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Abstract

Vincristine is a commonly used cytostatic drug for the treatment of leukemia, neuroblastoma

and lung cancer, which is known to have neurotoxic properties. The aim of this study was to

assess the effects of vincristine, injected directly into the dorsal hippocampus, in spatial

memory using the spatial cone field discrimination task. Long Evans rats were trained in the

cone field, and after reaching training criterion received bilateral vincristine infusions into the

dorsal hippocampus. Vincristine-treated animals presented unilateral or bilateral hippocam-

pal lesions. Animals with bilateral lesions showed lower spatial working and reference mem-

ory performance than control animals, but task motivation was unaffected by the lesions.

Working and reference memory of animals with unilateral lesions did not differ from animals

with bilateral lesions and control animals. In sum, intrahippocampal injection of vincristine

caused profound tissue damage in the dorsal hippocampus, associated with substantial

cognitive deficits.

Introduction

Vincristine is a vinca alkaloid obtained from the plant Catharanthus roseus commonly used as

a chemotherapeutic agent in veterinary and human practice, for the treatment of acute lym-

phocytic leukemia, acute myeloid leukemia, Hodgkin’s disease, neuroblastoma, and small cell

lung cancer [1, 2], among others. Vincristine is a neurotoxic chemotherapeutic agent known

to produce sensory and motor, as well as autonomic neuropathies [3]. The toxicity of vincris-

tine is a result of the interruption of the microtubule dynamics, and the induction of mitotic

arrest and apoptosis [4–6]. Disturbance of the microtubule formation stops mitosis, directly

affecting all rapidly dividing cells, such as cancer cells [7]. A recent study assessing the effect of

vincristine on neural tissue concluded that vincristine causes dose-dependent neurotoxicity

through the inhibition of the expression of microtubule-related proteins such as tubulin and

fribronectin, and the downregulation of the gene matrix metalloproteinase-10 [8].
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The present study is a follow-up to a study by Eijkenboom and van der Staay [9], in which

cognition deficits were tested using the Morris water maze (MWM) after bilateral injections of

vincristine into the dorsal hippocampus in rats. In the present study, injections of vincristine

were limited to the dorsal hippocampus because of its involvement in spatial learning [10].

Indeed, there is a wealth of evidence to show that animals with hippocampal lesions have

lower performance in spatial tasks such as the cross-shaped maze [11], radial maze [12] and

the water maze task [13]. Some of the spatial deficits after hippocampal lesions have been

reported to be long-lasting [14].

In the present study, cognition was assessed using the cone field, a complex spatial discrimi-

nation task, which can assess both working and reference memory [15–19]. Importantly, hip-

pocampal lesions in laboratory animals have been shown to affect both working and reference

memory performance [20–24]. Working memory refers to the process whereby information is

temporarily held available for processing [25–27], while reference memory refers to the storage

and use of information over a long period of time [28–31]. The sensitivity of the cone field has

been well established by testing the effect of compounds such as alcohol, biperiden, scopol-

amine, haloperidol, d-amphetamine, donepezil and metrifonate [15–19] on working and refer-

ence memory. Drugs such as haloperidol impaired reference memory, contrary to d-

amphetamine, which impaired working memory [16]. Cognitive disruptors such as scopol-

amine and MK-801 had a dose dependent effect on working memory and a dose independent

effect on reference memory [32], while alcohol and biperiden did not affect either working or

reference memory [15,19]. Cognitive enhancers such as the long-acting acetylcholinesterase

inhibitor metrifonate improved working memory in healthy rats but had not effect on refer-

ence memory [17], while metrifonate was able to antagonize scopolamine working memory

deficits. No differences were observed in working and reference memory in animals that

received the acetylcholinesterase inhibitor donepezil [18]. The cone field task has the added

advantage of providing a test for positively motivated learning behaviour [33], as animals are

eager to find food rewards, contrary to the MWM where learning is negatively motivated, as

animals attempt to escape from the water tank [34].

The aim of this study was therefore to assess the effects of intrahippocampal injection of

vincristine into the dorsal hippocampus, a brain structure implicated in spatial memory, and

to assess the sensitivity of the spatial cone field discrimination task in detecting cognitive defi-

cits caused by hippocampal lesions. We predicted that bilateral intra-hippocampal injections

of vincristine into the dorsal hippocampus impairs spatial memory.

Materials and methods

The study was approved by the Animal Ethics Committee of Utrecht University, The Nether-

lands (DEC 2013.I.04.042), and was conducted in accordance with Dutch laws (Wet op de

Dierproeven, 1996) and the EU directive 86/609/EEC.

Animals and housing

Twenty-four male six-week-old Long Evans rats (RjOrl:LE) were purchased from Janvier Labs

(Saint Berthevin, France) and used in an experiment that lasted 6 weeks. Animals were housed

in pairs in standard Makrolon type IV cages with sawdust bedding (Abedd, Vienna, Austria),

tissue paper and a shelter as enrichment. The animals were housed under controlled climate

conditions (21˚C ± 1˚C, 50–65% humidity), with a radio playing constantly as background

noise. The night/day cycle was reversed (lights off from 7:00–19:00) with red light on during

the dark phase. Food (CRM, Expanded, Special Diet Services, Witham, United Kingdom) and
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fresh tap water were available ad libitum until and during the first week of habituation. All ani-

mals were handled and tested in the same room where they were housed.

Apparatus

The cone field is a dodecagonal open field with a stainless steel floor surrounded by 45 cm

high poly vinyl chloride (PVC) transparent walls (Fig 1). The testing arena can be accessed

through 4 different starting boxes, which have pneumatic hydraulic doors that are operated

through a computer. The arena contains 16 cones, each of 13.5 cm height arranged in a 4 x 4

square, with a food cup inside the top of each cone. A visit to a cone is operationally defined as

a leaning response against the collar at the top of a cone.

The food cups of cones were baited with a 45 mg precision sugar pellet (BioServ dustless pre-

cision pellets, Frenchtown, NJ). Leaning against the top of a cone was registered as cone visit by

activating a capacitive touch sensor; infrared photocells in the food cups detected reward collec-

tion. Cones number 4, 7, 9 and 14 were baited (pattern A), or their 90˚, 180˚, or 270˚ rotation

patterns (B, C, and D) were used during the experiment (see Fig 1. for details). Data were sent

to the connected computer and the software randomly selected the start-box for each trial [19].

To mask odor cues all the cones were baited with two additional-45 mg sugar pellets underneath

the food cup that were inaccessible for the rat. Extra maze cues consisted of: shelves with the

cages housing the rats, a door and a desk with a laptop where the experimenter was always

located during a trial. Data of cone visits, food cup visits, as well as trial duration were collected

via a computer running the operating system Microsoft Windows 7.

Habituation and training

After arrival, the animals were habituated during a period of 1 week, in which they were han-

dled by the experimenter once per day. Ad-libitum food as well as fresh tap water was provided

during this period. The weight of the animals and the weight of the food per cage were

recorded daily, in order to calculate daily food intake.

During the second week, the animals were food deprived to approximately 85% of their free

feeding weight by feeding 5 g food/100 g of body weight. This was done to increase motivation

to search for the food rewards. The feeding schedule resulted in stable weights throughout the

experiment. Animals were trained from Monday to Friday and were fed ad-libitum during the

weekend. On Sunday afternoon, all food was removed again from the food trays. During habit-

uation trials, all cones were baited and some 45 mg sugar pellets (BioServ dustless precision

pellets, Frenchtown, NJ) were scattered on the floor of the apparatus. The trial ended after all

the sugar pellets from the cones were found, or after 10 minutes, whichever event occurred

first. Animals were habituated to the cone field during 7 sessions on 6 consecutive working

days. On the last day of habituation, the rats received two sessions, one in the morning and

one in the afternoon to ensure that all animals searched for the food reward in all the 16 cones.

After habituation each rat was allocated to a fixed pattern out of the 4 configurations (A, B,

C or D, see Fig 1) each containing 4 baited cones [32].

During acquisition, the rats were trained for 60 trials (days 1 and 2: 2 successive trials per

day; day 3 and 4: 3 successive trials per day; day 5 to 7: 5 successive trials per day; day 8: 10 tri-

als (5 successive trials in the morning and 5 in the afternoon); days 9 to 13: 5 successive trials

per day). After surgery, the rats were tested for 8 days with 5 successive trials per day. A trial

started once the animal was placed in the starting box and the door was opened, and ended

once the animal found the 4 sugar pellets or after a period of 3 minutes, whichever occurred

first. The starting position as well as the order in which the animals were tested was

randomized.
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Outcomes measured [35] included:

1. Working memory (WM) ratio, defined as the number of rewarded visits divided by the

number of visits to the baited set of cones. This ratio measure reflects the ability of the rats

to avoid re-visits to cones of the baited set of cones during a trial.

2. Reference Memory (RM) ratio, defined as the number of visits and revisits to the baited

cones divided by the number of visits to all the cones. This ratio measure provides an index

for the ability of rats to discriminate between baited and unbaited cones.

3. Trial duration, defined as the time (s) elapsed between the beginning (opening the door of

the start box) and the end of a trial (finding the last of four baits, or 3 minutes, whichever

event occurred first).

4. First visit latency, defined as the time (s) elapsed between the start of the trial and the first

cone visit.

5. Inter-visit interval, defined as the average time (s) between cone visits.

Surgery

After completion of the 60th training trial, animals were randomly allocated to a treatment

condition: a group receiving bilateral injections of vincristine into the dorsal hippocampus, or

the control group in which a physiological saline solution (0.90% w/v of NaCl) instead of vin-

cristine was injected. In the previous study by Eijkenboom and van der Staay [9], rats injected

with a volume of 1.0 or 2.0 μl at a concentration of 0.55 mg/ml of vincristine presented dis-

rupted acquisition in the MWM, however, lesions caused by 2.0 μl extended to the cortical and

subcortical regions. This led to a second experiment using 1 μl of vincristine at a concentration

of 0.55, 0.18 and 0.06 mg/ml. Although a dose of 0.18 mg/ml did not affect spatial learning in

the MWM, this was selected as the dose of choice because lesions were mainly restricted to the

hippocampus, contrary to the lesions observed with 0.55 mg/ml which also affected cortical

areas.

Fig 1. The conefield spatial discrimination apparatus. The pattern of baited cones used during the habituation sessions, and during the

training and testing phase (A, B, C and D) are depicted. Cone numbers printed in bold and red indicate that they contained bait (slightly

modified from Fig 2 in Bouger & van der Staay, 2005 [32]; reproduced with permission).

https://doi.org/10.1371/journal.pone.0231941.g001
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Due to problems with the initial anesthesia protocol using i.p. fentanyl (0.25 mg/kg; intra-

peritoneally, i.p.) and dexmedetomidine (0.15 mg/kg, i.p.), the following anaesthesia protocol

was used instead: ketamine (75mg/kg; intramuscularly, i.m.) and dexmedetomidine (0.07mg/

kg; subcutaneously, s.c.). After loss of the pedal reflex, animals were transported to the surgery

room where the head was shaved, eye ointment was applied to prevent drying of the cornea

and 8 ml of saline solution was injected s.c. (4 ml on each side of the body) to prevent dehydra-

tion. Subsequently, animals were intubated to maintain anaesthesia with isoflurane in 100%

oxygen. Capnography was used to monitor the animals throughout anaesthesia (LifeSense1

VET Portable Capnography and Pulse Oximetry Monitor) measuring end-tidal carbon dioxide

(EtCO2), fractional inspired CO2 (FiCO2), oxygen saturation (SpO2) and respiration rate.

The head area was sterilised done with Betadine 100 mg/ml. A rectal thermometer was used

to monitor body temperature while animals were positioned in a stereotactic apparatus (David

Kopf Instruments, Tujunga, CA, USA). The scalp was incised, retracted with Backhaus towel

clamps and the head position was adjusted to place bregma and lambda in the same horizontal

plane. Prior to removal of connective tissue from the periosteum 3 mg/kg of the local anes-

thetic lidocaine was applied to the area. Small holes were drilled bilaterally into the skull for

the entry of the needles (30G, 12mm) into the dorsal hippocampus: AP: -3.1mm, ML: 2.0mm

and DV: 3.8mm from bregma. Bilateral injections of 1 μl of vincristine at a concentration of

0.18 mg/ml (i.e., 0.18 μg/hemisphere) were applied to the treatment group, while the control

group received 1 μl of saline solution. Injections were done with a 10 μl Hamilton syringe

(Hamilton, Reno, NV) driven by a Harvard peristaltic pump at an infusion speed of 0.5 μl/

min. Movement of a bubble in the tubing was used to confirm the injection volume. After

infusion, the animals were kept in the stereotactic apparatus for 2 minutes before the needles

were slowly retracted.

Following surgery, the incision was closed with a vicryl suture in a continuous pattern and

anaesthesia was antagonized with atipamezol (0.6 mg/kg) administered i.p.. After surgery, the

animals were transported back to the housing room and were placed in individual Eurostan-

dard Type IV S filter top cages (480 × 375 × 210 mm, floor area1500 cm2; Tecniplast, Milan,

Italy) on top of a heating pad. Postoperative analgesia consisted of buprenorphine (0.05 mg/

kg) at 12-hour intervals for 3 days after surgery and meloxicam (0.2 mg/kg) at 24-hour interval

for 2 days after surgery.

To ensure adequate healing of the wound, rats stayed housed individually in Eurostandard

Type III H filter top cages (425 × 266 × 185 mm, floor area 800 cm2) (Tecniplast, Milan. Italy)

after surgery for a period of one week. Then, animals were reunited with their original partner.

Due to the loss of animals during anaesthesia, two pairs had to be rehoused with an unfamiliar

rat from their same treatment group. One week after surgery, a rat from the vincristine group

presented a convulsion and was hyper-reactive when handled. Two days after the convulsion,

this animal was euthanized, because a humane endpoint, as defined in the approved study pro-

tocol, had been reached.

Histology

Histological verification of the injection site was performed after the completion of the experi-

ment. The animals were decapitated and the brains were rapidly removed and frozen in -80˚C

2-methylbutane and subsequently stored at -80˚C before further processing. Coronal sections

(8 μm) were cut and mounted on Menzel SuperFrost Plus slides (Menzel GmbH & Co, Braun-

schweig, Germany). Tissue was stained with Cresyl Violet, washed with alcohol 100% and fix-

ated with Xylol. Sections were embedded with Entellan1 new (© Merck, Germany) and

coverslipped.
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Control animals (n = 9) presented a normal hippocampal structure (CA1, CA2, CA3 and

dentate gyrus), while the treatment group presented substantial loss of the dorsal hippocampus

tissue with minimal damage to the adjacent areas. Animals within the treatment group pre-

sented unilateral (n = 4) or bilateral lesions (n = 5) with one animal presenting partial bilateral

lesions. Based on histology, the treatment group was divided into 2 subgroups, one containing

all vincristine-injected rats with unilateral hippocampal lesions, the other containing all vincris-

tine-injected rats with bilateral hippocampal lesions (Fig 2). One animal from the treatment

group was left out of the statistical analysis due to problems with collection of the brain tissue.

Statistical analysis

Working and reference memory, trial duration, first visit latency and inter-visit interval were

averaged every 5 consecutive trials to obtain the mean of each trial block. The majority of

acquisition and testing days consisted of 5 trials per day, therefore this was selected as the

number of trials of choice to average for each block. Data were analyzed using the MIXED pro-

cedure in SAS (SAS, version 9.4, SAS Inst. Inc., Cary, NC) with treatment (control, unilateral

and bilateral) and trial block and their interactions as fixed effects. All data were analyzed

using a mixed model for repeated measures for trial blocks. Covariance structures included

unstructured, compound symmetry and autoregressive order one. The structure with the low-

est Schwarz’s Bayesian criterion was selected as the analysis of choice. Trial duration, first visit

latency and inter-visit interval did not follow a normal distribution; therefore, these variables

were log10-transformed. Working and reference memory were analysed untransformed. Data

prior to (trial block 1–12) and after (trial block 13–20) surgery were analyzed separately. The

Fig 2. Panel A shows the extension of the smallest and largest unilateral and bilateral lesions schematically in slides based on the stereotaxic

atlas by Paxinos and Watson (2004). The largest lesions are filled dark grey, the smallest lesions are filled light grey. Across all rats per lesion

group, the rostro-caudal extensions of the unilateral lesions were (largest / smallest: - 2.76 mm–-3.24 mm / -3.12 mm–-3.24 mm), and for the

bilateral lesions (largest/smallest: -2.04 mm–-4.36 mm / -3.00 mm–-3.12 mm). In panel B, representative histological pictures of the different

groups are depicted: left: Control lesion, centre: Unilateral lesion, and right: Bilateral lesion.

https://doi.org/10.1371/journal.pone.0231941.g002
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acute effect of treatment (Vincristine lesion vs. sham lesion) was evaluated by analyzing the

data from block 12 and 13 separately. The PDIFF option in SAS was used as the post-hoc test

to separate the Least Square means. Post hoc tests with Bonferroni correction were performed

where appropriate. Effects were considered statistically significant when P� 0.05.

Results

Working memory

Prior to surgery, the rats improved working memory performance during the course of train-

ing (F11,165 = 6.22, p< 0.0001) similarly in all groups (treatment effect, F2,165 = 0.46, p = 0.63;

treatment ×trial block interaction, F22,165 = 0.36, p = 1.00; Fig 3A), i.e. the three groups showed

similar spatial memory performance before surgery. Surgery affected overall working memory

performance (F2,105 = 5.90, p = 0.0037): the bilateral lesion group showed a lasting lower work-

ing memory performance than the control group, but no differences were observed between

both groups and the unilateral lesion group. No effects of trial block (F7,105 = 0.56, p = 0.79) or

treatment × trial block interactions (F14,105 = 0.76, p = 0.71) were observed after surgery indi-

cating that performance curves were similarly shaped.

Comparison of the last block prior to surgery and the first block after surgery showed no

difference between treatments (F2,15 = 1.42, p = 0.2723), and trends towards an effect of trial

block (F1,15 = 3.46, p = 0.0827) and a treatment × trial block interaction (F2,15 = 3.08,

p = 0.0758).

Reference memory

Prior to surgery, the rats improved reference memory performance during the course of train-

ing (F11,165 = 14.34, p< 0.0001) similarly in all groups (treatment effect, F2,165 = 0.21, p = 0.81;

treatment ×trial block interaction, F22,165 = 0.71, p = 0.82; Fig 3B).

After surgery, reference memory performance was altered (F2,105 = 5.37, p = 0.0060): the

bilateral lesion group had a lasting lower reference memory score than the control group, but

no differences were observed between both groups and the unilateral lesion group, probably

because the performance of the unilateral lesion group lay intermediate between that of the

other two groups. A trial block effect (F7,105 = 2.49, p = 0.0210) was also observed for reference

memory, indicating that post-surgery reference memory performance improved over time,

similarly in all groups (treatment ×trial block interaction, F14,105 = 0.97, p = 0.4858).

Reference memory performance was lower (F1,15 = 17.38, p = 0.0008) in the trial block after

surgery compared to the trial block prior to surgery. No difference between treatments was

found (F2,15 = 1.40, p = 0.2780) and a trend towards a treatment × trial block interaction (F2,15

= 3.08, p = 0.0758).

Trial duration

Prior to surgery, all groups decreased their trial duration across trial blocks (F11,165 = 17.70,

p< 0.0001), however no treatment effect (F2,165 = 0.37, p = 0.69) or treatment × trial block

interaction (F22,165 = 0.72, p = 0.82) was observed (Fig 3C). After surgery no differences were

observed between treatments (F2,105 = 1.97, p = 0.1450), trial blocks (F7,105 = 1.34, p = 0.2399)

or treatment × trial block interactions (F14,105 = 0.66, p = 0.8106).

Trial duration was longer on the trial block after surgery compared to the trial block prior

to surgery (F1,15 = 6.38, p = 0.0233), however no difference was observed between treatments

(F2,15 = 2.13, p = 0.1538) or treatment × trial block interaction (F1,15 = 1.66, p = 0.2235; Fig

3C), indicating an effect of surgery per se.
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Fig 3. Least square means and SEMs of (a) working memory, (b) reference memory, (c) trial duration, (d) inter-visit interval and (e) first visit latency of

rats of control, unilateral and bilateral hippocampal lesion groups.

https://doi.org/10.1371/journal.pone.0231941.g003
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Inter-visit interval

Prior to surgery, all groups decreased their inter-visit interval during the course of training

(F11,165 = 8.60, p< 0.0001) similarly. No treatment effect (F2,165 = 0.73, p = 0.4813) or a

treatment × trial block interaction (F22,165 = 0.97, p = 0.5055) was observed (Fig 3D). Vincris-

tine injections did not affect inter-visit intervals (treatment effect, F2,105 = 0.13, p = 0.8798;

trial block effect, F7,105 = 1.71, p = 0.1133; treatment × trial block interaction, F14,105 = 1.10,

p = 0.3706; Fig 3D).

No effects of treatment (F2,15 = 1.64, p = 0.2267), trial block (F1,15 = 1.02, p = 0.3283) or a

treatment × trial block interaction (F2,15 = 0.07, p = 0.9330) were observed between trial blocks

12 and 13.

First visit latency

Prior to surgery, overall there was a decrease in the latency of visiting the first cone across trial

blocks (F11,165 = 13.25, p< 0.0001). The decrease was similar in all groups (treatment effect,

F2,165 = 0.02, p = 0.9838; treatment × trial block interaction, F22,165 = 1.05, p = 0.4111; Fig 3E),

i.e. the rats increased their speed of starting searching for and collecting food rewards. After

surgery, overall the first visit latency fluctuated across blocks, with blocks 13 and 16 having the

highest latencies. No treatment (F2,105 = 0.17, p = 0.8479) or treatment × trail block interaction

(F14,105 = 0.74, p = 0.7310; Fig 3E) was observed after surgery though.

First visit latency was greater on the trial block after surgery compared to the trial block

prior to surgery (F1,15 = 9.83, p = 0.0068). However, no differences were observed between

treatments (treatment effects, F2,15 = 0.07, p = 0.9321; treatment × trial block interaction, F2,15

= 0.59, p = 0.5643).

Discussion

In the present study, bilateral hippocampal lesions induced by injection of vincristine impaired

reference and working memory performance, while reference and working memory from ani-

mals with unilateral lesions did not differ from bilaterally lesioned and control rats. Reference

memory, but not working memory improved with training after surgery. Thus, vincristine-

induced hippocampus lesions caused cognitive deficits, but the pattern of effects observed was

different for working and reference memory.

The results observed in the present study are similar to studies using other methods to cre-

ate hippocampal lesions. For example, studies assessing ibotenic acid-induced lesions in the

hippocampus prior to training demonstrated that animals with lesions had lower performance

in a cross-shaped maze [36] and in a radial maze [37] compared to control animals. Kainic

acid-induced lesions of hippocampal regions CA1 and CA3 produced deficits in the acquisi-

tion of the water maze task [38]. Similar studies have reported impaired reference and working

memory in animals with hippocampal lesions caused by electrolysis 1 month post-surgery,

and impaired reference memory 6 months post-surgery [39]. As such, using vincristine offers

the opportunity to extend the repertoire of compounds for lesioning hippocampal areas

beyond the use of excitotoxins (e.g. ibotenic acid or kainic acid), or electrolytic lesioning [36–

39]. Pending further validation, rodents with vincristine induced lesions of (subfields) of the

hippocampal formation may be considered as an alternative for animal models of cognitive

deficits. The present study and earlier studies using the Morris water maze task [9] have shown

that these lesions create animals with compromised spatial discrimination performance.

Spatial learning deficits have been previously reported when assessing the effect of different

volumes and concentrations of vincristine injected bilaterally into the dorsal hippocampus [9].

Interestingly, Eijkenboom and van der Staay [9] reported that bilateral lesions induced by
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1.0 μl vincristine at a concentration of 0.18 mg/ml (i.e., the volume and concentration used in

the present study), did not impair acquisition and retention of Wistar rats tested in the MWM.

A likely explanation for the differences observed between studies is the difference in timing of

treatment and the complexity of the spatial orientation task used. In the study by Eijkenboom

and van der Staay [9], vincristine was injected before the start of training, whereas vincristine

in our study was injected after the animals had acquired the task. Furthermore, the conefield

task may be more sensitive to disruption of the functions of the hippocampal formation than

the MWM, perhaps because of its greater complexity.

In the present study, animals were first trained in the task, then received the chemothera-

peutic drug and shortly after were tested. This is different from the majority of research in this

field, in which chemotherapeutic drug treatments are typically applied before training [40–47].

Importantly, fear conditioning studies have reported differences in the effects of hippocampal

lesions when performed prior to or after training [48,49]. Likewise, differences in the forma-

tion of spatial memory in rats that were trained in a complex environment prior to and after

receiving NMDA-induced excitotoxic hippocampal lesions have been reported [50]. Thus, ani-

mals that were trained for as little as 2 weeks prior to hippocampal lesions, developed spatial

memories which were resistant to hippocampal lesions, while animals that received training 3

months after hippocampal lesions, had a similarly impaired performance than animals with

hippocampal lesions with no previous training, suggesting the importance of an intact hippo-

campus for developing a spatial representation of the environment. Similar to a previous study

[50], rats in the present study were trained for a short period (13 days) prior to hippocampal

lesions. Although animals in the previous study [50] had good memory performance, chal-

lenges were observed when the task required flexible use of existing representations. For exam-

ple, if a route was blocked, animals with hippocampal lesions took a longer way to reach the

desired location compared to control rats.

Previous studies have shown that hippocampal lesions do not affect contextual fear condi-

tioning when animals are trained prior to lesions, suggesting that although context learning

requires the hippocampus, context representations also exist outside the hippocampus [51].

Intact anterograde spatial memory has also been reported in rats trained in an open field task,

prior to hippocampal damage [52]. This may explain why the speed of reference memory re-

acquisition seems not to be affected by the surgery in the present study, whereas lesioning

induced a generally lower level of reference memory performance. Thus training prior to hip-

pocampal lesions could have created spatial representations outside the hippocampus, such as

in the anterior thalamic nuclei [53] or the hippocampal-diencephalic-cingulate network [54],

which compensates for the loss caused by the dorsal hippocampal lesions. Importantly, the

prefrontal cortex and the hippocampus have been reported to be involved in spatial working

memory encoding, but they are not critical structures for the maintenance or retrieval of spa-

tial cues [55]. However, working memory during spatial navigation updating is highly depen-

dent on the hippocampus [56], consistent with our finding that a bilateral hippocampal lesion

had a lasting effect on spatial working memory. Testing the animals for a longer period of time

will be needed to clarify if working memory as well as reference memory were permanently or

transiently impaired by the damage of the hippocampal cells produced by vincristine.

Vincristine has been reported to interrupt the microtubule dynamics through the inhibition

of the expression of tubulin and fibronectin and the downregulation of the gene matrix metal-

loproteinase 10 [8] which leads to mitotic arrest and apoptosis [4–6]. Cells in the G1 phase, are

then susceptible to vincristine, which causes cell death. However, cells in the late G1 phase and

early S-phase are unaffected until mitosis, when they will die due to mitotic arrest [57]. The

effect of vincristine on the microtubule dynamics has been reported to affect axonal transport

in the nervous system [58], which has been associated with an axon degeneration program
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consisting of a decrease of axonal nicotinamide mononucleotide adenylyltransferase 2

(NMNAT2) levels, activation of sterile alpha and toll/interleukin-1 receptor motif-containing

1 (SARM1) and depletion of NAD+ followed by axon fragmentation [59]. Persistent working

memory, and transient reference memory deficits observed in this study, are therefore likely

due to the dorsal hippocampus axon deterioration. Importantly, chemotherapeutic drugs that

share the same mechanism of action, can have a different effect in the CNS. For example, col-

chicine and vincristine cause cell death by disrupting microtubule formation, but colchicine

selectively damages dentate granule cells with minimal damage to hippocampal pyramidal

cells, while vincristine damages both types of cells [60]. Spatial learning deficits have been

reported in rats tested in the MWM, after bilateral dentate gyrus injections of colchicine,

which selectively damages dentate granule cells [61]. Therefore, it is not surprising to observe

spatial deficits after bilateral injections of vincristine, which damages all cell types in the target

brain area and adjacent brain structures.

Histological analyses revealed variable lesion sizes within the treatment group; four out of

nine animals of the treatment group presented unilateral instead of bilateral lesions. From the

unilateral lesion group (n = 4), two animals presented total dorsal hippocampus lesions while

two presented partial lesions. In the bilateral lesion group (n = 5) four animals presented total

dorsal hippocampus lesions while one animal presented a partial dorsal hippocampus lesion.

The reason for these variable lesions is unclear, but could include practical issues, such as prob-

lems with vincristine infusions, or relative resistance of these rats to vincristine-induced neu-

rotoxicity. Based on our results we could hypothesize that a unilateral intact hippocampus can

compensate for the loss of the affected hippocampal structure as no differences were observed

between unilateral and control animals. However, no differences were observed between the

unilateral and the bilateral lesion group to support this hypothesis, likely because the perfor-

mance of the unilateral lesion group lay intermediate between that of the other two groups

(control and bilaterally lesioned group). Inspection of Fig 3B suggests that unilateral lesions

may have impaired reference memory performance slightly. Caution should therefore be

taken when interpreting these results as the number of animals in the unilateral and bilateral

lesion group is small.

After surgery, there were no group differences or trial block effects for trial duration, inter-

visit interval and first visit latency, meaning that animals did not have problems executing the

task but that the problem was limited to memory deficits. Thus, the motivation to seek for

food rewards was not affected, which is likely due to the fact that relevant brain structures

involved in food intake such as the forebrain, hypothalamic and hindbrain circuits [62] as well

as the nucleus accumbens [63,64] were spared by the vincristine lesions.

A comparison of block 12 (last trial block before surgery) and block 13 (first trial block after

surgery) was done to assess if surgery affected acute retention of task performance. There were

no block effects for working memory or inter-visit interval, however a trial block effect showed

that rats had a lower reference memory performance, a greater trial duration and a greater first

visit latency after lesioning (i.e. on trial block 13). The results observed for reference memory,

trial duration and first visit latency could be due to the recovery time in which rats were not

trained in the task. However, no signs of forgetting have been found in the cone-field task in a

previous study after a retention interval of four months [65]. Therefore, it is unlikely that the

short period between the end of training and retention testing impaired memory.

Limitations of the present study that need to be considered include a small sample size,

lesions extending to cortical areas outside of the dorsal hippocampus, and that in practice,

humans do not receive intra-hippocampal vincristine. It would be interesting to repeat this

same experimental procedure with a long-term systemic vincristine treatment, as it is common

in clinical practice. Based on the previously mentioned literature [40–47] we would expect to
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see cognitive deficits after systemic vincristine treatment, but by training the animals before

treatment we could see if chemotherapy affects a previously learned task or if it only affects the

acquisition of new information. Of note, a previous study has shown that chemotherapy not

only affects short term memory but also tasks that patients had learned before chemotherapy

treatment, such as paying the bills or driving to a known place [66].

Conclusion

In the present study, we found that bilateral dorsal hippocampus lesions induced by vincristine

caused a decrease in performance in working and reference memory in the cone field spatial

discrimination task. Together with previous findings [9] this suggests that cytostatics reaching

the brain can induce severe neuronal and cognitive damage. Future studies are needed to eluci-

date whether systemic chemotherapeutic treatment can result in, for example, blood-brain-

barrier deficits or inflammatory processes that allow cytostatic drugs to reach the brain during

the treatment of cancer.
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