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Abstract

In the stock market, return reversal occurs when investors sell overbought stocks and buy

oversold stocks, reversing the stocks’ price trends. In this paper, we develop a new method

to identify key drivers of return reversal by incorporating a comprehensive set of factors

derived from different economic theories into one unified dynamical Bayesian factor graph.

We then use the model to depict factor relationships and their dynamics, from which we

make some interesting discoveries about the mechanism behind return reversals. Through

extensive experiments on the US stock market, we conclude that among the various factors,

the liquidity factors consistently emerge as key drivers of return reversal, which is in support

of the theory of liquidity effect. Specifically, we find that stocks with high turnover rates or

high Amihud illiquidity measures have a greater probability of experiencing return reversals.

Apart from the consistent drivers, we find other drivers of return reversal that generally

change from year to year, and they serve as important characteristics for evaluating the

trends of stock returns. Besides, we also identify some seldom discussed yet enlightening

inter-factor relationships, one of which shows that stocks in Finance and Insurance indus-

try are more likely to have high Amihud illiquidity measures in comparison with those in other

industries. These conclusions are robust for return reversals under different thresholds.

Introduction

In the stock market, return reversal occurs when investors sell overbought stocks and buy

oversold stocks, reversing the stocks’ price trends. Apart from the extensive research on market

price analysis [1–7], return reversal has also attracted lots of attention. Bondt and Thaler [8, 9]

initially documented long-term return reversal in the US stock market, indicating that stocks

performed well in the past three to five years tend to have low future returns. Lehmann [10]

and Jegadeesh [11] first recorded that short-term return reversal, specifically, weekly and

monthly reversals, also exist among US stocks. Not only in US, researchers have found the phe-

nomenon worldwide [12–16]. For instance, Chang et al. [16] provided empirical evidence on

return reversal in the Japanese stock market.

A critical question about return reversal is: what are the driving forces? There are many the-

ories proposed, however, no unanimous conclusions have been reached. Among the theories,
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the following ones received more supports compared with the others: 1) overreaction hypoth-

esis. Overreaction hypothesis [8, 17–22] states that investors tend to overreact to recent eco-

nomic developments, leading to extreme movements in stock prices in the short-run and price

movements in the opposite direction in the long-run. 2) liquidity effect. Liquidity effect [23–

27] states that the non-informational trading demanding for immediacy would drive the mar-

ket prices to deviate from the fundamentals. When the non-informational trading is absorbed

by liquidity suppliers, return reversal happens. 3) January effect. According to Tax-loss selling

hypothesis [28–30], January effect [27, 29, 31, 32] states that investors tend to intensively sell

stocks in December, especially those performing badly, to offset taxable realized capital gains,

which induces a decline in stock prices. In January, the selling pressure disappears and inves-

tors tend to repurchase stocks, driving stock prices up. Other theories including inventory

imbalances [27], lead-lag effect between large and small firms [33], and microstructure features

of the stock market such as bid-ask spread [15, 34–36] have also been proposed as drivers of

return reversal.

Although existing studies have generated some enlightening conclusions, they face some

typical problems. First, they usually analyzed a limited number of driving factors correspond-

ing to just one or two economic theories [24, 25, 37], leaving other driving factors deliberately

neglected. Second, they generally assumed that analyzed factors are linearly correlated, which

is a strong abstraction of the non-linear and time-varying characteristics of real-world market

[38–43]. Third, to the best of our knowledge, they have seldom mentioned the relationships

among the driving factors, which are likewise important for a more complete understanding

of the mechanism in deep.

Motivated by the analysis, in this paper, we develop a new method to identify key drivers of

return reversal, which is based on dynamical Bayesian factor graph. The basic structure of

dynamical Bayesian factor graph is a Bayesian factor graph [44], which is a subclass of Bayesian

network [45]. As a systematic non-linear and data-driven causal discovery method, Bayesian

factor graph can deal with multiple factors in a unified framework, and is quite effective in

uncovering factor relationships.

Fig 1 serves as an example of Bayesian factor graph, which is associated with a small factor

set F = {Industry, Capitalization, Volume, Return} and depicts the influential factors of the

return of a stock. Industry stands for the industry category the stock is in. Capitalization, Vol-
ume and Return represent the market capitalization, trading volume and return of the stock

respectively.

In Fig 1, the nodes correspond to the factors, while the edges indicate influential relation-

ships among the factors. According to Fig 1, Return is causally dependent on Capitalization
and Volume. Industry is relevant to Capitalization. In addition, Industry and Return are condi-

tionally independent given Capitalization.

To adapt Bayesian factor graph to complex time-varying systems, we compute a time series

of emergent factor graphs over a specific period of time, and term them as dynamical Bayesian

factor graph [39], with which the evolution of factor relationships can be captured.

As related studies [22, 24], we merely focus on stocks with large capitalization to avoid

microstructure concerns of the stock market. Additionally, we analyze the stock returns that

are adjusted by the Fama-French three-factor model [46] instead of raw returns, since Blitz

et al. [22] found that return reversals cleared of influences from the Fama-French factors have

greater chances to make profits.

In specific, our work consists of four steps: 1) a comprehensive set of potential driving fac-

tors of return reversal corresponding to various economic theories are constructed, and the

class factor indicating whether return reversal arises is defined. 2) dynamical Bayesian factor

graph is applied to generate a global picture depicting factor relationships as well as their
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evolution. 3) from each member graph of the dynamical structure, the factors in the Markov

blanket [47] of the class factor are identified as key drivers of return reversal, as conditioned

on those factors the class factor is independent of any other factors. Moreover, through the

mechanism of inference, the marginal probabilities and conditional probability table (CPT) of

the class factor given the key drivers are calculated. By comparing the marginal and condi-

tional probabilities, how the key drivers function in specific can be revealed. 4) some represen-

tative potential driving factors that consistently influence key reversal drivers are selected, and

their influential effects on the reversal drivers are systematically studied.

The contribution of our work lies in three aspects. First, we employ dynamical Bayesian fac-

tor graph to capture the relationships as well as the dynamics of the relationships among vari-

ous factors related to return reversal, from which we get a clearer picture of the mutual

interaction of the financial factors. Second, based on dynamical Bayesian factor graph, we pro-

pose some definitions that are quite useful in analyzing key drivers of return reversal. These

definitions aim at dealing with three problems, including evaluating the credibility of gener-

ated graphs, locating key drivers of a specific factor and capturing key driver dynamics, and

figuring out how the key drivers function from a quantitative perspective. Third, through

extensive experiments on the US market, we conclude that the liquidity factors consistently

emerge as key drivers of return reversal, which is in line with the theory of liquidity effect. Spe-

cifically, we find that stocks with high turnover rates or high Amihud illiquidity measures [48]

have a greater probability of experiencing return reversals. Apart from the consistent drivers,

we find other drivers of return reversal that generally change from year to year, and they serve

as important characteristics to evaluate the trends of stock returns. Besides, we also learn that

among all the potential driving factors, those corresponding to overreaction hypothesis and

stock industry impose most consistent influential effects on the liquidity factors. One of the

influential effects shows that stocks in Finance and Insurance industry are more likely to have

high Amihud illiquidity measures compared with those in other industries. These conclusions

Fig 1. An example of Bayesian factor graph. The edge from Industry to Capitalization makes the former a

parent of the latter, and the latter a child of the former. The rule is also applied to all the other edges.

doi:10.1371/journal.pone.0167050.g001
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are robust for return reversals under different thresholds and provide insights in estimating

future return reversals.

Note that there is a kind of investment strategy called contrarian strategy, the essence of

which is to selectively buy stocks performing badly and sell stocks performing well with the

purpose of taking advantage of return reversals to make profits [11, 13, 21, 22, 27, 49, 50]. By

accurately identifying key drivers of return reversal in advance, our research can hopefully

help design more profitable contrarian strategies.

The rest of the paper is organized as follows. The next section describes dynamical Bayesian

factor graph and the way of identifying key drivers of return reversal in detail, followed by two

sections introducing our research data and presenting empirical results based on stocks in the

US market, respectively. The last section concludes the paper.

1 Methods

In this section, we first describe the concepts of Bayesian factor graph, then introduce dynam-

ical Bayesian factor graph and related definitions, and finally give the way of identifying key

drivers of return reversal.

1.1 Bayesian factor graph

Bayesian factor graph, as a subclass of Bayesian network, is a probabilistic qualitative model

which is designed to uncover relationships among a set of financial factors. The edges in a fac-

tor graph reflect inter-factor relationships, including causality, relevance and conditional

independence.

Described formally, a Bayesian factor graph is a directed acyclic graph in which the joint dis-

tribution of d factors, X = {X1,X2,. . .,Xd}, is encoded. Nodes of the graph stand for the factors,

while the graph structure reveals the qualitative information among the factors. Two uncon-

nected nodes imply that corresponding factors are conditionally independent. If there exists an

edge from node Xi to Xj, then Xi is called a parent of Xj, and Xj is a child of Xi. The conditional

probabilities of the nodes given their parents are the quantitative information of the graph.

With the parent node set of Xi denoted as XGi
, the whole factor graph can be represented as

G = {G1, G2, . . ., Gd}, and the joint probability of X given G can be represented as:

pðX j GÞ ¼ pðX1; . . . ;Xd j GÞ ¼
Yd

i¼1

pðXi j XGi
Þ: ð1Þ

The structure of G is initially unknown, and needs to be learned based on the observations

of X. In this paper, we employ incremental association Markov blanket (IAMB) algorithm

[51], which is one of the optimized derivatives of inductive causation algorithm [52], to learn

graph structures. The learning procedure generally comprises three steps [53]:

First, the undirected structure of a factor graph is learned by detecting the Markov blankets

of factors.

During the detection process, we use the mutual information of two factors, computed by

Eq (2), as the measure of factor association. Besides, we adopt Chi-square test to judge whether

two factors are conditionally independent. The significance level of the independence test is

set to 5%. We use the P-value of the test to measure the strength of the corresponding edge.

The smaller the P-value is, the stronger the strength is.

MIðX; YjZÞ ¼
X

x2X

X

y2Y

X

z2Z

pX;Y;Zðx; y; zÞ log
pZðzÞpX;Y ;Zðx; y; zÞ
pX;Zðx; zÞpY;Zðy; zÞ

ð2Þ
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In Eq (2), pX,Y,Z(x, y, z), pX,Z(x, z), pY,Z(y, z) stand for the joint probability distribution func-

tions of factor X, Y and Z, X and Z, Y and Z, respectively. pZ(z) is the marginal probability den-

sity function of Z. It is always true that MI(X; Y|Z)� 0 and MI(X; Y|Z) = MI(Y; X|Z).

Second, set the directions of edges which are part of a V − structure in light of the d-sepa-

ration criterion [54]. There are three kinds of basic structures in a acyclic directed graph:

X! Y! Z, X Y! Z, and X! Y Z. The former two represent the same constraints of

conditional independence that X and Z are conditionally independent given Y. According to

Pearl and Verma [52], they are equivalent and indistinguishable based on observational data.

The latter one, which is referred to as a V-structure, indicates that X is marginally indepen-

dent of Z. Therefore, it is not equivalent to the former two structures and can be uniquely

identified.

Third, add directions to other edges to meet the acyclic restriction of a factor graph.

1.2 Dynamical Bayesian factor graph and related definitions

Given a data set D = {xτ: T0 < T1� τ� T2} for a factor set X = {X1,X2,. . .,Xd} that covers the

period of [T0, T2], in order to model the dynamics of the relationships among the d factors

over [T1, T2], one Bayesian factor graph Gt can be built for each t (T1� t� T2) based on the

subset of data Dt = {xτ: t0� τ< t}. In this way, a series of discrete time ti, (i = 1, 2, . . ., n,

T1� ti� T2) will lead to a time series of Bayesian factor graphs Gti
ði ¼ 1; 2; . . . ; nÞ, and we

term these Gti
dynamical Bayesian factor graph, which is seen as a dynamical model for X

during [T1, T2].

Suppose we have dynamical Bayesian factor graph Gt ¼ fGti
¼ ðN;EiÞ; 1 � i � ng, where

N is the node set of Gt, and Ei is the edge set of member graph Gti
. To measure how credible Gti

and Gt are, we propose Definition 1.

Definition 1. The credibility of Gti
and Gt are calculated by Eqs (3) and (4) respectively,

CredðGti
Þ ¼

X

e2Ei

PsðeÞ

jEij
ð3Þ

CredðGtÞ ¼

Xn

i¼1

CredðGti
Þ

n
ð4Þ

where e represents an edge in Ei, |Ei| equals the number of edges and Ps(e) stands for the P-

value of the independence test for the two factors that e links. As the equations show, CredðGti
Þ

is the average of the P-values for Ei, while Cred(Gt) is the average of CredðGti
Þð1 � i � nÞ.

From an overall perspective, Gti
and Gt with smaller credibility values reflect more credible fac-

tor relationships.

Given the Markov blanket of a node in a factor graph, which includes its parents, its chil-

dren and the children’s other parents, the node is independent of any other nodes. In other

words, the Markov blanket provides all the needed information to forecast the behavior of the

node. In light of the fact, we introduce Definition 2.

Definition 2. The nodes in the Markov blanket of node m (m 2 N) in terms of Gti
are

termed key drivers of m for ti, and denoted by keyti
ðmÞ. Given two member graphs Gti

,

Gtj
ðt1 � ti; tj � tn; ti 6¼ tjÞ, the similarity between keyti

ðmÞ and keytj
ðmÞ is computed by Eq (5),
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which is similar to the Jaccard-index.

simðkeyti
ðmÞ; keytj

ðmÞÞ ¼
jmuðkeyti

ðmÞ; keytj
ðmÞÞj

jðkeyti
ðmÞj þ jðkeytj

ðmÞj � jmuðkeyti
ðmÞ; keytj

ðmÞÞj
ð5Þ

In Eq (5), jmuðkeyti
ðmÞ; keytj

ðmÞÞj represents the number of mutual nodes of keyti
ðmÞ and

keytj
ðmÞ.

The similarity measure, which varies between 0 and 1, reflects the dynamics of the key driv-
ers. In specific, similarity = 0 indicates that two key drivers sets are totally different, while simi-
larity = 1 means that the two sets are identical. The larger similarity is, the more similar the

two sets are.

For a node in a factor graph, its marginal probabilities indicate the chances that the node

takes possible values given no information, while its CPT conditioned on its key drivers indi-

cates the chances that the node takes those values given the information provided by the key
drivers. Suppose we concern what values of the key drivers would more likely lead to the node

taking a specific value. We can first locate the marginal and conditional probabilities corre-

sponding with the value, and then look up the conditional probabilities that are higher than

the marginal probability. In this way, the desired key drivers values can be intuitively revealed.

Based on the discussion, we propose the following definition.

Definition 3. Focusing on the situation that node m = md (m 2 N), where md is a specific

value that m can take, the marginal probability of m = md for ti, denoted by Pti
ðm ¼ mdÞ, is

termed free probability, and the conditional probabilities of m = md for ti given keyti
ðmÞ,

denoted by Pti
ðm ¼ mdjkeyti

ðmÞÞ, are termed driving probabilities. Let

Pdti
ðm ¼ mdÞ ¼ max

k2Kti

Pti
ðm ¼ mdjkeyti

ðmÞ ¼ kÞ ð6Þ

Kdti
ðm ¼ mdÞ ¼ arg max

k2Kti

Pti
ðm ¼ mdjkeyti

ðmÞ ¼ kÞ ð7Þ

where Kti
represents the set of values that keyti

ðmÞ can take and k is one of Kti
. Pdti
ðm ¼ mdÞ

and Kdti
ðm ¼ mdÞare termed desired probability and desired values, respectively.

The desired probability indicates the greatest probability that m = md for ti given the key driv-
ers, while the desired values show corresponding key drivers values. After calculating the various

probabilities in Definition 3 for ti (1� i� n), we obtain a time series of free probabilities
Pðm ¼ mdÞ ¼ fPti

ðm ¼ mdÞ; 1 � i � ng, and a series of desired probabilities
Pdðm ¼ mdÞ ¼ fPdti

ðm ¼ mdÞ; 1 � i � ng. Through comparing the statistics such as the

mean values of the two series, we can get an overall picture about how the key drivers of m
function.

1.3 Dynamical Bayesian factor graph in identifying key drivers of return

reversal

We first introduce the definition of return reversal, and then describe the way of identifying

key drivers of return reversal using dynamical Bayesian factor graph.

1.3.1 The definition of return reversal. Denoting the price, raw return, trading volume

and publicly held shares of stock i at month t as Pit, rit, Vit and V 0

it respectively, and calculating

rit through Eq (8), we define the class factor IsReversalit, which equals 1 or -1, to indicate

whether return reversal would happen to i at t + 1 or not. For clarity, an instance where
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IsReversalit equals 1 is termed a reversal instance hereafter.

rit ¼
Pit � Pi;t� 1

Pi;t� 1

� 100% ð8Þ

To determine the value of IsReversalit, we first adjust the raw return through the Fama-

French three-factor model in Eq (9):

rit � RFt ¼ ai þ br � ðRMt � RFtÞ þ bs � SMBt þ bh � HMLt þ rsit ð9Þ

where RMt and RFt are market return and risk-free return at t respectively, and (RMt − RFt) is

the market risk factor. SMBt and HMLt are the company size factor and value factor respec-

tively, with SMB standing for “Small (market capitalization) Minus Big” and HML for “High

(book-to-market ratio) Minus Low”. The factor values can be found at Kenneth French’s web

site (http://www.mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html). αi, βr,
βs and βh are parameters to be estimated, and rsit is the adjusted return of i at t. As related

research [22], we train the model using the data in [t − 36, t − 1] to compute rsit.
IsReversalit will equal 1 as long as the following two restrictions are satisfied, or equal -1 oth-

erwise.

rsit � rsi;tþ1 < 0 ð10Þ

jrsit � rsi;tþ1j > rth ð11Þ

The first restriction guarantees that the return of i will reverse in subsequent month, while

the second one rules out stochastic return reversals with threshold rth.

1.3.2 The way of identifying key drivers of return reversal. We go through four steps to

identify key drivers of return reversal.

First, we build dynamical Bayesian factor graph involving IsReversalit and potential driving

factors of return reversal (introduced in the next section) over a specific period of time.

Second, we evaluate the credibility of the dynamical structure and each of its member graphs.

Third, we identify the key drivers of IsReversalit from the member graphs, and calculate simi-
larity between the key drivers sets for different time to capture the dynamics of the reversal

drivers.

Fourth, in terms of each member graph, we compute the free probability, driving probabili-
ties and desired probability of IsReversalit = 1, and identify corresponding desired values. After

getting the time series of the free and desired probabilities, we compare the mean values of the

two series to figure out how the key drivers affect return reversal from an overall perspective.

2 Data

Table 1 shows the set of potential driving factors of return reversal as well as their correspond-

ing economic theories, types of values and short descriptions. We give some detailed explana-

tions of the factors in S1 File.

Each year from 2000 to 2010, we select 100 stocks with largest capitalization from NYSE

and AMEX markets, and collect the data of IsReversalit and the potential driving factors for

each of the stocks. Specifically, we collect earning announcement dates of firms from the Insti-

tutional Brokers’ Estimate System, and the rest of the data from Center for Research in Secu-

rity Prices. Totally, we build a panel data set containing around 13,000 instances.

Table 2 lists yearly maximum and minimum capitalization and corresponding stocks’ tick-

ers in our data set. The unit of the capitalization is one billion dollars.

Identifying Key Drivers of Return Reversal
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To show how the quantify of reversal instances changes with rth, we choose five values for

the threshold: 2%, 4%, 6%, 8%, and 10%, and plot corresponding proportions of reversal

instances in Fig 2.

Fig 2 shows that when rth� 4%, over 40 percent of the instances are considered as reversal

instances. When experimenting with those instances, we find no key drivers of IsReversalit for

several years, suggesting that there are many random fluctuations among the reversal

instances. As a result, we focus on return reversals with rth = 6%, 8% and 10% in succeeding

experiments.

3 Results

In this section, we build dynamical Bayesian factor graph of IsReversalit and the potential driv-

ing factors to identify key drivers of return reversal.

Setting T0, T1 and T2 to be the year of 2000, 2005 and 2011 respectively, we use the period

[T0, T1) as the in-sample period, and [T1, T2] as the out-of-sample period. As related research

[44, 55], we discretize all the continuous factors into two levels, namely high and low levels

(represented by 1 and 0), through equal-frequency method.

For each year T in [T1, T2], a Bayesian factor graph is learned on the basis of data in [T − 5,

T − 1]. During the learning process, we ban the edges pointing from IsReversalit to the other

Table 1. The potential driving factors of return reversal.

Economic theories Factors Types of values Descriptions

Overreaction hypothesis HighNearit Continuous The nearness of Pit to 5-year high

LowNearit Continuous The nearness of Pit to 5-year low

Liquidity effect Turnoverit Continuous The turnover rate of i at t

Illiquidityit Continuous The Amihud illiquidity measure of i at t

January effect IsDect Dummy Record whether t is December

Consistency effect PosConsisit Dummy Record whether i experiences 4-month positive consistency at t

NegConsisit Dummy Record whether i experiences 4-month negative consistency at t

Industry effect Industryi Discrete Indicate to which industry i belongs

Market effect Efficiencyt Continuous A measure of market efficiency at t

Others EarnAnnDateit Dummy Indicate whether the firm behind i releases earning announcement at t

VolGrowthit Continuous The growth of trading volume of i at t

doi:10.1371/journal.pone.0167050.t001

Table 2. Some descriptive information of our data set.

Years Max_cap Max_ticker Min_cap Min_ticker

2000 475 GE 29 WM

2001 398 GE 24 COX

2002 277 MSFT 19 AA

2003 311 GE 26 BNS

2004 386 GE 27 ITW

2005 370 GE 31 FDX

2006 447 XOM 35 YHOO

2007 512 XOM 39 EMC

2008 406 XOM 22 CNQ

2009 323 XOM 29 MET

2010 369 XOM 32 DTV

doi:10.1371/journal.pone.0167050.t002
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factors, in that IsReversalit indicates the future trends of stock returns, and thus would impossi-

bly influence the values of the other factors at current month.

We conduct experiments using R language, and use the package ‘bnlearn’ [53] to generate

network structures.

To begin with, we analyze the results of experiments for return reversal with rth = 6%, and

then check whether obtained conclusions are robust for return reversals under different

thresholds.

3.1 The results of experiments with rth = 6%

Fig 3 shows the generated dynamical Bayesian factor graph

Gr6 ¼ fGr6
2005
;Gr6

2006
;Gr6

2007
;Gr6

2008
;Gr6

2009
;Gr6

2010
;Gr6

2011
g, where the factor circled in red ellipse is the

class factor and the weights on the edges are the P-values of corresponding independence tests.

To make the graphs neater, we ignore the subscripts of all the factors. Besides, we replace the

weights that are below 1e-15 (indicating edges with quite strong strength) by 0 as such weights

would take too much space and intersect, making the graphs hard to read.

In Table 3, we list the credibility values of Gr6 and all of its member graphs, which show that

the average P-values of the graph edges are obviously below the significance level of 5%.

Fig 2. The proportions of reversal instances under different values of rth. As a rth that is too small will lead to many

random fluctuations among reversal instances, the value of the threshold should be carefully chosen. The figure can

help decide what values of rth should be experimented with.

doi:10.1371/journal.pone.0167050.g002
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Fig 3. Dynamical Bayesian factor graph with rth = 6%: Gr6. The arrows indicate the time order of the member

graphs. As a whole, the dynamical structure captures the mutual influential relationships as well as the dynamics

of these relationships among all the factors.

doi:10.1371/journal.pone.0167050.g003
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Next, we summarize the conclusions drawn from Fig 3, in regards of identifying key drivers

of return reversal, applying inference on the generated graphs and learning relationships

among the potential driving factors.

3.1.1 Identifying key drivers of return reversal. First, we identify the key drivers of IsRe-
versal from each member graph in Fig 3, and tag them in red font. In order to capture the

dynamics of the key drivers, we calculate the similarity between the key drivers sets for two adja-

cent years, denoted by Sr6ðtiÞ ¼ simðkeyr6
ti� 1
ðIsReversalÞ; keyr6

ti
ðIsReversalÞÞ (ti = 2006, 2007, . . .,

2011). Fig 4 shows the similarity measures for the out-of-sample years.

Table 3. The credibility values of Gr6 and its member graphs.

Graphs Credibility

Gr6
2005

1.18e-04

Gr6
2006

1.26e-04

Gr6
2007

2.14e-03

Gr6
2008

8.82e-04

Gr6
2009

5.43e-04

Gr6
2010

2.77e-05

Gr6
2011

1.89e-04

Gr6 5.75e-04

doi:10.1371/journal.pone.0167050.t003

Fig 4. The similarity measures for the out-of-sample years.

doi:10.1371/journal.pone.0167050.g004
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From Figs 3 and 4 we learn that: 1) there are always mutual factors among the key drivers
sets for two adjacent years, as all the similarity measures are above 0. As a matter of fact, the

liquidity factors consistently appear as the key drivers, which supports the theory of liquidity

effect. 2) all the similarity measures, except that for year 2011, are below 1, reflecting that apart

from the consistent drivers, other drivers of return reversal generally change from year to year.

It is worth noting that for year 2007, the factors related to three economic theories including

liquidity, industry and market effects appear as the key drivers. 3) the factors corresponding to

theories including January and consistency effects are irrelevant to return reversal during the

out-of-sample period.

3.1.2 Applying inference on the generated graphs. In terms of each member graph in

Fig 3, the local probability distribution of each factor and the joint probability distribution of

all the factors can be determined. Based on these probability distributions, we can perform var-

ious probabilistic inferences. The basic idea of inference is to monitor posterior distributions

of factors of interest given some evidence factors [44] whose states are already known. There

are some commonly used exact inference algorithms for small-scale Bayesian networks, such

as variable elimination and junction tree algorithm [56].

With the inference mechanism, we calculate the free and driving probabilities of IsRever-
sal = 1 (as we care more the situation that return reversal happens) by setting evidences to null

and all possible states of the key drivers respectively. Via comparing the free and driving proba-
bilities, how the key drivers function in specific can be intuitively revealed. We adopt the junc-

tion tree algorithm implemented in the R package ‘gRain’ [57] to achieve the inferences.

Regarding year 2011 as an example, Table 4 shows the free probability Pr6
2011
ðIsReversal ¼ 1Þ

and driving probabilities Pr6
2011
ðIsReversal ¼ 1jkeyr6

2011
ðIsReversalÞÞ, where

keyr6
2011
ðIsReversalÞ ¼ fTurnover;HighNear; Illiquidityg. The row in bold indicates the desired

value Kdr6
2011
ðIsReversal ¼ 1Þ and desired probability Pdr6

2011
ðIsReversal ¼ 1Þ.

Table 4 suggests that stocks with the following features: high turnover rates, high Amihud

illiquidity measures and prices that are not near to 5-year high (HighNear = 0), experience

return reversals with the highest probability, around 9% higher than the free probability.

For the other out-of-sample years, we summarize the free and desired probabilities of IsRe-
versal = 1 given corresponding desired values in Table 5.

Table 5 reveals the following conclusions. First, for each year, high turnover rate or high

Amihud illiquidity measure signals return reversals with a greater probability. Second, for year

2007, Efficiency = 1 shows as part of the desired values, confirming that return reversal is more

likely to happen when the market is comparatively inefficient. Third, on average, the desired
probabilities are around 5% higher than the free probabilities, indicating that the key drivers we

identified have great potential in predicting return reversals.

Table 4. The probabilities of IsReversal = 1 for year 2011.

Driving probabilities: key drivers values –> probabilities

(0,0,0) 24.8%

(0,0,1) 43.0%

(1,0,0) 40.8%

(1,0,1) 45.9%

(0,1,0) 23.5%

(0,1,1) 34.2%

(1,1,0) 37.3%

(1,1,1) 39.6%

free probability: 37.0%

doi:10.1371/journal.pone.0167050.t004
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Assuming that investors have access to all the values of the key drivers, they can make some

effective evaluations about the trends of stock returns based on the results in Tables 4 and 5.

However, it is common that sometimes the key drivers values cannot be fully gained. In this sit-

uation, investors can still make some estimations about IsReversal using the inference mecha-

nism. Let’s take the following scenario for example.

At month t in year 2007, investors possess evidence ei regarding stock i shown in Table 6,

and want to obtain some clues on whether i will experience return reversal at t + 1. Note that ei
does not cover Illiquidity which is in keyr6

2007
ðIsReversalÞ. However, it contains factors including

HighNear and VolGrowth which can directly or indirectly affect Illiquidity.

To get the clues, we adopt the junction tree algorithm to calculate the free probability
Pr6

2007
ðIsReversal ¼ 1Þ and the posterior probability Pr6

2007
ðIsReversal ¼ 1jeiÞ. Table 7 gives the

results, showing that the posterior probability is 5% higher than the free probability. In other

words, conditioned on ei stock i is more likely to experience return reversal compared with the

case that no evidence is provided.

As Fig 3 displays, factor relationships might change over time. As a result, a same piece of

evidence might lead to different inference results in different years. For instance, if we change

the year in the scenario to 2011, the inference results would become those in Table 8, which

imply that ei leads to i going through return reversal with probability 5% lower than the free
probability.

Although the inference results are not accurate enough for prediction purpose, they can

provide investors with insights on what their current knowledge indicates with respect to

future return reversals, and hence help them design investment strategies.

Table 6. Evidence ei.

HighNearit Efficiencyt Industryi EarnAnnDateit IsDect VolGrowthit

1 1 1 1 1 1

doi:10.1371/journal.pone.0167050.t006

Table 7. The inference results for year 2007.

Pr6
2007
ðIsReversal ¼ 1jeiÞ 39%

Pr6
2007
ðIsReversal ¼ 1Þ 34%

doi:10.1371/journal.pone.0167050.t007

Table 8. The inference results for year 2011.

Pr6
2011
ðIsReversal ¼ 1jeiÞ 32%

Pr6
2011
ðIsReversal ¼ 1Þ 37%

doi:10.1371/journal.pone.0167050.t008

Table 5. The probabilities of IsReversal = 1 for the other out-of-sample years.

Years Desired values Desired probabilities Free probabilities Desired-Free

2005 HighNear = 0, Illiquidity = 1 43.6% 40.6% 3%

2006 Illiquidity = 1, Industry = 0 40.4% 37.2% 3.2%

2007 Efficiency = 1, Illiquidity = 1, Industry = 0 41.2% 34.4% 6.8%

2008 Turnover = 1, Industry = 1 39.7% 32.8% 6.9%

2009 Turnover = 1 39.0% 34.0% 5%

2010 Turnover = 1 39.8% 35.7% 4.1%

Mean 40.6% 35.8% 4.8%

doi:10.1371/journal.pone.0167050.t005
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3.1.3 Learning relationships among the potential driving factors. Besides key drivers of

return reversal, relationships among the potential driving factors can also be conveniently

studied based on Fig 3.

As we have learned that the liquidity factors consistently perform as key drivers of return

reversal, subsequently we make some explorations about how the other potential driving fac-

tors influence the liquidity factors.

First, we select the representative factors that interact closely with both Turnover and Illi-
quidity by summarizing the intersection of the key drivers (except IsReversal) of the both fac-

tors over the out-of-sample years. Fig 5 displays the frequencies of the intersection factors.

Fig 5 shows that HighNear, LowNear as well as Industry which respectively represent the

theories of overreaction hypothesis and industry effect impose influential effects on the liquid-

ity factors over the whole out-of-sample period, and thus are chosen as the representative

factors.

Second, we use the junction tree algorithm to calculate the free and conditional probabilities

of Turnover and Illiquidity, conditioned respectively on (HighNear, LowNear) and Industry. As

high turnover rate or high Amihud illiquidity measure is more likely to signal return reversal,

we merely focus on the free and highest conditional probabilities of Turnover = 1 and Illiquid-
ity = 1. Tables 9 and 10 show the results given (HighNear, LowNear), while Tables 11 and 12

list those given Industry.

Fig 5. The frequencies of the intersection key drivers of Illiquidity and Turnover. The higher the frequency is, the

more consistent the interplay between the corresponding factor and the liquidity factors is.

doi:10.1371/journal.pone.0167050.g005
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From Tables 9 and 10, we learn that: (1) stocks whose prices are neither near to 5-year high

nor near to 5-year low tend to have high turnover rates with greater probabilities, averagely

around 12% higher than the free probabilities. (2) for all the out-of-sample years except 2008

and 2009, stocks whose prices are near to 5-year low are more likely to have high Amihud illi-

quidity measures, with probabilities around 6% higher than the free probabilities on average.

Tables 11 and 12 suggest that: (1) stocks in other industries (not Manufacturing and

Finance and Insurance) tend to have high turnover rates with greater probabilities, around

13% higher than the free probabilities averagely. (2) stocks in Finance and Insurance industry

are more likely to have high Amihud illiquidity measures, with probabilities around 10%

higher than the free probabilities on average.

To the best of our knowledge, few efforts have been made to systematically study the inter-

factor relationships above. These relationships can be quite helpful for investors in estimating

future return reversals when the values of the liquidity factors are unavailable.

Table 10. The free and highest conditional probabilities of Illiquidity = 1 given (HighNear, LowNear).

Years (HighNear,LowNear) Conditional probabilities Free Probabilities Conditional-Free

2005 (0,1) 71.6% 68.3% 3.3%

2006 (0,1) 64.2% 60.3% 3.9%

2007 (0,1) 56.7% 51.6% 5.0%

2008 (0,0) 45.6% 42.1% 3.5%

2009 (1,0) 42.6% 38.0% 4.6%

2010 (0,1) 43.3% 36.9% 6.3%

2011 (0,1) 47.1% 34.3% 12.8%

Average 53.0% 47.4% 5.6%

doi:10.1371/journal.pone.0167050.t010

Table 11. The free and highest conditional probabilities of Turnover = 1 given Industry.

Years Industry Conditional probabilities Free probabilities Conditional-Free

2005 0 41.9% 33.9% 8.0%

2006 0 43.7% 34.5% 9.2%

2007 0 48.5% 36.2% 12.3%

2008 0 54.7% 41.1% 13.6%

2009 0 64.5% 49.9% 14.7%

2010 0 75.5% 60.2% 15.3%

2011 0 82.2% 68.4% 13.9%

Average 58.7% 46.3% 12.4%

doi:10.1371/journal.pone.0167050.t011

Table 9. The free and highest conditional probabilities of Turnover = 1 given (HighNear, LowNear).

Years (HighNear,LowNear) Conditional probabilities Free probabilities Conditional-Free

2005 (0,0) 49.0% 33.9% 15.1%

2006 (0,0) 51.1% 34.5% 16.6%

2007 (0,0) 54.9% 36.2% 18.7%

2008 (0,0) 54.4% 41.1% 13.3%

2009 (0,0) 56.3% 49.9% 6.4%

2010 (0,0) 64.8% 60.2% 4.5%

2011 (0,0) 74.6% 68.4% 6.2%

Average 57.9% 46.3% 11.5%

doi:10.1371/journal.pone.0167050.t009
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3.2 Robustness check

To check the robustness of the following two main conclusions in the previous subsection, in

this subsection, we experiment on return reversals with rth = 8%, 10% respectively.

Conclusion 1. The liquidity factors consistently serve as key drivers of return reversal, and

other drivers generally change from year to year.

Conclusion 2. Stocks with high turnover rates or high Amihud illiquidity measures experi-

ence return reversals with a greater probability.

S1 and S2 Figs give corresponding dynamical Bayesian factor graphs, while S1 and S2

Tables show the credibility of the dynamical structures and their member graphs. From the

tables we learn that the factor relationships reflected by the graphs are quite credible. The key
drivers of IsReversal are tagged in red font. S3 and S4 Figs display the similarity measures

between the key drivers sets for two adjacent years.

S1, S2, S3 and S4 Figs intuitively confirm that Conclusion 1 still stands for return reversals

with rth = 8%, 10%. Moreover, it is worth noting that the key drivers under a lower rth generally

constitute part, or all of the key drivers under a higher rth. For example, for year 2009, the key
drivers only include Turnover when rth = 6%, which extend to Turnover and Industry when rth
= 8%, and to Turnover, Industry and Illiquidity when rth = 10%.

S3 and S4 Tables show the free and desired probabilities of IsReversal = 1 given correspond-

ing desired values for the out-of-sample years. It is obvious that both tables support Conclusion

2. What’s more, the tables also indicate that with rth raised, the mean values of both the free
and desired probabilities turn lower, which appears reasonable, whereas the differences

between them go up. This phenomenon implies that for return reversals under more restrictive

conditions, the influential effects imposed by the key drivers become more obvious.

As to relationships among the potential driving factors, many such relationships in the pre-

vious subsection, such as those between Industry and the liquidity factors, vary little, in that all

the factor values except those of IsReversal used in this subsection remain unchanged. For clar-

ity, we do not give detailed analyses.

In summary, we conclude that the main conclusions for return reversal with rth = 6% are

robust for return reversals with rth = 8%, 10%.

4 Conclusions

In this paper, we employ dynamical Bayesian factor graph to identify key drivers of return

reversal. Our empirical results demonstrate that liquidity factors consistently emerge as key

drivers of return reversal, supporting the theory of liquidity effect. In specific, stocks with high

turnover rates or high Amihud illiquidity measures experience return reversals with a greater

probability. Apart from liquidity factors, other drivers of return reversal generally change from

Table 12. The free and highest conditional probabilities of Illiquidity = 1 given Industry.

Years Industry Conditional probabilities Free probabilities Conditional-Free

2005 2 73.8% 68.3% 5.6%

2006 2 66.1% 60.3% 5.8%

2007 2 58.3% 51.6% 6.6%

2008 2 51.1% 42.1% 9.0%

2009 2 49.8% 38.0% 11.8%

2010 2 50.8% 36.9% 13.8%

2011 2 49.8% 34.3% 15.5%

Average 57.1% 47.4% 9.7%

doi:10.1371/journal.pone.0167050.t012
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year to year. We also learn that factors corresponding to overreaction hypothesis and stock

industry impose most consistent influential effects on liquidity factors. One of the influential

effects shows that stocks in Finance and Insurance industry are more likely to have high Ami-

hud illiquidity measures compared with those in other industries. These conclusions are

robust for return reversals under different thresholds. Our work reveals the drivers of return

reversal from a more comprehensive perspective and sheds light on designing more profitable

contrarian investment strategies.

Although our research has generated some enlightening results, there is room for improve-

ments. Currently, we only study stocks in the US market based on discretized factors. In the

coming research, we would study stocks in international markets with continuous factors

analyzed.
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