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In pediatric Hodgkin lymphoma (HL), the inability of the cytotoxic

microenvironment induced by EBV presence to eliminate tumor cells could

reflect the fact that the virus might be able to induce the expression of

exhaustion markers to evade an immune response. Therefore, the expression

of exhaustion markers in pediatric EBV–associated HL was evaluated. A balance

between cytotoxic GrB and Th1 Tbet markers with regulatory Foxp3 was proved

in EBV+ cases. In addition, exclusively in EBV-associated cHL, a correlation

between PD-1 and LAG-3 expression was observed. Furthermore, those cases

also displayed a trend to worse survival when they expressed LAG-3 and inferior

event-free survival when both PD-1 and LAG-3 molecules were present.

Therefore, even though a cytotoxic and inflammatory environment was

supposed to be triggered by EBV presence in pediatric cHL, it seems that the

virus may also induce the synergic effect of inhibitory molecules LAG-3 and PD-

1 in this series. These observations may reflect the fact that the permissive and

exhausted immune microenvironment succeeds to induce lymphomagenesis.
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Introduction

Classic Hodgkin lymphoma (cHL) is unique among lymphoid malignancies due to

the chemokine and cytokine production by Hodgkin–Reed–Sternberg (HRS) tumor cells,

which, in turn, delineates a complex microenvironment of non-tumor cells. The

microenvironment consists of both innate and adaptive immune cells (1).
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The microenvironment in cHL is also modulated by the

presence of the Epstein–Barr virus (EBV) (2). In adult patients

with cHL, the presence of Tregs is more pronounced in the

microenvironment of EBV+ cases, along with CD4+ Th2 cells,

CD56+ NK (Natural Killer) cells, and cytotoxic CD8+ T cells

expressing GrB and TIA (3). In pediatric cHL, EBV+ cases

displayed a cytotoxic/Th1 profile, characterized by higher

numbers of CD3+, CD8+, TIA1+, and TBET+ lymphocytes (4).

In our pediatric population, EBV-associated lymphomas are

significantly increased in children younger than 10 years (5). In

both EBV+ diffuse large B-cell lymphoma (DLBCL) and cHL,

viral presence is associated with an increase in cytotoxic GrB+

cells (6). However, cytotoxic cells may be unable to eliminate

tumor cells since persistent antigenic stimulation leads to T-cell

exhaustion, which expresses high levels of inhibitory receptors,

including programmed cell death protein1 (PD-1) and

lymphocyte activation gene 3 protein (LAG-3) (7). Exhausted

T cells express high levels of inhibitory receptors and produce

less effector cytokines and lose the ability to eliminate cancer (7).

Therapeutic immune checkpoint blockade has shown

outstanding efficacy in restoring effector T-cell function at the

microenvironment (8).

In cHL, HRS cells exhibit a high expression of PD-1 ligands

(PDL-1) on their surface, but PDL-1 expression was also

described on tumor-associated macrophages. PDL-1 in both

malignant and non-malignant cells engage PD-1+ tumor-

infiltrating T cells, drive their exhaustion, and, as a result,

inhibit the immune responses in cHL (8). PD-1 includes both

an immunoreceptor tyrosine-based switch motif (ITSM),

essential for the transmission of inhibitory signals, and an

immunoreceptor tyrosine-based inhibitory motif (ITIM). After

ligation with its ligands, both PD-1 motives become

phosphorylated, which consequently leads to the depression of

various intracellular signaling pathways (9). CD4+ T

lymphocytes, including PD-1+ ones, are enriched in proximity

to HRS cells, forming rosettes in a fraction of cHL samples (10).

Increased PD-1+ tumor-infiltrating lymphocytes (TILs) have

been associated with a poorer prognosis in cHL patients (11).

LAG-3 is expressed by several cell types, like T, NK, B, and

dendritic cells, and it interacts with MHC class II, playing a

negative regulatory role and suppressing T-cell function (12).

LAG-3 expression is frequently found in the surrounding

immune infiltrating cells. They seem to be higher in regions

adjacent to the malignant cell, have Treg-like features (13), and

interact essentially with MHC-II expressed by tumor- or

antigen-presenting cells to trigger inhibitory signaling that

suppresses T-cell function (14). Furthermore, LAG-3 acts

synergistically with PD-1 and/or CTLA-4 to negatively

regulate T-cell expansion (15). EBV latency III–transformed B

cells exhibit strong immunoregulatory properties since they

induce regulatory T cells that express PD-1 (16). In EBV-

associated adult and pediatric cHL, PD-1 expression was not
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related to viral presence (17), whereas LAG-3 expression

remains unexplored so far.

In Argentina, the cytotoxic environment was also proved in

EBV+ pediatric cHL (6), which could be counterbalanced by PDL-1

cells at the microenvironment (18). Given that checkpoint blockade

therapymay have relevance in a population with increased pediatric

EBV-associated lymphomas (5), the characterization of the cHL

microenvironment might provide relevant information on the

response to checkpoint blockade therapy. Therefore, the aim of

this study is to further describe the tolerogenic environment in

EBV-associated childhood cHL to establish whether this population

could be targeted by this specific therapy.
Methods

Patients and samples

Formalin-fixed paraffin-embedded (FFPE) biopsy samples

from 35 patients were collected retrospectively, on the basis of the

availability of sufficient material, from the archives at the Pathology

Division, Ricardo Gutierrez Children’s Hospital in Buenos Aires,

Argentina, from 1990 to 2012. The age range was 2–18 years

(median: 9.5 years). The sample was obtained at diagnosis before

treatment. The treatment followed the Grupo Argentino de

Tratamiento de la Leucemia Aguda (GATLA) protocol.

Institutional guidelines regarding human experimentation

were followed, and they were in accordance to the Helsinki

Declaration of 1975.The Ricardo Gutierrez Children Hospital

Ethics Committee approved the study, and all the patients’

guardians gave informed consent for the study.
EBER in situ hybridization

In situ hybridization for EBERs (Epstein Barr virus encoded

RNAs) was performed in FFPE tissue sections and assessed using

labeled oligonucleotides with fluorescein isothiocyanate (FITC)

as probes (Ok) according to the manufacturer’s instructions. An

anti-FITC monoclonal antibody labeled with alkaline

phosphatase was used to detect hybridized sites.
Immunohistochemistry

Immunohistochemistry (IHC) for CD4, CD8, Foxp3 (Tregs),

GrB (cytotoxic cells), and PD-1 was performed on FFPE samples as

described (6, 18). In addition, immunohistochemical staining with

primary antibodies for Tbet (Th1 cells) (Santa Cruz Biotechnology,

Texas, USA), CD56 (NK cells) (Abcam), and LAG-3 (Abcam,

Cambridge, UK) was performed to extend previous studies (6,

18). Primary antibodies were detected using the Vectastain-ABC-
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Peroxidase kit, using diaminobenzidine (DAB) as a chromogen.

The numbers of labeled cells were determined using the image

analysis free software Image J. The cells were counted optically

without the use of a plug-in. The results were expressed as positive

cells per area unit (cells+/mm2).

Viral LMP1 (latent membrane protein 1) expression in EBERs+

tumor cells was assessed with monoclonal antibodies CS1-4 (Dako).

IHC detection of the primary antibody was carried out using a

universal streptavidin–biotin–complex peroxidase detection system

(UltraTek HRP Anti-Polyvalent Lab Pack, ScyTek, Utah, USA),

according to the manufacturer’s instructions.
Statistical analysis

Statistical analysis was performed using GraphPad Prism5

(GraphPad Software Inc, San Diego, CA, USA). Categorical

variables were analyzed using Fisher’s exact test. Mann–Whitney

test was used to compare the means between groups in relation to

EBV presence. Correlations between data were determined using

Spearman correlation test. Follow-up for survival was available in 23

patients. For survival analyses related to PD-1 and LAG-3,

expression at the microenvironment was considered as positive

and negative above and below 1% of positive cells (positive cells/

total cells ×100) for each marker as cutoff, respectively. Kaplan–

Meier curves based on the abovementioned cutoff thresholds were

generated, and the statistical significance of each marker was

determined using the log-rank test. All tests were two-tailed, and

p < 0.05 was considered statistically significant.
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Results

Both EBERs and LMP1 expression were observed in 74%

(26/35) pediatric cHL cases (Figure 1, Supplementary Table 1).

No differences between EBV+ and EBV- cases were observed in

CD4, CD8, Foxp3, GrB, and Tbet mean cell counts (p>0.05,

Mann–Whitney test) (Figure 1, Supplementary Figure 1) Even

though it was described in children with cHL from Brazil that

EBV presence in pediatric cHL may trigger a cytotoxic and

inflammatory environment (4), in the current series, this

environment could be counterbalanced by a regulatory milieu,

since in EBV+ cases, a statistical positive correlation between

Foxp3+ cells as a marker of Tregs, with GrB+ ones, as a marker

of cytotoxicity (r=0.706, p<0.0001), was observed. Furthermore,

a statistical positive correlation between Foxp3 and Tbet, as a

marker of Th1 (r=0.536, p=0.002), was also proved. Those

findings were not observed in EBV- cHL cases.

LAG-3 expression at the microenvironment was observed in

57% (20/35) of the cases (Figure 1); 70% (14/20) of LAG-3+

cases were also EBV+, but no statistical difference was observed

in the LAG-3+ mean cell count when EBV+ cases were

compared with EBV- ones (p>0.05) (Supplementary Figure 1).

Concerning PD-1 expression, it was proved in 83% (29/35) of

the cases (Figure 1); 69% (20/29) were also EBV+ but not

statistically associated with PD-1 presence (p>0.05). In

addition, mean PD-1+ cells in EBV+ cases were no statistically

different from EBV- ones (p>0.05) (Supplementary Figure 1).

With the purpose of investigating PD-1 and LAG-3 expression

at the microenvironment with other TIL markers, correlation
FIGURE 1

(A) Nuclear staining of EBERs in Hodgkin–Reed–Sternberg by ISH (in situ hibridization). (B) Membranous staining of CD4 in the microenvironment by
immunohistochemistry (IHC). (C) Membranous staining of CD8 in the microenvironment by IHC. (D) Cytoplasmatic granular staining of GrB in the
microenvironment by IHC. (E) Nuclear staining of Foxp3 in the microenvironment by IHC. (F) Membranous and cytoplasmic staining of Tbet in the
microenvironment by IHC. (G) Membranous and cytoplasmic staining of PD-1 in the microenvironment by IHC. (H) Membranous and cytoplasmic
staining of LAG-3 in the microenvironment by IHC.
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analysis was performed. In the whole series, the LAG-3+ cell count

displayed a statistical positive correlation only with CD8+ cells

(r=0.374, p=0.034). In line with this, the PD-1+ cell number also

showed a trend to a positive correlation with CD8+ cells (r=0.311,

p=0.054), while no correlation was observed with the remaining

markers (p>0.05). Remarkably, LAG-3+ cells showed a statistical

positive correlation with PD-1+ cells (r=0.388, p=0.028) in all

pediatric cHL cases. To further explore the influence of EBV

presence, when this correlation was evaluated exclusively in EBV

+ cases, it remained significant (r=0.518, p=0.011), but it was lost in

EBV- ones (p>0.05) (Supplementary Figure 2). Exclusively in EBV-

pediatric cHL, a statistically positive correlation was demonstrated

between LAG-3+ and Foxp3+ cell counts (r=0.828, p=0.004) and a

trend between the former and CD8+ cells (r=0.663, p=0.083).

Survival analysis to evaluate LAG-3 and PD-1 influence was

performed. In the whole series, neither LAG-3 nor PD-1-positive

expression was associated with worse survival (p>0.05)

(Figures 2A, B). Furthermore, when cases expressing both PD-

1 and LAG-3 markers in the entire series were evaluated, no

influence on survival was also evidenced (p>0.05) (Figure 2).

Given that it seems that LAG-3 and PD-1 were statistically

correlated in EBV+ cases, individual as well as combined

expression was investigated in EBV-associated cases. Even

though cases positive for PD-1 did not exhibit differences in

survival in relation to their negative counterparts (p>0.05)

(Figure 2), LAG-3 expression showed a trend to worse survival

in EBV-associated pediatric cHL, since 5-year survival was 60%

in LAG-3+ versus 100% in LAG-3- ones (p=0.0719) (Figure 2).

Remarkably, in EBV+ cases with LAG-3 and PD-1 coexpression,

5-year survival was 54% in comparison with the 100% observed

in LAG-3-/PD-1-, LAG-3+/PD-1-, or LAG-3-/PD-1+ cases.

Therefore, LAG-3+/PD-1+ expression was associated with

worse survival exclusively in EBV-associated pediatric cHL

(p=0.0195) (Figure 2). Neither PD-1 nor LAG-3 alone or

combined expressions had influence on survival in EBV-

negative cases (Figure 2).
Discussion

Barros et al. previously characterized in EBV+ pediatric cHL

a more intense T-cell infiltrate, with higher numbers of CD3+,

CD8+, TIA1+, and TBET+ lymphocytes (4). However, in the

context of persistent viral infection, persistent stimulation could

induce T-cell functional exhaustion. Even though a cytotoxic M1

polarized milieu was proved (6), our group also described an

increase in PDL-1+ cells exclusively at the microenvironment in

EBV-associated cHL (18), which prompted us to further explore

EBV involvement in the process of exhaustion to restrain the

viral-induced cytotoxicity. The correlation between Foxp3+

regulatory T cells with both GrB+ and Tbet+ ones, as a

marker of cytotoxic and Th1 environments, respectively, in

EBV+ cases demonstrates this delicate balance, which seems to
Frontiers in Oncology 04
be in favor of regulat ion, given the fact that the

lymphomagenesis process progresses even in a cytotoxic as

well as proinflammatory milieu.

Concerning immune exhaustion, PD-1 expression was

markedly upregulated on tumor-infiltrating CD8+ T cells and

correlated with reduced cytokines in Hodgkin’s lymphoma,

melanoma, hepatocellular carcinoma, and gastric cancer

patients (7). PD-1 engagement triggers a signaling cascade that

results in TCR signal attenuation that inhibits T-cell activation,

proliferation, and cytokine production. Antigen persistence

leads to ongoing PD-1 expression and eventual T-cell

exhaustion (19). In EBV+ DLBCL patients, the expression of a

few reactive PD1+ TILs was described (20). In line with this, it

was suggested that viral LMP1 oncoprotein may sustain an

immunosuppressive microenvironment by the induction of

immunosuppressive cytokines and the expression of PD-1

(21). In contrast, in our pediatric cHL, EBV presence may not

influence PD-1 expression in TILs.

LAG-3 is expressed on CD4+ and CD8+ T cells, CD4+Foxp3+

Treg, B cells, plasmacytoid dendritic cells, and NK cells, and binds

to MHC class II, and other ligands such as the known ligands that

include galectin-3, LSECtin, alpha-synuclein fibers, and FGL-1 (22).

It was highly expressed on CD4+ or CD8+ T cells with reduced

function at the microenvironment in adult follicular lymphoma

(FL) (23). In line with this, a remarkable expression of LAG-3 was

observed in adult cHL, in the proximity of HRS cells (24), expressed

by Tregs (25). In our series, LAG-3 might tend to be expressed by

CD8+ T cells since a significant positive correlation was observed

between both markers. However, in EBV- cases, LAG-3 could be

expressed by regulatory Foxp3+ cells based on their statistical

correlation. Recently, high LAG-3 expression was also

demonstrated in pediatric cHL from a developed population (26).

In contrast, LAG-3 expression in our series seems to be lower than

that previously described for pediatric and adult cHL, most of them

skewed to EBV-associated cases.

It has recently been shown that LAG-3 synergistically

impacts T-cell function with PD-1. Indeed, LAG-3 was

coexpressed with PD-1 and almost exclusively expressed on

intratumoral PD-1+ T cells in FL (23). In human ovarian

cancer, LAG-3+PD-1+CD8+T cells were more dysfunctional

in IFN-g and TNF-a production compared with LAG-3+PD-

1- or LAG-3-PD-1-CD8+subsets (7). The joint expression of

both exhaustion markers was also related to resistance to PD-1

blockade therapies in a mouse model of lung adenocarcinoma

(27). Furthermore, PD-1+LAG-3+TILs exhibited a more

exhausted phenotype and function than single positive or

negative TILs; the dual blockade of PD-1 and LAG-3 resulted

in tumor regression (7). The expression of LAG-3 and PD-1 at

the microenvironment was also proved by our study, as

suggested by the correlation of both markers. Moreover,

previous studies reported in chronic viral infections the

coexpression of LAG-3 with PD-1 on T cells as a contribution

to the development of exhaustion (28). Of note, the correlation
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https://doi.org/10.3389/fonc.2022.957208
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Oscar et al. 10.3389/fonc.2022.957208
between LAG-3 and PD-1 observed in EBV-associated pediatric

cHL, not proved on the non-associated cases, supports the

notion of viral infection to promote exhaustion. Even though

an increased LAG-3 expression was demonstrated previously in

EBV-associated adult cHL, related to the loss of viral LMP-1

specific T-cell function (16), it was not proved in relation to PD-

1 expression as observed in our series.

Increased PD-1+ TILs have been associated with a poorer

prognosis in adult cHL patients (11), whereas cases positive for

triple positive (EBV+, HRS-PD-L1+, PD-1+ TILs) identified high-

risk cHL patients (29). In our series, PD-1 expression alone does
Frontiers in Oncology 05
not seem to be involved in survival in pediatric cHL. In addition,

no association between the expression of LAG-3 and clinical

parameters or outcome was also demonstrated in adult cHL

cases (25). In contrast, in adult patients with FL, LAG-3

expression on intratumoral T cells correlated with a worse

outcome (23). Remarkably, the only report that revealed LAG-3

expression in pediatric cHL exhibited worse event-free survival

(EFS) but in patients with the lowest density of LAG-3 expression

in contrast to those with the highest density of expression that

exhibited better survival (26). In line with this, our pediatric cHL

cases displayed a trend to worse survival when LAG-3 expression
A B C

D E F

G H I

FIGURE 2

Event-free survival (EFS) analysis to PD-1 and LAG-3 expression at the microenvironment. (A) Cases expressing PD-1+cells at the microenvironment
versus PD-1- ones in the whole series. (B) Cases expressing LAG-3+ at the microenvironment versus LAG-3-ones in the whole series. (C) Cases
expressing both PD-1+/LAG-3+ cells at the microenvironment versus PD-1- and/or LAG-3 ones in the whole series. (D) EBV+ cases expressing PD-1
+cells at the microenvironment versus PD-1- ones. (E) EBV+ cases expressing LAG-3+ at the microenvironment versus LAG-3- ones. (F) EBV+ cases
expressing both PD-1+/LAG-3+ cells at the microenvironment versus PD-1- and/or LAG-3 ones. (G) EBV- cases expressing PD-1+ cells at the
microenvironment versus PD-1- ones. (H) EBV- cases expressing LAG-3+ at the microenvironment versus LAG-3- ones. (I) EBV- cases expressing both
PD-1+/LAG-3+ cells at the microenvironment versus PD-1- and/or LAG-3 ones.
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was proved, even in cases with a low percentage of positive cells,

but only in EBV-associated cases. Furthermore, significantly

worse EFS was confirmed when both LAG-3 and PD-1 markers

were expressed in EBV+ cases. These findings may exhibit a

cooperative involvement between EBV on one hand and the

synergistic effect of PD-1 and LAG-3 exhaustion molecules on

the other to promote lymphomagenesis and possibly counteract

the cytotoxic environment previously described in EBV-associated

pediatric cHL (4, 6).

LAG-3 was proposed as a candidate for combination

therapy with PD-1 blockade in adult cHL to restore T-cell

function more efficiently than either one alone (30), whereas in

pediatric patients, the scenario is quite unexplored. Even

though a cytotoxic and inflammatory environment was

supposed to be triggered by EBV presence in pediatric cHL

(4, 6), it seems that the virus may also induce the expression

of inhibitory molecules such as PDL-1 (18), along with the

synergy effect of LAG-3 and PD-1 molecules observed in this

series. These observations may reflect the fact that the

permissive and exhausted immune microenvironment

succeeds to induce lymphomagenesis.
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SUPPLEMENTARY FIGURE 1

Comparison of mean cell count between EBV+ and EBV- cases for (A)
CD8, (B) CD4, (C) Foxp3, (D) GrB, (E) Tbet, (F) PD-1, (G) LAG-3.

SUPPLEMENTARY FIGURE 2

Correlation analysis for LAG-3 with CD8 in total cases, and between PD-1

and LAG-3 in total cases, EBV+ and EBV- cases.
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