in a failing heart. Recently, an
elaborate study comprehensively examined the expression of
PDC component proteins and its regulatory proteins found
the increased expression levels of E1α, diminished expression
of PDK4, and indifferent levels of E1β, PDK1, and PDK2
in the myocardia of HF patients compared to the nonfailing
heart, which support sustained adaptive capacity for PDC
to facilitate glucose metabolism facing the energy deficiency
condition in the failing heart (27). Our results in the mice
model are generally similar to this finding in humanmyocardium
except the increased level of E1β, suggesting the consistency
of PDC regulation in different species and further serving
as a confirmation of our results in the HF condition. More
importantly, we further supplemented that exercise could
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FIGURE 3 | The peak area of verified proteins involved in energy metabolism in the sedentary group and the exercise group of HF mice. ODPA, pyruvate

dehydrogenase E1 component subunit alpha; ODPB, pyruvate dehydrogenase E1 component subunit beta; PDK2, pyruvate dehydrogenase (acetyl-transferring)]

kinase isozyme 2; PDK4, pyruvate dehydrogenase (acetyl-transferring)] kinase isozyme 4; PARP3, poly [ADP-ribose] polymerase 3; IDE, insulin-degrading enzyme.

normalize the expression of E1α and E1β to nonfailing condition
and further decreased the expression level of PDK2 and PDK4.
To date, this is the first study revealing the exercise-induced
regulation of PDC activity in the HF condition.

Generally, the complex regulation of PDC includes the
long-term transcriptional regulation of component subunits or
regulatory enzymes and short-term enzymatic activity regulation
by reversible phosphorylation or metabolic intermediates (28).
Our study found the transcriptional regulation of both
component subunits and PDK after exercise. The expression of
four PDK isoenzymes is regulated diversely and the changeable
characteristic of PDK2 and PDK4 have been identified previously
(29). PDK1 is mostly sensitive to low oxygen supply and the
expression of PDK1 is generally activated by hypoxia-inducible
factor 1 (HIF-1) in hypoxic conditions acting to the shunting
of glucose metabolites away from the mitochondria in the
case of ROS accumulation (30, 31). Expression of the other
three PDKs are all directly under the upstream regulation by
the peroxisome-proliferator-activated receptor (PPAR), a critical
factor involved in the control of metabolism (32). While they are
sensitive to various stimulating factors, which, respectively, are
high concentration of NADH and high acetyl-CoA to CoA ratios
for PDK2, high concentration of ATP for PDK3, and energy
deprivation for PDK4 (26–28). In our study, the expression of
PDK1 was unchanged in the exercise-treated group, suggesting
that PDH expression is not significantly modulated by the oxygen
supply condition of myocardium. The expression level of PDK3
is too low to be measured due to the overly high affinity to PDC
(33). The co-instantaneous downregulation of PDK2 and PDK4

suggests the metabolic markers conventionally believed didn’t
exert a driving role in the transcriptional regulation of PDC
considering the elevated ATP level after exercise in the HF mice
(19). By which the expression of PDK2 and PDK4 are regulated
and whether PPAR plays dominant roles deserve future works.
Subunits of PDC will be downregulated when deprivation or
diminishment of energy supplement and vice versa (34). Hence,
a higher level of E1αin HF serves as an adaptive response to the
energy depletion condition and its normalization after exercise
may represent positive feedback after the relative restoration
of energy supplement. Broadly speaking, lower expression of
PDK suggests a higher proportion of active PDC, whereas the
lower E1α and E1β suggest a lower total PDC level. Combined
with our previous findings that the glucose metabolism was
significantly elevated after exercise (19), we speculated that the
total activity of PDC increased after exercise and the rapid control
of PDC activity by PDK-mediated in activation rather the PDC
component proteins play essential roles in the biological process.

PDC has been increasingly studied as a promising
intervention target to restore cardiac function via regulating the
oxidation of glucose (35). A recent study on a PDC stimulator,
dichloroacetate (DCA), proved its therapeutic effects in restoring
the glycolytic flux, maintaining the levels of ATP and improving
cardiac function in the chronically hypoxic hearts by inhibiting
PDK in mitochondria (36). However, the short half-life limits
the clinical practice of DCA in a large scale and diverse drugs
targeted on PDC are needed. Exercise has also been shown
to regulate metabolism by increasing the expression levels of
glycolytic oxidation-related enzymes (37). However, previous
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evidence on the role of exercise on PDC in HF condition is
limited. Our study fills the gaps for the first time and found
that regular aerobic exercise regulates PDC not only by the
expression of its functional subunits but also the activity-related
enzymes. The results enlighten us not only about the molecular
insight of exercise on HF but also about future therapeutic
selection on PDC. Except the nonpharmacological treatments,
more drug targets could be identified by further exploring
delicate molecular mechanism for the expression changes and
multi-target drugs on PDC may also be a selection.

Nicotinamide adenine dinucleotide (NAD) is a cofactor
for energy metabolism in redox reactions. The reduced form
(NADH) contributes most electrons to the respiratory chain and
the oxidized form (NAD+) is commonly shared as a substrate
by several enzymes including the PARPs (38), which play pivotal
roles in cardiac metabolism by the function as metabolic sensors
(39, 40). PARP, as a ubiquitous nuclear protein, is mainly
responsible for DNA repair of injured cells as pathophysiological
activation (41) but can also lead to NAD+ depletion and cell
death (42). Numerous studies have focused on the regulation of
NAD homeostasis in cardiac diseases (43). For example, it was
found that inhibition of PARP1 exerted cardioprotective roles
in post-MI mediated possibly by attenuating cardiac fibrosis,
regulating autophagy or reducing apoptosis in some pre-clinical
trials (44, 45). In line with previous studies, we observed the
decreasing expression level of PARP1 and PARP3 in the MI-
inducedHFmicemodel. The upregulation of PARP1 after regular
exercise was not verified in subsequent experiments. However,
the expression of PARP3 is significantly upregulated in the
confirmatory experiment. Considering the detrimental effects
of the PARP’s over-activation, we can’t exclude the possibility
that the overexpression of PARP3 after exercise will exacerbate
cardiac fibrosis like PARP1 (46). This may be the unusual obstacle
hanging over the beneficial role of regular exercise on HF and we
should treat it seriously.

LIMITATIONS

Major limitations of our study reflect on the exercise training
mode and HF model. More exercise types including resistance
training or wheel-running, diverse training duration, and
intensity may induce different proteomic alterations in the
same HF model. Moreover, repeatability in other nonischemic
HF models of the metabolic alterations in the current study
remains elusive.

CONCLUSION

Our study exhibits the shift of proteomic profiles induced
by aerobic exercise in the setting of MI-induced HF, which
furnishes not only the systematic insight of the influence of

aerobic exercise on HF but also ample molecular targets for
future mechanism’s experiments. The significant changes of
several functional proteins involving energy metabolism support
the pivotal role of metabolic remodeling in the regulation of
exercise on HF. Adaptive regulations of PDC induced by exercise
manifested the downregulating expression of both PDC protein
and PDKs. The seemingly reverse regulation suggests the possibly
dominant role of PDK in the activation of PDC and further work
to elucidate the mechanism of the altered expression response
to exercise treatment in the setting of HF is of great benefit
for the mitochondrial energy regulation and viable novel drug
developments. Further study on the PARP3 is also essential,
especially its effect on the cardiac function.
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