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ABSTRACT
Widespread replacement of native ecosystems by productive land sometimes results
in the outbreak of a native species. In New Zealand, the introduction of exotic pas-
toral plants has resulted in diet alteration of the native coleopteran species, Costelytra
zealandica (White) (Scarabaeidae) such that this insect has reached the status of pest.
In contrast, C. brunneum (Broun), a congeneric species, has not developed such a
relationship with these ‘novel’ host plants. This study investigated the feeding pref-
erences and fitness performance of these two closely related scarab beetles to increase
fundamental knowledge about the mechanisms responsible for the development
of invasive characteristics in native insects. To this end, the feeding preference of
third instar larvae of both Costelytra species was investigated using an olfactometer
device, and the survival and larval growth of the invasive species C. zealandica were
compared on native and exotic host plants. Costelytra zealandica, when sampled from
exotic pastures, was unable to fully utilise its ancestral native host and showed higher
feeding preference and performance on exotic plants. In contrast, C. zealandica
sampled from native grasslands did not perform significantly better on either host
and showed similar feeding preferences to C. brunneum, which exhibited no feeding
preference. This study suggests the possibility of strong intraspecific variation in the
ability of C. zealandica to exploit native or exotic plants, supporting the hypothesis
that such ability underpins the existence of distinct host-races in this species.

Subjects Biodiversity, Ecology, Ecosystem Science, Entomology, Environmental Sciences
Keywords Native invader, Invasive species, Plant-insect interactions, Feeding preferences,
Grass grub, New Zealand

INTRODUCTION
By widely replacing native ecosystems with more economically productive land, modern

intensive agriculture has often been regarded by ecologists as a driver for substantial

biodiversity loss (Robinson & Sutherland, 2002; Tilman et al., 2002; Foley et al., 2005).

Although detrimental for numerous species, anthropogenic modifications creating novel
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ecological conditions appear to be beneficial under certain circumstances for some native

species. For instance, it is acknowledged that the high diversity of phytophagous insects

partially results from evolutionary processes that occur through the action of factors

affecting their diet breadth (Gaete-Eastman et al., 2004), such as the appearance of a new

host plant. Hence, the ecological repercussions of anthropogenic-driven modification(s)

on native ecosystems are worth investigating to enhance understanding of the insect

invasion process. In addition, the comparison of native and invasive congeners is

recognised as a useful approach for identifying characteristics that promote invasiveness

(Muñoz & Ackerman, 2011). This approach is perhaps even more useful in this study

because the ‘invasive congener’ is native itself and it would not have been subjected to

differential environmental and ecological pressures as its congener that are likely to have

affected its evolution.

In New Zealand, the introduction of exotic pastoral plants has resulted in alteration

of the diet of the native coleopteran Costelytra zealandica (White) (Scarabaeidae), also

known as the New Zealand grass grub or brown beetle. The larvae of this endemic insect

feed intensively on the roots of ryegrass (Lolium spp.) and white clover (Trifolium repens)

and as a consequence the species is ranked as a major economic pest in New Zealand

(Pottinger, 1975; Richards et al., 1997). Interestingly and in contrast, C. brunneum (Broun),

a close congeneric species that is rarely found in ryegrass and white clover pastures and

remains mostly distributed in native habitats (Given, 1966; Lefort et al., 2012; Lefort et al.,

2013). Both Costelytra species are considered to be univoltine organisms (Atkinson & Slay,

1994) with three larval stages, although it is not uncommon to come across individuals

that follow a two-year life cycle in the highest and coldest environments of the southern

locations of New Zealand, such as Otago and Southland (Stewart, 1972; Kain, 1975). These

two species are sympatric and share similar native hosts, mainly comprising tussock species

(Poaceae) commonly found in New Zealand native grasslands (Given, 1966; Lefort et al.,

2012; Lefort et al., 2013).

The present study aimed to investigate the feeding preferences and fitness response

in terms of survival and weight gain of these two coleopteran species, to provide new

insights into the mechanisms underpinning the invasion process in C. zealandica. The first

objective of this study was to perform choice tests where the larvae of both Costelytra

species were given the choice between a native and an exotic host plant. The second

objective was to compare survival and larval growth of two populations of the invasive

species C. zealandica when exposed to these host plants.

MATERIAL AND METHODS
Insect sampling and plant material
Newly hatched third instar larva, as the most damaging life stage of the invasive species

C. zealandica and the most intensively feeding life stage in Costelytra spp. in general,

were used for the experiments. No protocol exists to rear Costelytra spp. offspring under

laboratory conditions and all attempts to do so have been unsuccessful. Therefore, the

second best option was to work with field-collected insects. Four sampling sites in the
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Figure 1 Location map for Costelytra zealandica and C. brunneum sample sites.

Table 1 General description and location for Costelytra zealandica and C. brunneum sample sites.

Site Location Coordinates Site description and
dominant group of plants

Species sampled and
population indexing

A Lincoln (NZ, South Island) 43◦64′04′′S 172◦47′82′′E Mixed exotic ryegrass (Lolium spp.)/
clover garden (Trifolium spp.)

Costelytra zealandica
(population A)

B Hororata (NZ, South Island) 43◦32′17′′S 171◦57′16′′E Mixed exotic ryegrass (Lolium spp.)/
clover dairy pasture (Trifolium spp.)

Costelytra zealandica
(population B)

C Cass (NZ, South Island) 43◦02′10′′S 171◦45′40′′E Native tussock grassland
(Poa cita over 80% incidence)

Costelytra zealandica
(population C)

D Castle Hill (NZ, South Island) 43◦12′20′′S 171◦42′16′′E Native tussock grassland (Poa cita over
80% incidence) close to the margin of
beech forest (Nothofagus spp.)

Costelytra brunneum

South Island of New Zealand were used to collect second instar larvae of Costelytra spp.

(Fig. 1). These sites are labelled A, B, C and D in Table 1. Collection sites A and B were

dominated by exotic plants, while sites C and D were essentially composed of native grasses

(Table 1). In the two latter sites, larvae of both species were collected under large patches

of native vegetation. These patches were distant enough from exotic vegetation, to ensure

that no- or minimal-contact with exotic plants had occurred prior to experiments, given

the very low mobility of the earliest larval stages in Costelytra spp (Kain, 1975).

Initially, the larvae were placed individually into ice tray compartments with a piece

of carrot as food at 15 ◦C ambient temperature for four days to test for the presence of

the endemic amber disease (Serratia spp.) according to the protocol of Jackson, Huger &

Glare (1993). Healthy larvae were identified to the species level based on the non-invasive

methodologies developed by Lefort et al. (2012) and Lefort et al. (2013).
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Trifolium repens (white clover) was grown in a glasshouse (Lincoln University, New

Zealand) from seeds (PGG Wrightson Seeds Ltd, Christchurch, New Zealand) in 200 ml of

potting mix comprising 60% peat and 40% sterilized pumice stones. Young plants of the

native Poa cita (silver tussock) were purchased from a native plant nursery in Christchurch,

New Zealand. Each plant was carefully transferred from its original pot to a 200 ml pot,

filled with potting mix as described above, and was allowed to grow for 2 months prior to

the feeding experiment.

Costelytra spp. feeding preferences—native vs exotic host choice
test
The feeding preferences of C. zealandica and C. brunneum larvae were tested using a three

choice olfactometer with native or exotic hosts at 15 ◦C. The olfactometer comprised

of three extended arms, each 120 mm in length and 40 mm in diameter, filled with

gamma-irradiated soil (Schering-Plough Animal Health, Wellington, New Zealand) and a

40 × 40 mm central exposure chamber. The larvae were introduced through an aperture in

the central chamber. A pot containing either no plant (control pot), white clover, or silver

tussock was connected at the end of each arm. Third instar larvae of C. zealandica collected

from sites B (exotic pasture, n = 35) and C (native grasslands, n = 35) and C. brunneum

from collection site D (native grasslands, n = 35) were used for this experiment. For each

population, the bioassay was replicated seven times, with five new larvae inserted together

in the central exposure chamber, in order to mimic the natural clustered distribution of the

larvae in the field and to test a greater number of larvae. After 24 h, pots were disconnected

from the olfactometer device, emptied of their contents and larvae were counted. Between

each trial, all components of the olfactometer were washed thoroughly with warm water

and left to soak in clean water overnight, finally being left to air-dry on a clean counter

and reassembled. Results were analyzed with GLMs (family = Poisson) using R software

(R Core Team, 2014). Two separate GLMs were performed: (1) choice (plant) vs no choice

(control or no choice) and (2) native host plant vs exotic host plant as response variables,

a subset of the choice data. The populations of C. zealandica and C. brunneum from the

different sites were analyzed separately.

Costelytra zealandica fitness response on different host plants
Newly moulted third instar larvae of C. zealandica collected from sites A (exotic pasture,

n = 64) and C (native grasslands, n = 47) were randomly allocated to the two different host

plant treatments (white clover and silver tussock). Each larva was kept individually in a

35 ml plastic container containing 50 g of gamma-irradiated soil (as above) and was fed ad

libitum with roots of white clover or silver tussock. Containers were randomly arranged on

plastic trays and kept in an incubator at 15 ◦C.

The fresh weight of each larva was recorded at the beginning of the experiment and after

the first six weeks of treatment. The latter corresponded to the most intensive weeks of

feeding for the third instar life stage of this species. All measurements were performed on a

0.01 g readability portable digital scale. The experiment was conducted over an additional
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Figure 2 Plant choice of larvae of three populations of Costelytra in a three-arm olfactometer. With
choices of C. zealandica population B collected from exotic pastures, C. zealandica population C collected
from native tussock grassland, and C. brunneum population D collected from native tussock grassland.
∗∗ indicates p < 0.01 and ns indicates p > 0.05.

9 weeks, to cover the average 15 week duration of the third instar in C. zealandica. Survival

rates were assessed after this time.

Statistical analyses to determine the effect of host plant diet on larval survival were

carried out using a Chi-squared test. For each population, an ANCOVA was conducted

to analyze the effect of host plant diet on larval growth after 6 weeks while controlling for

initial weight. The analyses were performed after exclusion of larvae that died before the

end of the sixth week. The Chi-squared test was conducted using R software (R Core Team,

2014), while the ANCOVA were performed using the statistical software SPSS v.20.

RESULTS
Costelytra spp. feeding preferences—native vs exotic host choice
test
In the choice test, only C. zealandica collected from exotic pastures (population B) showed

a preference for the exotic white clover (GLM, p < 0.01, Null deviance = 15.04, Residual

deviance = 4.15) (Fig. 2). In contrast, C. zealandica collected from native grassland (pop-

ulation C) and C. brunneum (population D), did not show a preference for either plant

species (respectively: GLM, p = 0.24, Null deviance = 23.33, Residual deviance = 21.92,

and GLM, p = 0.87, Null deviance = 8.31, Residual deviance = 8.28) (Fig. 2).

Costelytra zealandica—larval survival and growth on exotic clover
or native tussock
The larvae collected from exotic pastures (population A) displayed survival rates over six

time higher when fed on clover (33.3% survival) compared with larvae fed on native silver

tussock (5.5% survival) (χ2
= 4.43, df = 1, p < 0.05) (Fig. 3).
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Figure 3 Percentage of larval survival of Costelytra zealandica from site A (collected from exotic
pasture) and site C (collected from native tussock grassland) after 15 weeks of feeding on tussock
(yellow bars) and white clover (green bars) host plants. ∗ indicates p < 0.05 and ns indicates p > 0.05.

No treatment effect on larval growth was detected for the population from native

grasslands (population C) (F(2,22) = 3.69, p = 0.07) (Table 2), while the larvae from

exotic pastures (population A) gained 0.428 g (±0.005 g) when fed on clover for 6 weeks,

which was almost twice as much weight compared with larvae fed on native tussock

(F(2,54) = 12.26, p < 0.001) (Table 2), (Fig. 4).

DISCUSSION
This study investigated variation in feeding preferences and fitness response to various

hosts in C. zealandica. The results corroborate the existence of strong intraspecific

variation of the diet breadth of this pest species (Lefort et al., 2014). This study also

demonstrated similarities between feeding preferences of a population of C. zealandica

collected from an isolated native habitat with those of the congeneric non-pest species

C. brunneum. The overall results of this study have provided new insight into the

mechanism(s) underpinning the invasion of C. zealandica into improved pastures

throughout New Zealand.
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Figure 4 Average fresh weight gain (+1SE) of larvae of Costelytra zealandica from site A (collected
from exotic pasture) and site C (collected from native tussock grassland) after 6 weeks of feeding on
tussock (yellow bars) and clover (green bars) host plants. Pairwise comparisons were performed using
an ANCOVA with the initial weight of the larvae as covariate. ∗∗∗ indicates p < 0.001 and ns indicates
p > 0.05.

Table 2 ANCOVA—effect of different host plant diet on the average weight gain of Costelytra
zealandica larvae controlling for their initial weight.

Species (sampling site) df F P values 5% significance level

C. zealandica (population A)

Treatment 1 12.257 0.001 ***

Covariate (initial weight) 1 0.001 0.978 ns

Error 54

C. zealandica (population C)

Treatment 1 3.691 0.068 ns

Covariate (initial weight) 1 0.190 0.667 ns

Error 22
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It is important to note that the nutritional value of the roots on which the larvae fed

can vary within the same plant in response to soil nutrient distribution and concentration

(Grossman & Rice, 2012) and possibly results in differential fitness performance in the same

population of insect. However, the overall fitness, as measured by survival and growth,

of C. zealandica collected from exotic pastures was significantly higher on the exotic host

plant than on its native host. Inheritance and maternal effects on host choice (Mousseau

& Dingle, 1991; Mousseau & Fox, 1998), where offspring display high fitness performance

(Fox & Wolf, 2006) and similar host preferences to their mother (Craig, Horner & Itami,

2001), is a possible explanation. Similarly, another maternal effect coined the ‘mother

knows best’ hypothesis, which suggests that females tend to oviposit on host plant(s)

that can potentially increase their offspring survival (Scheir, De Bruyn & Verhagen, 2000;

Mayhew, 2001), can also be a possible explanation, although no evidence supporting this

hypothesis has been observed in C. zealandica adult beetles (Kelsey, 1968; Radcliffe & Payne,

1969; Kain, 1975).

The effects described above are supported by the results of the choice test. In this test,

population A, consisting of C. zealandica larvae collected from exotic pasture plants on

which the population is likely to have fed for several generations, chose exotic clover as

the preferred host plant. In contrast, the population of C. zealandica collected from their

native range did not show any preference in the choice tests and did not perform better on

either host. The first observation negates the hypothesis of inheritance and maternal effect

on host choice mentioned earlier, since based on this principle, this population would

have been expected to prefer its native host (i.e., silver tussock) and have better fitness

performance on this plant compared with the exotic host (i.e., white clover). Unlike silver

tussock, white clover is a legume, which may partly explain the differences in larval weight

gain observed in the C. zealandica population collected from exotic pastures. Indeed,

because of their bacterial symbiosis resulting in an ability to fix nitrogen (Awmack &

Leather, 2002), the nutritional value of this family of plants is likely to be higher than that

of grasses, such as silver tussock, used as the alternative host in this study. However, this

alternative hypothesis does not explain the response of the other C. zealandica population

studied, which in this case would have been expected to show increased weight gain on

clover as well.

Based on similar survival rates observed in the two populations of C. zealandica used

in this study, and because the population collected from native grassland was presumably

isolated enough to have not fed on exotic host plants prior to the experiment, it appears

that the successful exploitation of an exotic plant by this species is likely a pre-existing

ability. Diegisser et al. (2009) and Ding & Blossey (2009) suggested that some form of

pre-adaptation was required for the exploitation of a novel host plant. The hypothesis of

pre-adaptation or phenotypic plasticity in C. zealandica is supported by (i) the similarity

in host choice between larvae of C. zealandica collected from native grassland and larvae of

the non-pest species C. brunneum, and (ii) the differential exploitation of exotic pastoral

plants by the two species. However, the limited number of replicates for the population

collected from native grassland calls for caution in the interpretation of these results.

Lefort et al. (2015), PeerJ, DOI 10.7717/peerj.1454 8/12

https://peerj.com
http://dx.doi.org/10.7717/peerj.1454


The defence mechanisms employed by the different host plants and their effect on

the fitness of the insect species studied would be an interesting aspect to investigate.

In a recent review about phytophagous insects and plant defences, Ali & Agrawal

(2012) reaffirmed that generalist insects do not master or totally overcome their host

defences, but possess ‘general mechanisms’ to tolerate an array of those defences. It is

possible to observe variations in this tolerance, particularly when the host-range utilised

by the insect species is highly diversified and, consequently, when the family of plants

have differential evolutionary histories that may have resulted in slight variations in their

defence mechanisms. Here, C. zealandica may have been less affected by the defences of

white clover compared to those of the other hosts or, conversely and as recently shown

by Lefort et al. (2015), may have benefited from the defences of their host. The latter

phenomenon has been observed several times in recent insect-host interaction studies,

where the defences of the hosts were artificially triggered and the resulting fitness response

of the insects studied unexpectedly enhanced (e.g., Pierre et al., 2012; Robert et al., 2012).

The results of this study support the pre-existence of characteristics that may have

contributed to the invasion success of the New Zealand native scarab C. zealandica into

exotic pastures throughout New Zealand in contrast to its native congener, C. brunneum

which maintains small populations in native grasslands. Additionally, the differences in

feeding preferences between different populations of the pest species C. zealandica, seem

to confirm recent evidence (Lefort et al., 2014) of the existence of distinct host-races in

this species. With regard to cryptic species, many studies have highlighted the importance

of correct species identification for the accomplishment of successful biological control

(e.g., Rosen, 1986; Paterson, 1991; Silva-Brandão et al., 2013). Similarly, we believe that

the delineation of host-races in pest species could have vital implications in terms of

pest control management and strategies. For instance, caution should be taken before

denominating a species as a single entity by employing terms such as “pest species”

or “invasive species,” and care must be taken during insect sampling and subsequent

identification, particularly when performing bioassays for which the outcome may vary

depending on the host-race used. Because the natural feeding behavior of some insects

can be modified by laboratory experimentation, we believe that complementary in-situ

experiments that would allow the incorporation and investigation of the effect of natural

environmental variables on the feeding behavior of C. zealandica, would be beneficial.

Furthermore we strongly encourage further molecular investigations to confirm the

possible existence of host-races in C. zealandica, which would greatly benefit the field of

biological control research in New Zealand.
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• Stéphane Boyer conceived and designed the experiments, performed the experiments,

reviewed drafts of the paper.

• Jessica Vereijssen conceived and designed the experiments, reviewed drafts of the paper.

• Rowan Sprague analyzed the data, reviewed drafts of the paper.

• Travis R. Glare and Susan P. Worner contributed reagents/materials/analysis tools,

reviewed drafts of the paper.

Data Availability
The following information was supplied regarding data availability:

The raw dataset has been made available online Data S1.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/

10.7717/peerj.1454#supplemental-information.

REFERENCES
Ali JG, Agrawal A. 2012. Specialist versus generalist insect herbivores and plant defense. Trends in

Plant Science 17:293–302 DOI 10.1016/j.tplants.2012.02.006.

Atkinson D, Slay M. 1994. Winter management of grass grub (Costelytra zealandia (White)). New
Zealand Journal of Agricultural Research 37:553–558 DOI 10.1080/00288233.1994.9513094.

Awmack CS, Leather SR. 2002. Host plant quality and fecundity in herbivorous insects. Annual
Review of Entomology 47:817–844 DOI 10.1146/annurev.ento.47.091201.145300.

Lefort et al. (2015), PeerJ, DOI 10.7717/peerj.1454 10/12

https://peerj.com
http://dx.doi.org/10.7717/peerj.1454/supp-1
http://dx.doi.org/10.7717/peerj.1454/supp-1
http://dx.doi.org/10.7717/peerj.1454#supplemental-information
http://dx.doi.org/10.7717/peerj.1454#supplemental-information
http://dx.doi.org/10.7717/peerj.1454#supplemental-information
http://dx.doi.org/10.7717/peerj.1454#supplemental-information
http://dx.doi.org/10.7717/peerj.1454#supplemental-information
http://dx.doi.org/10.7717/peerj.1454#supplemental-information
http://dx.doi.org/10.7717/peerj.1454#supplemental-information
http://dx.doi.org/10.7717/peerj.1454#supplemental-information
http://dx.doi.org/10.7717/peerj.1454#supplemental-information
http://dx.doi.org/10.7717/peerj.1454#supplemental-information
http://dx.doi.org/10.7717/peerj.1454#supplemental-information
http://dx.doi.org/10.7717/peerj.1454#supplemental-information
http://dx.doi.org/10.7717/peerj.1454#supplemental-information
http://dx.doi.org/10.7717/peerj.1454#supplemental-information
http://dx.doi.org/10.7717/peerj.1454#supplemental-information
http://dx.doi.org/10.7717/peerj.1454#supplemental-information
http://dx.doi.org/10.7717/peerj.1454#supplemental-information
http://dx.doi.org/10.7717/peerj.1454#supplemental-information
http://dx.doi.org/10.7717/peerj.1454#supplemental-information
http://dx.doi.org/10.7717/peerj.1454#supplemental-information
http://dx.doi.org/10.7717/peerj.1454#supplemental-information
http://dx.doi.org/10.7717/peerj.1454#supplemental-information
http://dx.doi.org/10.7717/peerj.1454#supplemental-information
http://dx.doi.org/10.7717/peerj.1454#supplemental-information
http://dx.doi.org/10.7717/peerj.1454#supplemental-information
http://dx.doi.org/10.7717/peerj.1454#supplemental-information
http://dx.doi.org/10.7717/peerj.1454#supplemental-information
http://dx.doi.org/10.7717/peerj.1454#supplemental-information
http://dx.doi.org/10.7717/peerj.1454#supplemental-information
http://dx.doi.org/10.7717/peerj.1454#supplemental-information
http://dx.doi.org/10.7717/peerj.1454#supplemental-information
http://dx.doi.org/10.7717/peerj.1454#supplemental-information
http://dx.doi.org/10.7717/peerj.1454#supplemental-information
http://dx.doi.org/10.7717/peerj.1454#supplemental-information
http://dx.doi.org/10.7717/peerj.1454#supplemental-information
http://dx.doi.org/10.7717/peerj.1454#supplemental-information
http://dx.doi.org/10.7717/peerj.1454#supplemental-information
http://dx.doi.org/10.7717/peerj.1454#supplemental-information
http://dx.doi.org/10.7717/peerj.1454#supplemental-information
http://dx.doi.org/10.7717/peerj.1454#supplemental-information
http://dx.doi.org/10.7717/peerj.1454#supplemental-information
http://dx.doi.org/10.7717/peerj.1454#supplemental-information
http://dx.doi.org/10.7717/peerj.1454#supplemental-information
http://dx.doi.org/10.7717/peerj.1454#supplemental-information
http://dx.doi.org/10.1016/j.tplants.2012.02.006
http://dx.doi.org/10.1080/00288233.1994.9513094
http://dx.doi.org/10.1146/annurev.ento.47.091201.145300
http://dx.doi.org/10.7717/peerj.1454


Craig TP, Horner JD, Itami JK. 2001. Genetics, experience, and host-plant preference in Eurosta
solidaginis: implications for host shifts and speciation. Evolution 55:773–782
DOI 10.1554/0014-3820(2001)055[0773:GEAHPP]2.0.CO;2.

Diegisser T, Tritsch C, Seitz A, Johannesen J. 2009. Infestation of a novel host plant by Tephritis
conura (Diptera: Tephritidae) in northern Britain: host-range expansion or host shift? Genetica
137:87–97 DOI 10.1007/s10709-009-9353-3.

Ding J, Blossey B. 2009. Differences in preference and performance of the Water Lily Leaf Beetle,
Galerucella nymphaeae. Environmental Entomology 38:1653–1660 DOI 10.1603/022.038.0618.

Foley J, Defries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC,
Gibbs HK, Helkowski JH, Holloway T, Howard E, Kucharik CJ, Monfreda C, Patz J,
Prentice IC, Ramankutty N, Snyder PK. 2005. Global consequences of land use. Science
309:570–574 DOI 10.1126/science.1111772.

Fox CW, Wolf JB (eds.) 2006. Evolutionary genetics: concepts and case studies. New York: Oxford
University Press. 608 pp.

Gaete-Eastman C, Figueroa CC, Olivares-Donoso R, Niemeyer HM, Ramı́rez CC. 2004. Diet
breadth and its relationship with genetic diversity and differentiation: the case of southern
beech aphids (Hemiptera: Aphididae). Bulletin of Entomological Research 94:219–227
DOI 10.1079/BER2004298.

Given BB. 1966. The genus Costelytra Given (Melolonthinae: Coleoptera) including descriptions
of four new species. New Zealand Journal of Science 9:373–390.

Grossman JD, Rice KJ. 2012. Evolution of root plasticity responses to variation in soil nutrient
distribution and concentration. Evolutionary Applications 5:850–857
DOI 10.1111/j.1752-4571.2012.00263.x.

Jackson TA, Huger AM, Glare TR. 1993. Pathology of amber disease in the New Zealand grass grub
Costelytra zealandica (Coleoptera: Scarabaeidae). Journal of Invertebrate Pathology 61:123–130
DOI 10.1006/jipa.1993.1024.

Kain M. 1975. Population dynamics and pest assesment studies of grass grub (Costelytra zealandica
(White), Melolonthinae) in the North Island of New Zealand. PhD Thesis, Lincoln University,
New Zealand.

Kelsey JM. 1968. Oviposition preference by Costelytra zealandica (White). New Zealand Journal of
Agricultural Research 11:206–210 DOI 10.1080/00288233.1968.10431647.

Lefort M-C, Barratt BI, Marris JWM, Boyer S. 2013. Combining molecular and morphological
approaches to differentiate the pest Costelytra zealandica (White) (Coleoptera: Scarabeidae:
Melolonthinae) from the non-pest Costelytra brunneum (Broun) at larval stage. New Zealand
Entomologist 36:15–21 DOI 10.1080/00779962.2012.742369.

Lefort M-C, Boyer S, De Romans S, Armstrong K, Glare TR, Worner SP. 2014. Invasion success
of a scarab beetle within its native range: host-shift vs. host range expansion. PeerJ 2:e262
DOI 10.7717/peerj.262.

Lefort M-C, Boyer S, Worner SP, Armstrong K. 2012. Noninvasive molecular methods to identify
live scarab larvae: an example of sympatric pest and nonpest species in New Zealand. Molecular
Ecology Resources 12:389–395 DOI 10.1111/j.1755-0998.2011.03103.x.

Lefort M-C, Worner SP, Rostas M, Vereijsen J, Boyer S. 2015. Responding positively to plant
defences, a candidate key trait for invasion success in phytophagous insects. New Zealand
Journal of Ecology 39:128–132.

Mayhew P. 2001. Herbivore host choice and optimal bad motherhood. Trends in Ecology and
Evolution 16:165–167 DOI 10.1016/S0169-5347(00)02099-1.

Lefort et al. (2015), PeerJ, DOI 10.7717/peerj.1454 11/12

https://peerj.com
http://dx.doi.org/10.1554/0014-3820(2001)055[0773:GEAHPP]2.0.CO;2
http://dx.doi.org/10.1007/s10709-009-9353-3
http://dx.doi.org/10.1603/022.038.0618
http://dx.doi.org/10.1126/science.1111772
http://dx.doi.org/10.1079/BER2004298
http://dx.doi.org/10.1111/j.1752-4571.2012.00263.x
http://dx.doi.org/10.1006/jipa.1993.1024
http://dx.doi.org/10.1080/00288233.1968.10431647
http://dx.doi.org/10.1080/00779962.2012.742369
http://dx.doi.org/10.7717/peerj.262
http://dx.doi.org/10.1111/j.1755-0998.2011.03103.x
http://dx.doi.org/10.1016/S0169-5347(00)02099-1
http://dx.doi.org/10.7717/peerj.1454


Mousseau TA, Dingle H. 1991. Maternal effects on insect life histories. Annual Review of
Entomology 36:511–534 DOI 10.1146/annurev.en.36.010191.002455.

Mousseau TA, Fox CW. 1998. The adaptative significance of maternal effects. Trends in Ecology
and Evolution 13:403–407 DOI 10.1016/S0169-5347(98)01472-4.
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