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Experimental Procedures 

Single-cell RNA sequencing. Cryopreserved PBMCs were thawed in plain RPMI 

(HyClone) pre-warmed to 37°C, washed in PBS (HyClone) and resuspended in FACS 

buffer (PBS with 1.5% FBS (Genesee Scientific) and 2.5 mM EDTA (Invitrogen)) for CD4 

T cell enrichment through negative selection (Miltenyi Biotec). Samples were studied in 2 

independent experiments: experiment 1 included 3 pediatric controls, 1 pre-treatment 

MIS-C patient, and 4 post-treatment MIS-C patients; experiment 2 included 1 pediatric 

control, 2 pre-treatment MIS-C patients, and 1 post-treatment MIS-C patient. 

CD4 T cells isolated from each sample were stained with Hashing antibodies targeting 

CD298 and β2 microglobulin (BioLegend TotalSeq™-C anti-human Hashtag, Clones: 

LNH-94 and 2M2) for subsequent sample identification. To that end, cells were spun at 

500 g for 7 min at 4°C, resuspended into 75 μL Fc block (BioLegend, Cat. No. 422302, 

1:20 dilution) and incubated for 10 min at 4°C. 75 μL of hashing antibody (6.7 μg/mL 

working concentration) were then added and samples were incubated for 30 min at 4°C, 

with gentle resuspension midway. Cells were washed three times in Hash Staining buffer 

(BioLegend, Cat. No. 420201) and resuspended in PBS with 0.4% BSA (Sigma, Cat. No. 

A7030) at a concentration of 1,000 cells per μL. Finally, samples were pooled in equal 

ratio (7,500 cells per sample) for further processing, thus limiting technical batch effects 

(1). For the first experiment, the total of 60,000 cells pooled from 8 samples were split 

across two 10x Genomics chip channels, while the second experiment (30,000 cells from 

4 samples) was loaded on one single channel. Cells were encapsulated, barcoded and 

lysed to enable the generation of cDNA libraries for transcriptome and HTO sequencing 



using the 10x Genomics technology (2). Libraries were sequenced on an Illumina 

NovaSeq 6000.  

Single-cell RNA sequencing clustering analyses. Sequencing data from each 10x run 

were processed with the CellRanger pipeline (10x Genomics) for demultiplexing and gene 

alignment (2). The resulting raw count matrices were imported in R (v4.0.2 and above) 

using Seurat (v4.0.3) (3). Data from all 3 runs were merged into one Seurat object. Genes 

detected in <1 per 10,000 cells were filtered out, leaving a transcriptomic coverage of 

21,675 genes. High quality cells with >1400 unique molecular identifiers (UMIs), >700 

genes, a log10(gene) to log10(UMI) ratio >0.84 and mitochondrial to nuclear gene ratio 

<0.08 were retained for downstream analyses. Quality control revealed no significant 

batch effect: similar distributions were observed for the metrics mentioned above across 

different runs and experiments. 

HTO data were normalized using centered log ratios before applying 

Seurat::HTODemux() with the clara method and a positive quantile cutoff of 0.98. 

Doublets and cells with unclear HTO assignment were excluded (Stoeckius et al., 2018). 

Transcriptomic data for the remaining cells were normalized using Seurat:: 

SCTransform() and regressing out the effects of the mitochondrial gene ratio, number of 

UMIs and number of genes detected. Principal components (PCs) were calculated from 

the top 2000 variable features to reduce the data before mapping to a reference PBMC 

dataset using Azimuth (3). Cells mapped to CD4 T cell subsets were retained while 

contaminating lymphocytes were excluded, leaving a total of 29,754 Azimuth-annotated 

CD4 T cells for downstream analyses. SCT normalization and PCs calculation were 

repeated at this stage, to account for the top 3000 variable features after exclusion of 



TRAV, TRAJ, TRBV and TRBJ genes, thereby enabling cell clustering by transcriptomic 

profile independently of clonal identity. To control for inter-sample variability, the data 

were integrated by source sample using Harmony (4). Uniform manifold approximation 

and projection (UMAP) coordinates were then computed from the first 50 components of 

the harmony reduction, and graph-based clustering analysis was run on the first 40 

components using Seurat::FindNeighbors() and Seurat::FindClusters(). A resolution of 

0.6 was retained to define clusters. Seurat-defined clusters were manually annotated, 

with an initial coarse characterization based on the abundance of cells classified as naïve 

versus effector/memory by Azimuth. In parallel, genes significantly upregulated in each 

cluster were identified with Seurat::FindAllMarkers() using the Wilcoxon rank sum test. 

Significance was defined as a p-value of <0.05 and a log2 fold change (LFC) in gene 

expression >0.25. Heatmaps were generated with Seurat::DoHeatmap() applied to the 

scaled SCT data on a random subsample of 100 cells per cluster. To confirm upregulation 

of NF-kB genes, a signature score for the TNFa signaling via NF-kB geneset, sourced 

from the MSigDB Hallmark collection (5), was calculated at the single-cell level using 

Seurat::AddModuleScore(). 

Pseudobulk differential expression analyses (DEA). For pseudobulk differential 

expression analyses (DEA), gene expression level data was aggregated at the patient 

level for each subset of interest, namely Tregs and activated Tconv. For this analysis, we 

considered as Treg any cell assigned to Seurat Cluster 15 (FOXP3-expressing cells) or 

annotated as Treg by Azimuth, which added up to 1,925 Treg cells across all 12 patients. 

Similarly, we considered as activated Tconv any cell assigned to Seurat Clusters 9 to 14 

and annotated as CD4 TCM, CD4 TEM, CD4 CTL or CD4 Proliferating by Azimuth (6,674 



cells). PC analyses of the aggregated transcriptomic data highlighted healthy control 4 as 

a strong outlier among both Treg and activated Tconv subsets, leading us to exclude this 

patient from pseudobulk DEA. Independent pairwise analyses contrasting each of the 3 

patient groups (MIS-C pre-treatment, MIS-C post-treatment and control) were run using 

DESeq2 (version 1.34.0). Log2 fold change (LFC) values were corrected using the 

apeglm shrinkage estimator and used as input for gene set enrichment analyses (GSEA) 

against the MSigDB Hallmark collection, performed with clusterProfiler (version 4.2.2). 

Heatmaps of gene expression for significant genes (defined as an adjusted p-value <0.05) 

were generated from the centered rlog-normalized count data using pheatmap (version 

1.0.12). 

Gene pathway analysis using the Fischer and Monte-Carlo tests. To identify if a 

pathway is relevant to MIS-C or acute-COVID-19 (mild and severe pediatrics patients), 

a comparison between MIS-C or acute-COV19 and the eight databanks described 

above was performed using the following steps below. To minimize false positive and 

artifactual results, all samples were processed using the same pipeline, Variant Explorer 

(VExP) (6), starting with their raw data (Fastq files).  

Step 1 (fastq to vcf file): Raw data were processed to obtain vcf files using the human 

reference assembly 19, BWA (alignment, v0.7.17), PICARD (mark/delete duplicates, 

v2.23.3), SAMTOOLS (variant calling, v1.10), and GATK (multi-sample variant calling, 

v4.1.8.1). When only bam files were available, PICARD (v2.23.3) was used to revert to 

fastq files. Further, ANNOVAR (2020Apr) and custom VExP scripts were used to add 

annotations from relevant genetic databases into each vcf file. 



Step 2 (Variant filtering): Variant analysis was performed in each family based on three 

filtering criteria: first, include variants predicted by ANNOVAR to have a potential 

functional coding consequence, including stop gain or loss, splice site disruption, indel, 

and nonsynonymous. Second, variants are filtered based on allele frequency in control 

populations (gnomAD, ExAC, EVS, 1000GP, and internal data from 8114 unaffected 

individuals from BCH). Heterozygous/hemizygous variants were included if minor allele 

frequency (MAF) was <0.0005 (0.05%) in any database. In comparison, homozygous 

variants were included only if MAF was ≤0.00005 (0.005%) and for compound 

heterozygous models the MAF cutoff was ≤0.01 (1%) with no homozygous variant 

reported in any database. The variants were further prioritized to include those with read 

depth ≥10X, alternative depth ≥5X, allele balance ≥0.20, and deleterious prediction (4 or 

more of 23 softwares, including PolyPhen, SIFT, FATHMM, and CADD). 

Step 3 (gene-enrichment): A gene-enrichment test was performed to identified rare 

pathogenic variants and lost/gain of function (stop-lost/gain, frameshift 

deletions/insertions and canonical splicing sites) using 8,626 pathways from Gene-

Ontology [Gene-Ontology database:  http://geneontology.org/] and KEGG [KEGG 

database:  https://www.genome.jp/kegg/] databases (8,299 and 327 respectively). The 

Frequencies (families) of these rare coding pathogenic variant gene were calculated for 

each pathway using 3 different genetic models: a) Homozygous variants, b) 

Heterozygous variants and c) Homozygous and/or 2 or more heterozygous variants in the 

same gene with a minimum distance between them of 100 base pairs (compound 

heterozygous filters). P values were calculated using 2 methods: traditional Fisher test 



(two sided) and Monte-Carlo method. The expectation for one event (pathway) using 

Monte Carlo method is described by the following formula:  

𝑭𝒌 = 𝟏/𝑵 & 𝑿𝒊𝒌
𝑵$𝟏𝟎,𝟎𝟎𝟎

𝒊$𝟏

 

Where “F” represents the number of families with rare pathogenic variants in the "k" 

pathway (k=1:8,626 pathways) and “X” is a random control group with the same number 

of samples of the comparison group, for MIS-C, 39 samples and for acute-19, 24 samples. 

Independent samples were taken random using a uniform distribution and 4682 samples 

described above. “N” is the total number of independent simulations (10,000 in total). The 

use of independent samples was very important to establish fairness in our tests, so then 

we use only one sample per family (probands). 

Transcriptome Profiling. Treg cells were isolated from either Foxp3EGFPcre or 

Foxp3EGFPCre Rosa26N1c/+ mice by cell sorting. mRNA was isolated using Qiagen RNeasy 

mini kit (Qiagen). RNA was then converted into double-stranded DNA (dsDNA), using 

SMART-Seq v4 Ultra Low Input RNA kit (Clontech). dsDNA was then fragmented to 200-

300 bp size, using M220 Focused-ultrasonicator (Covaris), and utilized for construction 

of libraries for Illumina sequencing using KAPA Hyper Prep Kit (Kapa Biosystems). 

Libraries were then quantified using Qubit dsDNA HS (High Sensitivity) Assay Kit on 

Agilent High Sensitivity DNA Bioanalyzer. 

Gene-level read counts were quantified using feature Counts and the latest Ensembl 

mouse annotation (GRCm38.R101). Raw data were trimmed using Trimmomatic (version 

0.39, default parameters), tool for Illumina NGS data. To identify differentially expressed 

genes, we used 3 algorithms: DESeq2 (version 1.26.0), edgeR (version 3.28.1) and Lima 



(3.42.2) Bioconductor packages with default parameters. Count tables were normalized 

to TPM (Transcripts per Million) for visualizations and QC. Sample clustering, path 

analyses and integration of the results were performed using a custom-made pipeline 

available upon request (Variant Explorer RNAseq). Transcripts were called as 

differentially expressed when the adjusted p values were below 0.05, fold-changes over 

±1.5 and false discovery rate (FDR) were below 0.05. For our path analyses, we tested 

10,715 biological pathways from KEGG and GO annotations. We filtered the results using 

an adjusted p value below 0.001.  

  



Supplementary Figure Legends 

Fig. S1. Single-cell transcriptomic analyses of circulating CD4+ T cells from control, 

pre- and post-treatment MIS-C subjects. A. Uniform manifold approximation and 

projection (UMAP) of normalized and harmonized dataset, split by disease group and 

color-coded by cluster. Clusters were delineated using Seurat. B. Frequencies (%) of 



each cluster among total CD4+ T cells for each patient. C. Heatmap showing expression 

of the top genes in each cluster, as determined using Seurat. D. UMAP split by disease 

group and color-coded by expression of CD69, NFKB1, FOXP3, NUMB, NUMBL and 

NOTCH1 at the single-cell level. E. UMAP split by disease group and color-coded by 

single-cell score for the TNFa signaling via NF-kB gene set (MSigDB Hallmark) and 

NOTCH signaling. F. TNFa signaling via NF-kB gene set mean score, averaged per 

cluster and patient. Multiple T-test comparisons significant at an FDR of 0.05 are indicated 

with a star. G, H. LFC distributions of genes belonging to each of the corresponding 

enriched hallmarks. Gene set enrichment analysis (GSEA) was run against the MSigDB 

hallmark database using ranked LFC derived from pseudobulk DEA of pre-treatment MIS-

C versus control subjects in Tconv .  



 

Figure S2: Flow cytometry analysis of Notches receptors expression on MISC 

Tconv: A-D. Flow cytometric analysis of Notch1 (A), Notch4 (B), Notch2 (C) and Notch3 

(D) expression in CD4+ Tconv cells of healthy control subjects, and patients with 

Kawasaki disease, adult subjects with severe COVID-19, pediatric subjects with mild or 

severe COVID-19 and MIS-C subjects.  



Fig. S3. Notch receptor expression on circulating CD4+ Treg and Tconv cells in MIS-

C. A to D. Flow cytometric analysis, cell frequencies and mean fluorescence intensity 

(MFI) of Notch2 (A,B) and Notch3 expression (C,D) in CD4+ Treg and Tconv cells of 

healthy control subjects, and patients with Kawasaki disease, adult subjects with severe 

COVID-19, pediatric subjects with mild or severe COVID-19 and MIS-C subjects. E-F. 

Flow cytometric analysis, and cell frequencies of co-expression of Notch1 and Notch2 

and Notch1 and Notch4 on circulating Treg cells (E) and Tconv (F) of MIS-C subjects. 



Each symbol represents one subject. Numbers in flow plots indicate percentages. Error 

bars indicate SEM. Statistical tests: *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001 by one-

way ANOVA with Dunnett’s post hoc analysis (A to F ).   



Fig. S4. Characterization of circulating CD4+ Treg and Tconv cells in MIS-C. A,B. 

Flow cytometric analysis and cell frequencies of T cell activation state markers (CD45RA, 

CD45RO) on Tconv (A)  and Treg (B) cells of the respective subject groups. C and D. 

Flow cytometric analysis and frequencies of IFNg and IL-17-expressing Treg (C) and 

Tconv (D) cells of the respective subject groups. Each symbol represents one subject. 

Numbers in flow plots indicate percentages. Error bars indicate SEM. Statistical tests: 

*P<0.05, **P<0.01, ***P<0.001, ****P<0.0001 by one-way ANOVA with Dunnett’s post 

hoc analysis (A to D). 

 



 

Figure S5: Comparison of MISC patients' characteristics based on the country of 

residency: A-B. Cell frequencies of Notch1 and Notch4 expression in CD4+ Treg (A) and 

Tconv cells (B) of MISC from North America or Europe. C,D,E. Cell frequencies of 

mucosally imprinted (CD62l–CD38+) (C), CD22 (D) and ITGB7 (E) on Treg cells form the 

respective groups. F. serum concentrations of IL-1b, IL-6, TNF, IP-10, IFNL1, IL-8, 

IL12p70, IFNa, IFNl2/3, IFNg and IL-10, in the respective patient group subjects. Each 

symbol represents one subject. Error bars indicate SEM. Statistical tests: *P<0.05, 

****P<0.0001 by student-t-test (A and F).   



 

Fig. S6: Characterization of circulating CD4+ Treg in MIS-C with specific mutation 

in NUMB/NUMBL. A to I. Flow cytometric analysis and cell frequencies of Notch1 (A to 

C), N1c expression (D to F) and CD22 (G to I) in CD4+ Treg of healthy control subjects, 

and MIS-C patients with a specific mutation in NUMBleu94phe (A,D,G), NUMBLSer79Ile 

(B,E,H) and NUMBLVal88Met (C, F, I). 



Fig. S7: Attributes of mucosal T cells in MIS-C and Poly I:C-treated 

Foxp3EGFPCreR26N1c/+ mice. A. Flow cytometric analysis and graphical representation of 

mucosal imprinted (CD62L–CD38+) Treg and Tconv cells in healthy control subjects, 

pediatric subjects with mild Covid-19 and MIS-C patients. B. Relative ITGB7 gene 

expression in cell clusters of healthy control subjects (gray) and in MIS-C patients pre 

(purple) and post-treatment (blue) inferred from scRNA-seq analysis. C and D. Flow 

cytometric analysis and graphical representation of colonic T cell (CD3+CD4+), Treg 

(CD3+CD4+Foxp3+) and activated Tconv (CD4+CD44+CD62L–) cells of Foxp3EGFPCre and 

Foxp3EGFPCreR26N1c/+ mice subjected to Poly I:C treatment. E. Flow cytometric analysis 

and graphical representation of colonic CD22+ Treg and Tconv cells of Foxp3EGFPCre and 

Foxp3EGFPCreR26N1c/+ mice subjected to Poly I:C treatment. F. Flow cytometric analysis 

and graphical representation of IFNg and IL-17 expressing Tconv and Treg cells of 

Foxp3EGFPCre and Foxp3EGFPCreR26N1c/+ mice subjected to Poly I:C treatment. Each 



symbol represents one human subject (A), one cell (B) or one mouse (C to F). Numbers 

in flow plots indicate percentages. Error bars indicate SEM. Statistical tests: One-way 

ANOVA with Dunnett’s post hoc analysis (A,C to F) Two-way ANOVA with Sidak’s post 

hoc analysis (B);. *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001.   



 



Fig. S8. Anti-CD22 mAb therapy of Poly I:C-induced disease in Foxp3EGFPCreR26N1c/+ 

mice is B cell-independent. A. Flow cytometric analysis and frequencies of CD22 

expression in Treg cells of Foxp3EGFPCre, Foxp3EGFPCreNotch1c+/– and 

Foxp3EGFPCreNotch1c+/–RBPJ∆/∆ mice. B. Weight indices of Poly I:C treated Foxp3EGFPCre 

and Foxp3EGFPCreR26N1c/+ mice co-injected with anti-CD22 mAb or with an anti-CD20mAb. 

C. Flow cytometric analysis and graphical representation of different splenic B cell 

populations [CD19+, CD19+CD38+IgMhigh, germinal B cells (GL7+), CD19+CD38+IgMlow 

and memory B cells (IgD–CD27+)] of Foxp3EGFPCre and Foxp3EGFPCreR26N1c/+ mice 

subjected to Poly I:C treatment. D. Flow cytometric analysis and graphical representation 

of colonic T cell (CD3+CD4+), Treg cells (CD3+CD4+Foxp3+) and activated Tconv 

(CD4+CD44+CD62L–) of Poly I:C treated Foxp3EGFPCre and Foxp3EGFPCreR26N1c/+ mice co-

injected with anti-CD22 mAb or with an anti-CD20mAb. E. Flow cytometric analysis and 

graphical representation of IFNg and IL-17 expressing colonic Tconv and Treg cells of 

Poly I:C treated Foxp3EGFPCre and Foxp3EGFPCreR26N1c/+ mice co-injected with anti-CD22 

mAb or with an anti-CD20mAb. Numbers in flow plots indicate percentages. Error bars 

indicate SEM. Statistical tests: One-way ANOVA with Dunnett’s post hoc analysis (A, C 

to E), Two-way ANOVA with Sidak’s post hoc analysis (B); *P<0.05, **P<0.01, 

***P<0.001, ****P<0.0001.   



Fig. S9: Poly I:C-induced multiorgan inflammatory disease in 

Foxp3YFPCreNUMBD/D mice. A. Flow cytometric analysis of Numb expression in Tconv 

and Treg cells from Foxp3YFPCre and Foxp3YFPCreNumb∆/∆ mice. B. Cell frequencies and 

MFI of Numb expression on Treg cells from the respective mice. C. Scheme of mouse 

Poly IC treatment. D. Body weight index change and peak weight loss of the Foxp3YFPCre 

and Foxp3YFPCreNumb∆/∆ mice treated with Poly IC alone or in combination with anti-CD22 

mAb. E and F. Flow cytometric analysis and cell frequencies of CD44+CD62L– (E) and 

IFNg+IL-17– Tconv cells (F). G to J. frequencies of Notch1+ (G), MFI of Notch1c+ (H), 

CD22 (I) and a4b7 (J) in Treg cells after Poly I:C treatment alone or in combination with 

anti-CD22 mAb. K to M Flow cytometric analysis and cell frequencies of Gut CD4 (K), of 

CD44+CD62L– (L) and IFNg+IL-17– (M) gut Tconv cells. Numbers in flow plots indicate 



percentages. Error bars indicate SEM. Statistical tests: One-way ANOVA with Dunnett’s 

post hoc analysis (B to H, J to M); *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001.  



Fig. S10. Treg cell instability in Poly I:C-treated Foxp3EGFPCreR26N1c/+ mice. A to C, 

Volcano plot (A), pathway analysis (B) and heat map (C) of gene transcripts of WT or 

CD22+ Treg cells isolated at steady-state from Foxp3YFPCre and Foxp3EGFPCreR26N1c/+mice 

(n=3). D to F, Volcano plot (D), pathway analysis (E) and heat map (F) of gene transcripts 

of CD22– or CD22+ Treg cells isolated at steady state from Foxp3EGFPCreR26N1c/+mice. G, 

MFI of splenic Treg cell markers of WT or CD22+ Treg cells isolated at steady state from 

Foxp3YFPCre and Foxp3EGFPCreR26N1c/+mice. H, Flow cytometric analysis and MFI of 

splenic Treg cell markers of Poly I:C-treated Foxp3EGFPCre and Foxp3EGFPCreR26N1c/+ mice 



co-treated with isotype control mAb or anti-CD22 mAb, as indicated. I, Cell frequencies 

of Helios and NRP1 expression on splenic Treg cells in the groups shown in (H). Each 

symbol represents one mouse. Error bars indicate SEM. Statistical tests: Student-t-test 

(G), One-way ANOVA with Dunnett’s post hoc analysis (H,I);;  **P<0.01, ***P<0.001, 

****P<0.0001.  



Table S1: Clinical characteristics of patient and control subjects. 

 MIS-C 

N=45 

Pedi COVID-19 

N=50 

KD 

N=5 

Pedi Controls 

N=18 

Patient Demographics     

     Age-yrs (median, IQR) 8.0, 5.0-12.4 13.0, 3.0-16.0 7.0, 1.5-10.5 3.5, 1.0-5.8 

     Sex (#, % female) 30, 68% 24, 48% 2, 40% 6, 33% 

     Race & Ethnicity (#, %) 

        White, non-Hispanic 

        Black, non-Hispanic 

        Hispanic 

        Asian 

        Other 

        Unknown 

 

25, 56% 

4, 9% 

9, 20% 

0, 0% 

2, 4% 

5, 11% 

 

43, 86% 

0, 0% 

4, 8% 

0, 0% 

1, 2% 

2, 4% 

 

3, 60% 

0, 0% 

1, 20% 

1, 20% 

0, 0% 

0, 0% 

 

15, 83% 

0, 0% 

2, 11% 

1, 6% 

0, 0% 

0, 0% 

Pre-existing Conditions (#, %) 15, 33% 7, 14%  2, 40%  0, 0% 

BMI kg/m^2 (median, IQR) 19.3, 16.1-25.6 18.6, 16.9-23.8 17.0, 14.6-20.5 - 

Case Definitions/Criteria (#, %) 

     WHO MIS-C  

     CDC MIS-C 

     Complete KD Criteria  

     Incomplete KD Criteria  

 

42, 93%  

45, 100% 

6, 13% 

6, 13% 

 

- 

- 

- 

- 

 

- 

- 

3, 60% 

2, 40% 

 

- 

- 

- 

- 

Clinical Features (#, %) 

     Fever  

     Rash  

 

45, 100% 

22, 49% 

 

36, 72% 

1, 2% 

 

5, 100% 

5, 100% 

 

- 

- 



     Conjunctivitis 

     Mucositis 

     Extremity Changes 

     Lymphadenopathy 

     Shock 

     GI Symptoms 

        Abdominal Pain 

        Vomiting 

        Diarrhea 

     Respiratory Symptoms 

        Cough 

        Dyspnea 

        Hypoxia 

        Infiltrate on Chest Imaging 

     Neurologic Symptoms 

        Headache 

        Anosmia/Dysgeusia  

        Altered Mental Status 

        CN Palsy  

        Meningismus 

        Seizure 

26, 58% 

8, 18% 

12, 27%  

11, 24% 

14, 31% 

43, 96% 

   28, 62% 

   30, 67% 

  24, 53% 

18, 40% 

  4, 9% 

  3, 7% 

  9,20% 

  5,11% 

6,13% 

  3,67% 

  0, 0% 

  1, 2% 

  0, 0% 

  1, 2% 

  0, 0% 

1, 2% 

1, 2% 

1, 2% 

0, 0% 

0, 0% 

10, 20% 

  4, 8% 

  5, 10% 

  3, 6% 

27, 54% 

  19, 38%  

  4, 8% 

  7, 14% 

  9, 18% 

6, 12% 

  3, 6% 

  2, 4% 

  0, 0% 

  0, 0% 

  0, 0% 

  1, 2% 

5, 100% 

3, 60% 

4, 80% 

2, 40% 

0, 0% 

2, 40% 

  1, 20% 

  2, 40% 

  0, 0% 

0, 0% 

  0, 0% 

  0, 0% 

  0, 0% 

  0, 0% 

0, 0% 

  0, 0% 

  0, 0% 

  0, 0% 

  0, 0% 

  0, 0% 

  0, 0% 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

SARS-CoV-2 Testing (#, %)* 

     PCR positive  

     Seropositive  

 

16, 36% 

41, 91% 

 

50, 100% 

6, 12% 

 

0, 0% 

0, 0% 

 

- 

- 



Laboratory Features (median, IQR) 

     Lowest ALC x103/mL 

     Lowest Hgb g/dL 

     Lowest Plt x103/mL 

     Highest CRP mg/dL 

     Highest Ferritin ng/mL 

     Highest D-dimer mcg/mL 

     Highest ALT U/L 

     Highest Cr mg/dL 

     Highest BNP pg/mL 

     Highest Troponin ng/mL 

 

0.91, 0.53-1.35 

10.0, 9.2-10.7 

192, 126-236 

16.0, 7.8-24.0 

502, 305-1134 

3.1, 1.5-6.2 

40, 22-79 

0.47, 0.39-0.61 

1118, 185-2150 

0.02, 0.01-0.11 

 

1.8, 1.22-3.35 

12.6, 10.9-13.8 

269, 207-353 

0.3, 0.1-6.3 

143, 70-326 

0.8, 0.5-1.4 

31, 17-48 

0.54, 0.26-0.68 

34, 13-130 

0.01, 0.01-0.02 

 

0.87, 0.65-2.57 

11.0, 8.2-12.1 

340, 156-414 

5.8, 4.1-21.3 

175, 134-779 

1.7, 1.2-3.9 

50, 41-133 

0.34, 0.27-0.60 

35, 13-422 

0.01, 0.01-0.01 

 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

Cardiovascular Features (#, %)▲ 

     EF <55%  

     Coronary Artery Dilation  

     Coronary Artery Aneurysm  

 

16, 36% 

3, 7% 

3, 7% 

 

- 

- 

- 

 

0, 0% 

0, 0% 

2, 40% 

 

- 

- 

- 

Clinical Interventions (#, %) 

     ICU Admission  

     Vasopressors 

     Supplemental O2  

     CPAP  

     BiPAP  

     Mechanical Ventilation 

 

14, 31%  

9, 20% 

8, 18% 

0, 0% 

5, 11% 

1, 2% 

 

2, 4% 

0, 0% 

8, 16% 

3, 6% 

1, 2% 

0, 0% 

 

0, 0% 

0, 0% 

0, 0% 

0, 0% 

0, 0% 

0, 0% 

 

- 

- 

- 

- 

- 

- 



Immunomodulatory Treatments (#, %)▼ 

     Any Immunomodulatory Treatment 

     IVIG 

     Glucocorticoids  

     Anakinra  

     Other  

 

41, 91%  

37, 82% 

31, 69% 

5, 11% 

3, 7% 

 

3, 6% 

1, 2% 

2, 4% 

0, 0% 

0, 0% 

 

4, 80% 

4, 80% 

2, 40% 

1, 20% 

0, 0% 

 

- 

- 

- 

- 

- 

MIS-C, multisystem inflammatory syndrome in children; pedi, pediatric; COVID-19, coronavirus disease 
2019; KD, Kawasaki disease; yrs, years; WHO, World Health Organization; CDC, Centers for Disease 
Control and Prevention; GI, gastrointestinal; CN, cranial nerve; PCR, polymerase chain reaction; ALC, 
absolute lymphocyte count; Hgb, hemoglobin; Plt, platelet count; CRP, C-reactive protein; ALT, alanine 
aminotransferase; Cr, creatinine; BNP, B-type natriuretic peptide; EF, ejection fraction; ICU, intensive 
care unit; O2, oxygen;  CPAP, continuous positive airway pressure; bilevel positive airway pressure; IVIG, 
intravenous immunoglobulin  

*42/45 MIS-C patients were PCR tested for SARS-CoV-2. 44/45 MIS-C patients underwent serologic 
testing for SARS-CoV-2. All children with acute COVID-19 had PCR testing and 8 had serologic testing. All 
KD patients had PCR and serologic testing.  

▲All children with MIS-C and KD had an echocardiogram preformed. 

▼Immunomodulatory treatment before biosample collection. Pre-treatment samples were obtained 
from 5/33 MIS-C and 1/5 KD patients.  

 

  



Table S2: Antibodies used for flow cytometry  

Mouse antibodies 

Markers company catalogue Clone 

Foxp3 Thermofisher 48-5773-82  FJK-16S 

IFNg Biolegend 505825 XMG1.2 

Helios Thermofisher 47-9883-42 22F6 

CD4 Biolegend 100451 GK1.5 

CD3 Biolegend 100203 17A2 

IL-17 Biolegend 506922 TC11-18H10.1 

CD45 Biolegend 103140 30-F11 

Notch4 Biolegend 128407 HMN4-14 

CD279 Thermofisher 12-9985-82 J43 

CD44 Biolegend 103032 IM7 

CD62L Biolegend 104412 MEL-14 

N1c Biolegend 629106 mN1A 

a4b7 Biolegend 120606 DATK32 

p-Erk Biolegend 369506 6B8B69 

p-PLCg Biolegend 612404 A17025A 

pS6 CST 5316 D57.2.2E 

p-Akts473 BD 560378 M89-61 

p-AktT308 BD 558375 J1-223.371 

CD22 Biolegend 126112 OX-97 

Human antibodies 

CD3 Biolegend 300318 HIT3a, 



CD4 Biolegend 300530 RPA-T4 

Foxp3 Thermofisher 48-4776-42,56-4716-

41 

PCH-101 

Notch1 BD Pharmingen 566023 HMN1-519 

Notch2 BD Pharmingen 742291 HMN2-25 

Notch3 BD Pharmingen 744828 HMN3-21 

Notch4 BD Pharmingen 563269 HMN4-2 

CD25 Thermofisher 12-0259-42 BC96 

CD127 Biolegend 351320 A019D5 

IFNg BD Biosciences 560741 4S.B3 

ITGB7 BD 551082 FIB504 

CCR7 Biolegend 353208 G043H7 

CD38 Biolegend 397114 S17015A 

CD22 Biolegend 302516 HIB22 

CD45RA Biolegend 304134 HI100 

CD45RO Biolegend 304236 UCHL1 

IL17 Biolegend 512315 BL168 

CD62L Biolegend 304810 DREG-56 

Purified anti-CD22 Biolegend 302502 HIB22 

 



Overcoming COVID-19 Investigators 

 (Listed in PubMed, and ordered by U.S. State) 

The following study group members were all closely involved with the design, 

implementation, and oversight of the Overcoming COVID-19 study. 

Alabama: Children’s of Alabama, Birmingham. Michele Kong, MD. 

Arizona: University of Arizona, Tucson. Mary Glas Gaspers, MD; Katri V. Typpo, MD. 

Arkansas: Arkansas Children’s Hospital, Little Rock. Ronald C. Sanders Jr., MD, MS; 

Katherine Irby, MD. 

California: Children’s Hospital of Orange County, Orange County. Adam J. Schwarz, MD. 

California: Miller Children’s & Women’s Hospital Long Beach, Long Beach. Christopher 

J. Babbitt, MD. 

California: UCSF Benioff Children’s Hospital Oakland, Oakland. Natalie Z. Cvijanovich, 

MD. 

California: UCSF Benioff Children’s Hospital, San Francisco. Matt S. Zinter, MD 

Colorado: Children’s Hospital Colorado, Aurora. Aline B. Maddux, MD, MSCS; Peter M. 

Mourani, MD. 

Connecticut: Connecticut Children’s, Hartford. Christopher L. Carroll, MD, MS. 

Connecticut: Yale New-Haven Children’s Hospital, New Haven. John S. Giuliano, Jr., MD. 

Florida: Holtz Children’s Hospital, Miami. Gwenn E. McLaughlin, MD, MSPH. 

Georgia: Children's Healthcare of Atlanta at Egleston, Atlanta. Keiko M. Tarquinio, MD. 

Illinois: Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago. Kelly N. 

Michelson, MD, MPH; Bria M. Coates, MD. 

Indiana: Riley Hospital for Children, Indianapolis. Courtney M. Rowan, MD, MS. 



Iowa: University of Iowa Stead Family Children’s Hospital, Iowa City. Kari Wellnitz, MD; 

Guru Bhoojhawon MBBS, MD. 

Kentucky: University of Louisville and Norton Children’s Hospital, Louisville, Janice E. 

Sullivan, MD; Vicki L.Montgomery, MD; Kevin M. Havlin, MD. 

Louisiana: Children's Hospital of New Orleans, New Orleans. Tamara T. Bradford, MD. 

Maryland: Johns Hopkins Children’s Hospital, Baltimore. Becky J. Riggs,MD; Melania M. 

Bembea, MD, MPH, PhD. 

Maryland: University of Maryland Children’s Hospital, Baltimore. Ana Lia Graciano, MD. 

Maryland: Sinai Hospital of Baltimore, Baltimore. Susan V. Lipton, MD, MPH. 

Massachusetts: Baystate Children’s Hospital, Springfield. Kimberly L. Marohn, MD. 

Massachusetts: Boston Children’s Hospital, Boston. Adrienne G. Randolph, MD; 

Margaret M. Newhams, MPH; Sabrina R. Chen; Cameron C. Young; Suden Kucukak, 

MD; Katherine Kester; Jane W. Newburger, MD, MPH; Kevin G. Friedman, MD; Mary 

Beth F. Son, MD; Janet Chou, MD. 

Massachusetts: Mass General Hospital for Children, Boston. Ryan W. Carroll, MD, MPH; 

Phoebe H. Yager, MD; Neil D. Fernandes, MBBS. 

Michigan: Children’s Hospital of Michigan, Detroit. Sabrina M. Heidemann, MD. 

Michigan: University of Michigan CS Mott Children’s Hospital, Ann Arbor. Heidi R. Flori, 

MD, FAAP. 

Minnesota: University of Minnesota Masonic Children’s Hospital, Minneapolis, Janet R. 

Hume, MD, PhD. 

Minnesota: Mayo Clinic, Rochester. Emily R. Levy, MD. 

Mississippi: Children’s Hospital of Mississippi, Jackson. Charlotte V. Hobbs, MD. 



Missouri: Children’s Mercy Hospital, Kansas City. Jennifer E. Schuster, MD. 

Missouri: Washington University in St. Louis. Philip C. Spinella MD. 

Nebraska: Children’s Hospital & Medical Center, Omaha. Melissa L. Cullimore, MD, PhD; 

Russell J. McCulloh, MD. 

New Jersey: Hackensack University Medical Center, Hackensack. Katharine N. Clouser, 

MD. 

New Jersey: Newark Beth Israel Medical Center, Newark. Rowan F. Walsh, MD 

New Jersey: Bristol-Myers Squibb Children's Hospital, New Brunswick. Lawrence C. 

Kleinman, MD, MPH, 

FAAP; Simon Li, MD, MPH; Steven M. Horwitz, MD. 

New Jersey: St. Barnabas Medical Center, Livingston. Shira J. Gertz, MD. 

New York: Golisano Children’s Hospital, Rochester. Kate G. Ackerman, MD; Jill M. 

Cholette, MD. 

New York: Kings County Hospital, Brooklyn. Michael A. Keenaghan, MD. 

New York: Maria Fareri Children's Hospital, Valhalla. Aalok R. Singh, MD. 

New York: The Mount Sinai Hospital, New York City. Sheemon P. Zackai, MD; Jennifer 

K. Gillen, MD. 

New York: Hassenfeld Children’s Hospital at NYU Langone, New York. Adam J. Ratner, 

MD, MPH; Heda 

Dapul, MD; Vijaya L. Soma, MD. 

New York: Stony Brook University Hospital, Stony Brook. Ilana Harwayne-Gidansky, MD; 

Saul R. Hymes, MD. 



New York: SUNY Downstate Medical Center University Hospital, Brooklyn. Sule Doymaz, 

MD. 

North Carolina: University of North Carolina at Chapel Hill, Chapel Hill. Stephanie P. 

Schwartz, MD; Tracie C. 

Walker, MD. 

Ohio: University Hospitals Rainbow Babies and Children's Hospital, Cleveland. Steven L. 

Shein, MD; Amanda 

N. Lansell, MD. 

Ohio: Nationwide Children’s Hospital, Columbus. Mark W. Hall MD, FCCM. 

Ohio: Cincinnati Children’s Hospital, Cincinnati. Mary A. Staat, MD, MPH. 

Pennsylvania: Children’s Hospital of Philadelphia, Philadelphia. Julie C. Fitzgerald, MD, 

PhD, MSCE; Jenny L. 

Bush RN, BSN; Ryan H. Burnett, BS. 

Pennsylvania: Penn State Children’s Hospital, Hershey. Neal J. Thomas, MD, MSc. 

Pennsylvania: St. Christopher’s Hospital for Children, Philadelphia. Monica L. Koncicki, 

MD. 

Pennsylvania: UPMC Children’s Hospital of Pittsburgh. Ericka L. Fink, MD, MS; Joseph 

A. Carcillo, MD. 

South Carolina: MUSC Children’s Health, Charleston. Elizabeth H. Mack, MD, MS.; Laura 

Smallcomb, MD. 

Tennessee: Monroe Carell Jr. Children’s Hospital at Vanderbilt, Nashville. Natasha B. 

Halasa, MD, MPH. 

Tennessee: Le Bonheur Children’s Hospital, Memphis. Dai Kimura, MD. 



Texas: Texas Children’s Hospital, Houston. Laura L. Loftis, MD. 

Texas: University of Texas Health Science Center, Houston. Alvaro Coronado Munoz, 

MD. 

Texas: University of Texas Southwestern, Children’s Medical Center Dallas, Dallas. Mia 

Maamari, MD; Cindy Bowens, MD, MSCS. 

Utah: Primary Children’s Hospital, Salt Lake City. Hillary Crandall, MD, PhD. 

Washington: Seattle Children’s Hospital, Seattle. Lincoln S. Smith, MD; John K. McGuire, 

MD. 

CDC COVID-19 Response Team on Overcoming COVID-19: Manish M. Patel, MD, MPH; 

Leora R. Feldstein, PhD, MSc; Mark W. Tenforde, MD PhD; Ashley M. Jackson MPH; 

Nancy Murray MSc; Charles E. Rose, PhD. 
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