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Background. The screening and early detection of colorectal cancer (CRC) still remain a challenge due to the lack of reliable and
effective serum biomarkers. Thus, this study is aimed at identifying serum biomarkers of CRC that could be used to distinguish
CRC from healthy controls. Methods. A prospective 1 : 2 individual matching case-control study was performed which included
50 healthy control subjects and 98 CRC patients. Untargeted metabolomic profiling was conducted with liquid
chromatography tandem mass spectrometry (LC-MS/MS) to identify CRC-related metabolites and metabolic pathways. Results.
In total, 178 metabolites were detected, and an orthogonal partial least-squares-discriminant analysis (OPLS-DA) model was
useful to distinguish CRC patients from healthy controls. Nine metabolites showed significantly differential serum levels in
CRC patients under the conditions of variable importance in projection ðVIPÞ > 1, p < 0:05 using Student’s t-test, and fold
change ðFCÞ ≥ 1:2 or ≤0.5. The above nine metabolites were 3-hydroxybutyric acid, hexadecanedioic acid, succinic acid
semialdehyde, 4-dodecylbenzenesulfonic acid, prostaglandin B2, 2-pyrocatechuic acid, xanthoxylin, 12-hydroxydodecanoic acid,
and formylanthranilic acid. Four potential biomarkers were identified to diagnose CRC through ROC curves: hexadecanedioic
acid, 4-dodecylbenzenesulfonic acid, 2-pyrocatechuic acid, and formylanthranilic acid. All AUC values of these four serum
biomarkers were above 0.70. In addition, the exploratory analysis of metabolic pathways revealed the activated states for the
vitamin B metabolic pathway and the alanine, aspartate, and glutamate metabolic pathways associated with CRC. Conclusion.
The 4 identified potential metabolic biomarkers could discriminate CRC patients from healthy controls, and the 2 metabolic
pathways may be activated in the CRC tissues.

1. Introduction

Colorectal cancer (CRC) is one of the most common malig-
nant tumours of the digestive system, and the morbidity
(10.0%) and mortality (9.4%) of it rank third and second
around the world, respectively [1]. Because of the late diag-
nosis and advanced disease, 30%-50% of CRC patients still
cannot survive for more than 5 years among high-income
countries [2].

The screening and early diagnosis of CRC have been
shown to improve the prognosis [3]. However, the current
screening tests such as serum tumour markers and faecal
occult blood tests have low specificity and low sensitivity
and are not valid as the early diagnostic screening. Colonos-
copy or sigmoidoscopy is not easy to popularize as a screen-
ing method among the large-scale population, because it is
an invasive examination with relatively high expense, poor
compliance, and a certain risk of complications, including
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postoperative bleeding (0.26%), perforation (0.05%), and
death (2.9/100,000) [4]. Therefore, the discovery of novel
meaningful biomarkers is important in the early diagnosis
of CRC.

Currently, circulating biomarkers, including circulating
tumour DNA (ctDNA) [5], microRNAs (miRNAs) [6], and
metabolites [7, 8], are a research focus to diagnose CRC early
and improve prognosis. Dysregulated metabolism is one of
the hallmarks of cancer, and the overexpression or loss of
genes can cause changes in metabolism [9, 10]. In addition,
the metabolic profiles of cancer cell changes are associated
with disease progression [11]. Thus, the assessment of
endogenous small-molecule metabolism is forming as prom-
ising minimally invasive biomarkers for the early diagnosis
of cancers.

Metabonomics [12] is a new branch of systems biology
that has emerged after genomics, transcriptomics, and prote-
omics and can measure the levels of many small-molecule
metabolites in biospecimens. Major technologies that are
used for metabolomics include nuclear magnetic resonance
(NMR) [13] and mass spectrometry (MS) [14]. Previous
studies used the NMR-based metabolomics to screen out
some circulating metabolites to distinguish CRC patients
from those without cancer [15, 16]; however, NMR has the
weaknesses of low sensitivity and a narrow detection dynamic
range. Therefore, the current research found that the circulat-
ing xanthine, hypoxanthine, and D-mannose levels could be
the biomarkers for CRC patients by using more sensitive tech-
nology [17], such as gas chromatography-MS (GC-MS) and
liquid chromatography tandem MS (LC-MS/MS). However,
most of these studies ignored factors that could affect the
metabolism, such as age, sex, body mass index (BMI), and
diet [18].

This study is aimed at identifying circulating biomarkers
of CRC disease through the metabolomic profiling of human
serum samples by using LC-MS/MS, which may offer new
methods for the early diagnosis and screening of CRC
disease.

2. Materials and Methods

2.1. Participants. This was a prospective 1 : 2 individual
matching case-control study that included two groups: the
healthy control group and the CRC group recruited at the
Peking Union Medical College Hospital between 2019 and
2021. The inclusion criteria of the healthy control group
were healthy adults over 18 years of age with no forms of
cancer. The inclusion criteria of the CRC group were as fol-
lows: over 18 years old, a definite diagnosis of carcinoma by
biopsy pathology through colonoscopy or proctoscopy, and
no metabolic diseases such as diabetes, fatty liver, or obesity.
The research was performed in compliance with the 1964
Helsinki Declaration and its later amendments of ethical
standards. Moreover, the participants of the CRC group
were selected based on matched age, sex, and BMI in the
control group, thus decreasing these effects. The study pro-
tocol was ethically reviewed and approved by the Institu-
tional Review Board of Peking Union Medical College

Hospital. All participants involved in this study have signed
informed consent.

2.2. Study Samples. Demographic information, including
age, gender and BMI, and medical history, of all enrolled
participants was recorded for subsequent analysis. All blood
samples of the participants were collected in the morning
after fasting for 8-12 hours, and separated serum was used
for the following analysis on the day of sample collection
within 2 h and preserved at -80°C.

2.3. Sample Testing and Data Preprocessing. All samples
were subjected to metabolic analysis by an LC-MS/MS plat-
form (Q Exactive Orbitrap, Thermo Fisher Scientific, USA).
Briefly, the serum samples were thawed at 4°C for approxi-
mately 2 hours, 150μl serum was taken, 450μl precooled
formaldehyde was added, and the samples were placed at
-20°C for 1 hour after vortexing. Then, the mixed solution
was centrifuged at 14000 rpm for 15 minutes at 4°C. The
resulting supernatants were transferred to LC-MS/MS for
analysis [19].

LC-MS/MS analyses were performed using an UHPLC
system (Vanquish, Thermo Fisher Scientific) with a UPLC
BEH Amide column (2:1mm × 100mm, 1.7μm) coupled
to the Q Exactive HFX mass spectrometer (Orbitrap MS,
Thermo). The mobile phase consisted of 25mmol/L
ammonium acetate and 25 ammonia hydroxide in water
(pH = 9:75) (A) and acetonitrile (B). The autosampler tem-
perature was 4°C, and the injection volume was 3μL.

The QE HFX mass spectrometer was used for its ability
to acquire MS/MS spectra on the information-dependent
acquisition (IDA) mode in the control of the acquisition
software (Xcalibur, Thermo). In this mode, the acquisition
software continuously evaluates the full scan MS spectrum.
The ESI source conditions were set as the following: sheath
gas flow rate as 30Arb, Aux gas flow rate as 25Arb, capillary
temperature 350°C, full MS resolution as 60000, MS/MS res-
olution as 7500, collision energy as 10/30/60 in NCE mode,
and spray voltage as 3.6 kV (positive) or -3.2 kV (negative),
respectively. The MetaboScape 3.0 software (Bruker, USA)
was used to preprocess the data of the sample quality spec-
tra, such as peak extraction, denoising, and normalization.

2.4. Statistical Analysis. The identified data were analysed by
SIMCA software (V16.0.2, Sartorius Stedim Data Analytics
AB, Umea, Sweden). Principal component analysis (PCA)
is an unsupervised mode that can reduce the dimensionality
of data and distinguish the internal characteristics of data by
several main components. PCA was first performed to esti-
mate the discreteness of the data and the classification of
the samples. Then, orthogonal projections to latent
structures-discriminant analysis (OPLS-DA) was used to
understand the metabolic changes between healthy controls
and CRC patients. The permutation test with 200 iterations
was implemented to assess the statistical significance and
prevent overfitting of the OPLS-DA model. It is generally
believed that the intercept of R2 on the Y-axis is less than
0.4 and the intercept of Q2 on the Y-axis is less than 0, which
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indicates that the model does not exhibit overfitting and has
good robustness.

To avoid false positive errors caused by the multivariate
statistics, we also performed the univariate analyses: Stu-
dent’s t-test and fold change (FC) analysis. Therefore, the
candidate metabolites were selected based on the variable
importance in the projection (VIP) values, which were con-
sidered responsible for group discrimination of OPLS-DA
more than 1, the p value of Student’s t-test less than 0.05,
and the cut-off value of FC 0.5 or 1.2. ROC curves were per-
formed to estimate the ability of metabolites to distinguish
the CRC patients from healthy people. The true positive rate
can be represented by sensitivity as the vertical coordinate,
and the false positive rate can be represented by 1-
specificity as the horizontal coordinate. The area under the
ROC curve (AUC) can be used to determine the accuracy
of the metabolite in distinguishing the two different groups.
AUC = 0:5 indicates that the metabolite is not useful in dis-
tinguishing; 0:7 ≤AUC ≤ 0:9 indicates that the metabolite
has relatively high accuracy; AUC > 0:9 indicates high
accuracy.

In addition, the selected metabolites were mapped into
the KEGG database for a comprehensive analysis, including
pathway enrichment analysis and topological analysis, which
can be presented by the bubble plot. Each bubble in the bub-
ble plot represents a metabolic pathway, and the X-axis and
bubble size represent the impact factor of topological analy-
sis, and the Y-axis and bubble colour indicate the p value of
the enrichment analysis.

3. Results

3.1. Study Population Characteristics. Our study included 50
healthy participants and 98 CRC patients. Table 1 presents
the demographic characteristics of the 2 groups, including
the gender, age, BMI value, and level of serum carcinoma
embryonic antigen (CEA). There were no significant differ-
ences between the CRC group and the control healthy group
in the variables of age (61.61 vs. 61.52, p = 0:955) and BMI
(24.56 vs. 25.31, p = 0:309). Among the 98 CRC patients,
41 patients were diagnosed with colon cancer, and 57
patients were diagnosed with rectal cancer. In addition, the
mean value of CEA of CRC patients was 8.91mmol/L which
is larger than that of the control group, but not statistically
significant.

3.2. Metabolites Expressed in the CRC Group and Control
Group. In total, 178 metabolites were detected by LC-MS.
The PCA performed on all samples revealed that the healthy
control samples were tightly clustered in the PCA score
plots (Figure 1(a)); however, the CRC samples were fairly
dispersed. Moreover, the metabolic profiles of the CRC
group and control group were not well distinguished.
Further OPLS-DA score plots (Figure 1(b)) show a clear
separation between the CRC group and the control group.
The permutation test assures the validity of the OPLS-DA
model with all permuted Q2 and R2 values lower than the
original values, and the Q2 (cum) intercepted the Y-axis
at -0.73 (Figure 1(c)).

3.3. Discovery and Identification of Different Metabolites.
Through the multivariate statistical analysis, we successfully
established OPLS-DA models for intergroup differentiation
and identified significant metabolic differences between the
CRC group and the control group. The significantly altered
metabolites were selected as biomarker candidates with Stu-
dent’s t-test (p < 0:05) and the VIP threshold (VIP > 1) in
the aforementioned OPLS-DA model; FC > 1:2 or <0.5 was
also the screening index. In total, 9 metabolites were identi-
fied as the potential biomarkers and are summarized in
Table 2. Among the levels of these differential metabolites
in CRC patients compared to the control group, 2 metabo-
lites were downregulated, and 7 metabolites were upregu-
lated, including hydroxy acids, fatty acyls, benzene, and
substituted derivatives and organooxygen compounds.

3.4. Metabolic Biomarkers of Diagnostic Value. The diagnos-
tic potential of these 9 identified metabolites for CRC
patients was evaluated by the ROC curve analysis. The AUC
was used to test the reliability of the differential metabolites.
The metabolites with AUC values > 0:7 were hexadecanedioic
acid, 4-dodecylbenzenesulfonic acid, 2-pyrocatechuic acid
(2,3-dihydroxybenzoic acid (2,3-DHBA)), and formylanthra-
nilic acid, as shown in Figure 2). These four metabolites have
high diagnostic value in the diagnosis of colorectal cancer.
Compared with the healthy group, hexadecanedioic acid, 4-
dodecylbenzenesulfonic acid, and formylanthranilic acid
levels increased in CRC patients. In contrast, the 2-
pyrocatechuic acid level decreased in CRC patients
(Figure 2). It was proven that these fourmetabolites had a high
diagnostic value in the diagnosis of CRC.

3.5. Metabolic Pathway Analysis of Differential Metabolites.
Through enrichment analysis and topological analysis of
the pathway where the selected differential metabolites are
located, we can further screen the metabolic pathway and
find the key pathway with the highest correlation with the
differential metabolites. According to the KEGG database,
2 metabolic pathways can be matched, which suggests that
these pathways may be involved in the metabolic network
of colorectal carcinoma, as shown in Figure 3. This meta-
bolic pathway information will provide directions for subse-
quent research. Table 3 shows the results of the topological
analysis and enrichment analysis of differential metabolites.

Table 1: Demographic characteristics of the included subjects.

CRC group
N = 98

Control group
N = 50 p value

Male/female 64/34 32/18

Age (year, mean ± SD) 61:61 ± 9:86 61:52 ± 6:81 0.955

BMI (kg/m2, mean ± SD) 24:56 ± 3:31 25:13 ± 3:01 0.309

CEA (ng/mL, mean ± SD) 8:91 ± 20:07 3:34 ± 1:85 0.085

Cancer location

Colon (number) 41 —

Rectum (number) 57 —
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Figure 1: (a) The PCA performed on two groups: 98 CRC patients (purple dots) and 50 healthy controls (red dots). (b) The OPLS-DA
model was constructed using data from 98 CRC patients (purple dots) and 50 healthy controls (red dots). (c) The permutation test plot
of OPLS-DA (permutation test with 200 times, p value CV-ANOVA = 0:004); the green dots represent the value of R2Y , and the blue
dots represent the value of Q2.

Table 2: The identified differential metabolites between the CRC group and the healthy control.

Name
KEGG

Compound ID
RT M/Z VIP p value Fold change Log_fold change

3-Hydroxybutyric acid C01089 243.25 103.04 1.56 0.001 2.01 1.007

Hexadecanedioic acid C19615 206.06 285.21 1.53 0.018 1.73 0.7923

Succinic acid semialdehyde C00232 82.39 101.02 1.46 0.014 1.25 0.316

4-Dodecylbenzenesulfonic acid N/A 28.15 325.18 1.62 1:06301E − 06 1.64 0.711

Prostaglandin B2 C05954 178.14 333.21 1.08 0.034 1.26 0.335

2-Pyrocatechuic acid C00196 61.20 153.02 1.86 0.0002 0.49 -1.042

Xanthoxylin C10726 148.02 195.07 1.38 0.049 0.49 -1.014

12-Hydroxydodecanoic acid C08317 71.41 215.17 1.03 0.002 1.33 0.417

Formylanthranilic acid C05653 71.61 164.03 1.47 1:22427E − 06 2.084 1.059
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Figure 2: Continued.
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4. Discussion

In this study, we aimed to discover and identify serum
metabolite biomarkers for the early diagnosis of colorectal
cancer based on the metabonomics analysis of CRC patients
in comparison with healthy people using the LC-MS
platform. In addition, the related metabolic pathways were
recognized.

Our results showed that 9 metabolites were significantly
altered in CRC patients compared to healthy people; among
these differential metabolites, hexadecanedioic acid, 4-

dodecylbenzenesulfonic acid, 2-pyrocatechuic acid, and for-
mylanthranilic acid have certain diagnostic values. To our
knowledge, our study is the first to display the different
serum metabolomics between CRC patients and healthy
people after adjusting for gender, age, and BMI, which can
influence the metabolism. Notably, we observed that 2 met-
abolic pathways were associated with CRC patients, alanine,
aspartate, and glutamate metabolism and vitamin B6
metabolism.

Hexadecanedioic acid, which is a type of long-chain
dicarboxylic acid, was activated by the mitochondrial and
microsomal fractions [20]. Our results indicated that the rise
of plasma hexadecanedioic acid could be utilized as a poten-
tial signature for CRC diagnosis, but the causal relationship
between them is unclear. To our knowledge, hexadecane-
dioic acid has been demonstrated to exhibit antimycotic
activity [21, 22] in few studies. Some metabolites from the
fungus can inhibit cancer cell growth and migration [23]
and induce cancer cell apoptotic death [24] in vitro. A previ-
ous study [25] also reported that hexadecanedioic acid was
one of the identified biomarkers of the diagnostic panel for
the early-stage CRC patients; however, it showed a decreas-
ing trend compared to healthy individuals. The downregula-
tion of hexadecanedioic acid may be caused by the larger
energy requirements for cancer cell proliferation because it
is consumed by the mitochondria through beta oxidation
to produce ATP to supply energy for the body. Whether
hexadecanedioic acid is a condition for the occurrence of
colorectal cancer or a phenomenon after tumours have
occurred requires further study and discussion.

The differential metabolite with the highest diagnostic
accuracy for colorectal cancer in our study was formylan-
thranilic acid, which was upregulated in CRC patients com-
pared with healthy controls. Formylanthranilic acid is the
metabolite of tryptophan by the kynurenine pathway [26].
The increased level of formylanthranilic acid suggests the
activity of the tryptophan-kynurenine metabolic pathway.
Studies have shown that the tryptophan-kynurenine path-
way plays a crucial role in promoting colorectal cancer pro-
gression [27, 28]. In addition, colon cancer cells display

1.0 Formylanthranilic acid Formylanthranilic acid

1.0 Healthy group CRC group

0.8

0.8

0.6

0.6

0.4
AUC: 0.757

(0.677-0.836)

p < 0.001

0.4

False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

A
na

ly
at

e c
on

ce
nt

ra
tio

n

0.2

0.2
0.0

0.0

3.00

2.25

1.50

0.75

0.00

⁎

(d)

Figure 2: ROC curves and box plots of the identified 4 potential biomarkers: (a) hexadecanedioic acid; (b) 4-dodecylbenzenesulfonic acid;
(c) 2-pyrocatechuic acid; (d) formylanthranilic acid.
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greater uptake and processing of tryptophan than normal
colonic cells and tissues [29]. Formylanthranilic acid was
first reported as a serum biomarker with diagnostic potential
in CRC patients by our study. Its elevation may be due to the
increased uptake and consumption of tryptophan by tumour
cells, combined with the activation of tryptophan-
kynurenine metabolic pathways. Meanwhile, the upregula-
tion of formylanthranilic acid proves that the tryptophan
metabolism plays an important role in the development of
colon cancer [30], and tryptophan metabolism along the
kynurenine pathway can be a particularly promising target
for future immunotherapy [31]. Another biomarker of
upregulated serum levels is 4-dodecylbenzenesulfonic acid,
which is a derivative of benzenesulfonic acids, and the main
metabolic pathways in which it participates are unclear. A
recent study reported benzenesulfonic acid derivatives as
human neutrophil elastase inhibitors to treat acute respira-
tory distress syndrome [32]; however, there is still no
research related to the tumour metabolic pathways involving
benzenesulfonic acids. This topic can be a future direction of
research on the pathogenesis of colorectal cancer.

Our study found that the only diagnostic metabolic bio-
marker with a downregulated trend in CRC patients com-
pared to healthy controls was 2,3-DHBA. As a metabolite
of aspirin and salicylic acid, it has been shown to inhibit
colon cancer cell growth [33, 34]. A consensus has not been
reached on the anticancer mechanisms of 2,3-DHBA. Some
studies have demonstrated that the aspirin metabolite 2,3-
DHBA can inhibit cyclin-dependent kinase enzyme activity
and cancer cell growth [35]. Another mechanism may be
due to its antioxidant properties, since it is an effective scav-
enger of free radicals and reactive nitrogen species [36, 37].
Even without taking aspirin or salicylic acid, 2,3-DHBA
compounds are present as normal constituents of serum
[38], which may arise from diet. Interestingly, salicylic acid
has been widely found in many foods, mainly fruits and veg-
etables [39]. The decrease in 2,3-DHBA in CRC patients in
our study may be caused by the low intake of vegetables
and fruits, which can support the current hot viewpoint that
a high-fat and low-fibre diet may increase the risk of colon
cancer incidence [40, 41].

Significant changes of other serum metabolites were also
observed in CRC patients, including upregulated levels of 3-
hydroxybutyric acid, succinic acid semialdehyde, prostaglan-
din B2, and 12-hydroxydodecanoic acid and downregulated
levels of xanthoxylin. All of these metabolites for CRC
obtained from the untargeted metabolic analysis are

reported in our study for the first time and guide our focus
on two main metabolic pathways that may play critical roles
in colorectal cancer: the vitamin B6 metabolic pathway and
the alanine, aspartate, and glutamate metabolism pathways.
Both pathways contain succinic acid semialdehyde. Vitamin
B6 has been found to be related to colorectal cancer risk
[42]. Pyridoxine is the metabolite of the vitamin B6 meta-
bolic pathway, and there was a negative correlation between
serum pyridoxine level and the risk of CRC [43, 44]. Pyri-
doxine is converted to succinic semialdehyde in the vitamin
B metabolic pathway [45]. The increased succinic acid sem-
ialdehyde level suggests that the vitamin B metabolic path-
way is an activated state in colorectal cancer tissue, which
decreases pyridoxine with protective effects. Moreover, the
bubble diagram suggested that pathways involving metabo-
lism of alanine, aspartate, and glutamate changed dramati-
cally in CRC cases, which has been selected as one of the
disturbed metabolic pathways in mice with colon cancer in
an orthotopic transplantation model (46). In human colo-
rectal cancer cells, alanine, aspartic acid, and proline were
converted to glutamic acid by the stable isotope technique
[46], and an increased level of serum glutamate was also
detected in colorectal cancer cases [47]. Then, glutamate is
converted to γ-aminobutyric acid (GABA) by the rate-
limiting enzyme glutamate decarboxylase 1 (GAD1), which
is overexpressed in tumour tissues [48, 49]. In the final step
of the GABA shunt pathway, succinic semialdehyde is oxi-
dized to succinate [50]. Thus, we suspect that the alanine,
aspartate, and glutamate metabolic pathways were also acti-
vated, and most metabolites involved in this metabolic path-
way were elevated in colorectal cancer, and the important
key enzymes in the pathway may be the therapeutic targets.

There are some limitations to our study. First, all the
included CRC patients were diagnosed with biopsy results
under endoscopy, and the exact tumour stages that could
influence the serum metabolites were deficient. Later
research can be based on a larger sample size, grouping
tumour stages and comparing the differences in serum
metabolites among the groups. Second, these identified
metabolites with potential diagnostic value must be validated
in large-scale external cohorts with multicentre investiga-
tions. Third, the CRC patients who participated in our study
lacked information about treatment therapy, including sur-
gery and neoadjuvant chemotherapy, which prevented us
from exploring the influences of selected biomarkers on
the quality of treatment outcomes. In addition, the follow-
up information must be improved to determine whether

Table 3: Results of the topological analysis and enrichment analysis of differential metabolites.

Pathway Total Hits Raw p -ln(p) Impact

Alanine, aspartate, and glutamate metabolism 24 1 0.149 1.907 0.057

Vitamin B6 metabolism 32 1 0.193 1.644 0

Butanoate metabolism 40 1 0.236 1.445 0.033

Arachidonic acid metabolism 62 1 0.342 1.072 0

Tyrosine metabolism 76 1 0.402 0.910 0.005

Tryptophan metabolism 79 1 0.415 0.880 0.008
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these selected metabolites predict the prognosis of colorectal
cancer patients.

In conclusion, we analysed the differential serum
metabolites between CRC patients and healthy controls by
metabonomics analysis on an LC-MS platform and
identified four potential metabolic biomarkers that could
discriminate CRC patients: increased hexadecanedioic acid,
4-dodecylbenzenesulfonic acid, and formylanthranilic acid,
in parallel with decreased 2-pyrocatechui acid. More impor-
tantly, we found two crucial differential metabolic pathways:
the vitamin B metabolic pathway and the alanine, aspartate,
and glutamate metabolism pathway, both of which were
activated in CRC patients. Thus, metabolomics analysis is a
promising approach to investigate tumour biomarkers.
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