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Abstract
Background: Tongue squamous cell carcinoma (TSCC) is characterized by ag-
gressive invasion and poor prognosis. Currently, immune checkpoint inhibitors 
may prolong overall survival compared with conventional treatments. However, 
PD1/PDL1 remain inapplicable in predicting the prognosis of TSCC; thus, it is 
urgent to explore the genetic characteristics of TSCC.
Materials and methods: We utilized single- sample gene set enrichment analy-
sis (ssGSEA) to classify TSCC patients from the TCGA database into clusters with 
different immune cell infiltrations. ESTIMATE (immune- related scores) and 
CIBERSORT (immune cell distribution) analyses were used to evaluate the im-
mune landscape among clusters. GO, KEGG, and GSEA analyses were performed 
to analyze the different underlying molecular mechanisms in the clusters. Based 
on the immune characteristics, we applied the LASSO Cox regression to select 
hub genes and construct a prognostic risk model. Finally, we established an in-
teractive network among these hub genes by using Cytoscape, and a pan- cancer 
analysis to further verify and decipher the innate function of these genes.
Results: Using ssGSEA, we constructed three functional clusters with differ-
ent overall survival and immune- cell infiltration. ESTIMATE and CIBERSORT 
analyses revealed the different distributions of immune cells (T cells, B cells, 
and macrophages) with diverse immune- related scores (ESTIMATE, immune, 
stromal, and tumor purity scores). Moreover, pathways including those of the 
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1  |  INTRODUCTION

Head and neck squamous cell carcinoma (HNSCC) is 
the sixth most common malignancy globally, and its in-
cidence has been significantly increasing worldwide.1 
HNSCC arises from the squamous epithelium of the 
oral cavity, oropharynx, larynx, and hypopharynx and 
represents a heterogeneous group of tumors. Tongue 
squamous cell carcinoma (TSCC) is one of the most fre-
quent types of cancer, particularly of the oral cavity, and 
is characterized by aggressive local invasion and early 
lymph- node metastasis with a relatively poor progno-
sis.2,3 Environmental carcinogens such as tobacco, al-
cohol, or HPV infection may induce the development 
of TSCC.4 Conventional treatments for TSCC, includ-
ing surgical techniques, chemoradiotherapy, and some 
other target therapies, result in inevitable short- term 
and long- term morbidity; it has been difficult to improve 
the overall survival (OS) of patients with TSCC, which 
has been approximately 50% over recent decades.5 The 
tumor, lymph node, and metastasis (TNM) classifica-
tion system has been widely used and is considered a 
vital tool in predicting the survival outcomes of TSCC 
patients. However, this system has been criticized be-
cause it cannot be used to decipher the heterogeneous 
outcomes of individual cancers with the same TNM 
stage. Thus, it is crucial to reveal the biologic molecu-
lar mechanism underlying TSCC development and to 
discover novel biomarkers for the prediction of clinical 
outcomes.

Recent research has led to the discovery of several 
novel biomarkers linked to the establishment and 
progression of TSCC, especially those involving the 
tumor genes TP536 and EGFR.7 Moreover, cetuximab, 
a monoclonal antibody that targets EGFR, has been 

shown to have efficacy in locoregionally advanced, 
recurrent, or metastatic HNSCC in combination with 
chemotherapy or radiation.8 However, the efficacy of 
such treatment with curative intent is limited to the 
best median OS of about 10 months, and this treatment 
is associated with substantial toxicity.9 Furthermore, 
there are no approved treatment options after TSCC 
progression.10 According to the KEYNOTE- 048, a ran-
domized, open- label, phase III study, the results sug-
gest that pembrolizumab monotherapy, which targets 
the programmed cell death 1 (PD- 1) receptor,11  has 
significantly longer OS and a favorable safety profile 
in the population with PD- L1 combined positive score 
(CPS) ≥20 compared with cetuximab plus chemother-
apy.9 Nowadays, the field of immunology has attracted 
much attention for its irreplaceable clinical benefits. 
Innate immunologic mechanisms are often observed 
to correlate with the mediation of the tumor microen-
vironment, which is composed of immune cells and 
stromal cells, among others.12  There is no denying 
that immune- related genes and immune infiltrating 
cells have indispensable roles in the tumor microen-
vironment; yet, little is known regarding the immune 
landscape of TSCC.13  Therefore, it is crucial to com-
prehensively analyze immune- related cells or genes in 
TSCC to further decipher the mechanism underlying 
immunology resistance and response.

In this study, we used single- sample gene set enrich-
ment analysis (ssGSEA) to assign TSCC patients from the 
Cancer Genome Atlas (TCGA) database into different 
immune- cell infiltration clusters; we used ESTIMATE, 
CIBERSORT, and K- M analyses to identify the prognostic 
significance of immune- related risk models or regulators 
and explored the mechanisms underlying the characteri-
zation of the tumor microenvironment.

interferon- gamma response, hypoxia, and glycolysis of the different subtypes 
were investigated to elucidate their involvement in mediating the heterogeneous 
immune characteristics. Subsequently, after LASSO Cox regression, a signature 
of 15 immune- related genes was established that is more prognostically effective 
than the TNM stage. Furthermore, three hub genes— PGK1, GPI, and RPE— were 
selected using Cytoscape evaluation and verified by immunohistochemistry. 
PGK1, the foremost regulator, was a comprehensively profiled pan- cancer, and a 
PGK1- based interactive network was established.
Conclusion: Our results suggest that immune- related genes and clusters in 
TSCC have the potential to guide individualized treatments.

K E Y W O R D S
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2  |  MATERIALS AND METHODS

2.1 | Data processing

The RNA- seq data (FPKM value) and clinical character-
istics (including age, sex, smoking status, tumor stage, 
and TNM staging) of the TSCC cohort were obtained from 
TCGA Head and Neck Squamous Cell Carcinomas data-
base. We included samples wherein the primary site was 
the tongue and obtained publicly available data.14

2.2 | ssGSEA and hierarchical 
clustering analysis

The ssGSEA algorithm was based on 29 immune gene sets, 
including genes related to different immune cell types, 
functions, pathways, and checkpoints. We employed the 
ssGSEA algorithm via R packages (GSVA, GSEABase, and 
limma) to comprehensively assess the immunologic char-
acteristics of every sample included in the study.15

To study the correlation between immunity and clini-
cal phenotype of TSCC, we used “Consensus Cluster Plus” 
(50 iterations, 80% resampling rate) according to the en-
richment score of immune items in ssGSEA to cluster the 
TSCC samples into three different groups (Clusters A, B, 
and C). OS analysis between different clusters was con-
ducted using the Kaplan– Meier method.

2.3 | ESTIMATE and 
CIBERSORT analyses

To verify differences in the immunity of the three clusters, 
we utilized the “estimate” package for R (https://sourc 
eforge.net/proje cts/estim atepr oject) to calculate the tumor 
purity, stromal score, immune score, and ESTIMATE score 
of each TSCC tumor sample.16 The Mann– Whitney U test 
was used to compare the scores of the three clusters. Then, 
we used the CIBERSORT package to assess the distribu-
tion of 22 immune cell types in each sample. Results with 
p < 0.05 were used in further analysis.17

2.4 | Gene Ontology (GO) analysis, Kyoto 
Encyclopedia of Genes and Genomes 
(KEGG) database analysis, and GSEA

The “edgeR” package in R was used to perform a differ-
ential analysis of the mRNAs in the low- expression and 
high- expression groups.18 Differentially expressed genes 
(DEGs) were selected based on the following significance 
criteria: |logFC| >1 and FDR <0.05. We further performed 

GO functional annotation, including molecular function, 
cellular component, and biologic process analysis. The 
KEGG database analyzes the metabolic pathways and 
signal transduction pathways in which DEGs are signifi-
cantly enriched. GSEA was then performed to identify the 
signaling pathways wherein DEGs were enriched between 
the high- risk and low- risk subgroups.19

2.5 | Construction of the prognostic 
risk model

The “survival” package in R was used to perform univariate 
Cox proportional hazard regression analysis to screen for 
immune- related genes that are significantly linked to the 
OS of TSCC patients in the TCGA cohort. The “Glmnet” 
package was used to perform LASSO Cox regression anal-
ysis.20  We calculated the risk score to construct the risk 
model using the following formula: risk score =expressed 
mRNA1 × coefficient mRNA1 + expressed mRNA2 × coef-
ficient mRNA2 + …expressed mRNAn × coefficient mRNAn. 
Patients were divided into high- risk and low- risk groups 
according to the value of the risk coefficient. The Kaplan- 
Meier survival package in R language was used to perform 
univariate and multivariate Cox proportional hazard re-
gression analyses on the risk value. The Cox analysis sig-
nature included gender, age, grade, and risk score, as well 
as T, N, and M stages. The sensitivity and specificity of the 
receiver- operating characteristic (ROC) curve were used to 
evaluate the prognostic performance of the signature.

2.6 | Identification and verification of 
immune- related hub genes

To understand the underlying interaction of immune- related 
mRNAs, the STRING website (https://strin g- db.org/) was 
employed, and all PPI pairs with a combined score of >0.4 
were extracted. Next, we utilized the Cytoscape (v3.6.1) pl-
ugin cytoHubba to calculate all degrees of nodes.21 In the 
present study, genes with the highest degree values were con-
sidered hub genes. The Human Protein Atlas (HPA) online 
database (http://www.prote inatl as.org/) was used to validate 
the expression of hub genes at the translational level.

2.7 | Identification of the interaction of 
immune- related hub genes

To further explore the interaction of hub genes with miR-
NAs, lncRNAs, and circRNAs, with the criteria of |log2(fold 
change)| >1 and p < 0.05, we identified differentially ex-
pressed lncRNAs and miRNAs in the TCGA– TSCC cohort. 

https://sourceforge.net/projects/estimateproject
https://sourceforge.net/projects/estimateproject
https://string-db.org/
http://www.proteinatlas.org/
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Furthermore, we used the miRcode database (mircode.org/
index.php) to target miRNA, and we utilized miRTarBase 
(http://mirta rbase.mbc.nctu.edu.tw/) and miRDB (http://
www.mirdb.org/) to identify the correlation between 
miRNA and mRNA. Subsequently, we screened circRNA– 
miRNA interaction pairs using the circBank database 
(http://www.circb ank.cn/index.html). Finally, after inte-
grating circRNA– miRNA, lncRNA– miRNA, and miRNA– 
mRNA regulatory relationships, a competing endogenous 
RNA (ceRNA) network was established and visualized.

2.8 | Statistical analysis

All analyses were performed using R. Univariate and mul-
tivariate Cox proportional hazards regression analyses 
were also used to assess the relationship between the risk 
score and OS of patients. ROC analysis was used to detect 
the sensitivity and specificity of the genetic signature risk 
score to predict survival. The area under the ROC curve 
(AUC) was used as an index to assess the accuracy of the 
prognosis. In all analyses, a p value of <0.05 was consid-
ered to be statistically significant.

3  |  RESULTS

3.1 | Construction of TSCC groupings 
based on ssGSEA

In total, 147  TSCC samples and 15 paracancerous sam-
ples were obtained from the TCGA database. The ssGSEA 

method was applied to the transcriptome of the TSCC 
samples to evaluate the distribution of 29 immune cell 
types. As shown in Figure  1A, over half of the immune 
cell types were found to be upregulated in the TSCC tis-
sue than in normal tissue. The Pearson correlation anal-
ysis showed that these immune cell types in the cancer 
tissue intimately reinforced each other (Figure 1B), sug-
gesting that TSCC is heterogeneous cancer with high 
immunogenicity.

To further understand the correlations among these 
immune cell types, we implemented a consensus cluster-
ing analysis to classify the TSCC samples into three clus-
ters based on the ssGSEA using the Consensus Cluster 
Plus package with k = 3 (Figure 2A). The Kaplan– Meier 
method showed that there was a significant difference 
among clusters, particularly between clusters A and C 
(Figure 2B). Subsequently, we plotted a boxplot and heat-
map to screen the relationship between immune- related 
groupings and expression of gene sets from ssGSEA. The 
expression of most immune cell types was higher in clus-
ter A with the low OS than in clusters B and C (Figures 2C 
and 3A).

3.2 | Immune characterization in the 
TSCC clusters

To verify the feasibility of the grouping strategy, we con-
ducted an ESTIMATE analysis to profile the immune 
characteristics of TSCC based on the expression of im-
mune cell types. Stromal, immune, and ESTIMATE scores 
had a similar trend as the expression of immune cell types, 

F I G U R E  1  The identification of immune gene sets by ssGSEA. (A) The expression of immune gene sets by ssGSEA in cancer and 
normal tissue. (B) The Pearson correlation of immune cell types in cancer tissue based on ssGSEA

https://link.zhihu.com/?target=http%3A//www.mircode.org/index.php
https://link.zhihu.com/?target=http%3A//www.mircode.org/index.php
http://mirtarbase.mbc.nctu.edu.tw/
http://www.mirdb.org/
http://www.mirdb.org/
http://www.circbank.cn/index.html
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which were upregulated in the relatedly high immune- 
cell infiltration group (cluster A) (Figure  3A). The box 
chart also further verified that there the high immune- cell 
infiltration cluster was significantly positively correlated 
with the ESTIMATE and immune and stromal scores and 
negatively correlated with tumor purity (Figure  3B). In 
addition, we used the CIBERSORT method to quantify the 
level of immune cell infiltration to carefully evaluate the 
immune landscape. The results showed that the types of B 
cells, T cells, and macrophages contributed to immune cell 
infiltration. We observed that the levels of naïve B cells, 
CD4 memory- activated T cells, CD8 T cells, and follicu-
lar helper T cells were remarkably increased in cluster C 

(Figure 3C). These results indicate that this ssGSEA- based 
clustering strategy can be used to decipher the heteroge-
neous immune landscape of TSCC, and specific multiple 
immune- related modulators may have an integrated ef-
fect in the mediation of the tumor microenvironment.

3.3 | Interaction of immune- related 
subgroups with different survivals

To investigate the potential mechanisms involved in the 
heterogeneity of TSCC, due to the small sample size, 
we included the samples of two clusters (clusters A and 

F I G U R E  2  The classification of clusters identified by ssGSEA. (A) The Consensus Cluster package- based clustering of patients 
identified by ssGSEA with k = 3. (B) The Kaplan– Meier curves of three clusters regarding OS. (C) The different expression of immune cell 
sets in the three clusters (***p < 0.001, **p < 0.01, *p < 0.05)
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C) in the next analysis. Kaplan– Meier analysis revealed 
that the OS was significantly different in the two clusters 
(p = 0.0065) (Figure 4A). Based on both clusters, we iden-
tified 626 DEGs with the criteria of |log2(fold change)| >2 
and adj.p  <  0.05 in the TCGA- TSCC cohort. Compared 
with cluster C, cluster A included DEGs associated with 
T cell activation and regulation of leukocyte activation, 

according to the biologic- process GO analysis. Cellular 
component analysis showed that these DEGs were linked 
to the side of the membrane and the plasma membrane 
protein complex, and the molecular function analy-
sis showed that cytokine receptor activity and cytokine 
binding were crucial (Figure  4B). The KEGG analysis 
indicated that some immune- related pathways, such as 

F I G U R E  3  Immune landscape of three clusters. (A) The heatmap of immune gene sets identified by ssGSEA and ESTIMATE scores 
for the three clusters. (B) Different ESTIMATE scores, immune scores, stromal scores, and tumor purity in three clusters. (C) Different 
distributions of tumor- infiltrating cells in three clusters (***p < 0.001, **p < 0.01, *p < 0.05)



   | 8699JIN et al.

primary immunodeficiency, Th17 cell differentiation, 
and Th1/Th2 cell differentiation, were enriched in both 
clusters (Figure 4C). Using GSEA analysis, these signal-
ing pathways, including interferon- gamma response, 
hypoxia, and glycolysis, were viewed to be core biologic 
carcinogenic processes involved in the regulation of the 
immune microenvironment (Figure  4D). Additionally, 

we performed univariate Cox analysis to select prognostic 
regulators from these DEGs, and 41 mRNAs were identi-
fied (Table S1). Finally, we continuously iterated the en-
richment analysis of these 41  mediators and found that 
multiple pathways, especially glycolysis, not only played 
important roles in the regulation of the immune landscape 
but also altered clinical survival in TSCC (Figure 4E).

F I G U R E  4  Relationship between cluster A and cluster C. (A) The OS Kaplan– Meier curves of cluster A and cluster C. (B) OS analysis of 
all DEGs from the two clusters. (C) KEGG analysis of all DEGs from the two clusters. (D) GSEA of all DEGs from the two clusters. (E) Circos 
plot of 41 prognostic mediators from the two clusters
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3.4 | Construction of the immune 
risk model

Based on the above findings, we applied Lasso Cox re-
gression analysis to the 41 immune- related mRNAs. 
Thereafter, we built a risk model with 15 mRNAs, and the 
coefficients of these genes were used to calculate the risk 
score as follows (Figure 5A): risk score = CCDC43 × 0.0
034 + CCL22 × (−0.0436) + KLHL2 × 0.0429 + SH2D3
C × (−0.0052) + ANKRD22 × (−0.0129) + SUN1 × 0.021
5 + IARS × 0.0269 + NTMT1 × 0.0069 + IER3 × 0.0042 
+ CCR7 × (−0.089) + PGK1 × 0.0024 + CTSG × (−0.003
8) + GPI × 0.0043 + SECTM1 × 0.0364 + RPE × 0.0119. 
Patients were divided into low- risk and high- risk groups 
according to the cutoff value (median risk score). The 
OS Kaplan- Meier curve showed that the patients in the 
high- risk group had worse OS than those in the low- risk 
group (p = 2.303e−8) (Figure 5B). The risk coefficient and 
mortality of samples in the high- risk group were higher 
than those in the low- risk group (Figure 5C). Univariate 
and multivariate analyses showed that the risk score can 
be an independent prognostic biomarker. Unfortunately, 
after adjusting for all risk factors, only the T stage was 
slightly associated with OS (Figure 5D). To evaluate the 
prognostic effectiveness of the risk score, the ROC curve 
showed that the AUCs of 1- year, 3- year, and 5- year sur-
vival were 0.802, 0.832, and 0.819, respectively, suggesting 
that the risk model was significantly effective and applica-
ble (Figure 5E).

3.5 | The immune landscape and 
verification of hub genes

To precisely select the core regulators in the immune 
signature, we utilized Cytoscape based on the STRING 
website to calculate all degrees of nodes among the 15 reg-
ulators and identified the hub genes, PGK1, GPI, and RPE, 
which had the top three highest degree values (Table S2). 
To further confirm the key role of these hub genes in the 
immune mediation process, as shown in Figure 6A, PGK1 
expression was reevaluated and was found to be signifi-
cantly highly correlated with clinical stage and tumori-
genesis in TSCC. Moreover, the results revealed that the 
PGK1 expression had an evident negative correlation with 
tumor purity (p = 0.002) and a positive correlation with 
the immune score (p = 0.002), stromal score (p = 0.020), 
and ESTIMATE score (p = 0.002). Additionally, we noted 

that the expression of PGK1 was closely related to that of 
PD1 (also known as PDCD1 or CD279) (Figure  6B). Six 
types of immune cells that had an influence on TME, such 
as CD8 T cells and follicular helper T cells, were verified 
to be regulated by the hub gene PGK1 (Figure 6C). The 
findings for GPI and RPE are presented in Figure S1. In 
accordance with the immunohistochemistry results from 
the Human Protein Atlas database, the expression of the 
hub genes PGK1, GPI, and RPE was obviously elevated in 
TSCC tissues than in normal tissues (Figure 7A).

3.6 | Interaction and pan- cancer 
analysis of PGK1

To further unravel the interaction of PGK1 in the immune- 
related pathway with miRNAs, lncRNAs, and circRNAs, we 
first identified 13 lncRNAs and 18 miRNAs with |logFC(fold 
change)| ≥1 and FDR <0.05, and targeted 915  mRNAs 
(miRTarBase, miRDB). We identified the intersection of 
these 915  mRNAs and the top 100 PGK1- related genes. 
Finally, we visualized and constructed a ceRNA regula-
tory network containing nine PGK1- related mRNAs, three 
miRNAs, and 10 lncRNAs (Figure 7B). After determining 
the crucial molecular relationships of PGK1, we explored 
this oncogene in a pan- cancer analysis. We downloaded all 
pan- cancer data from the UCSC Cancer Genomics Browser 
(https://genom e- cancer.ucsc.edu). The results indicated 
that the expression of PGK1 was distinctly upregulated in 
most types of cancers, including bladder urothelial carci-
noma (BLCA), head and neck squamous cell carcinoma 
(HNSCC), and lung adenocarcinoma (LUAD) (Figure 8A). 
Furthermore, high PGK1 expression was correlated with 
decreased OS (p < 0.001), disease- specific survival (DSS) 
(p < 0.001), and progression- free interval (PFI) (p = 0.004) 
(Figure  8B). Similarly, high PGK1 expression was posi-
tively associated with tumor mutational burden (TMB), a 
promising indicator to differentiate responders to immune 
checkpoint inhibitors (Figure 8C). The pan- cancer analysis 
indicated that PGK1 may activate multiple immune genes 
and interfere with the tumor environment in 32 types of 
cancer (Figure 8D).

4  |  DISCUSSION

Tongue squamous cell carcinoma, characterized by a 
notably aggressive biologic behavior and heterogeneous 

F I G U R E  5  Establishment of the risk model. (A) Lasso Cox regression analysis of the 41 prognostic mediators. (B) The OS Kaplan– Meier 
analysis for patients in high- /low- risk groups. (C) Distributions of the 15 significant prognostic mediators, risk scores, and alive/dead status. 
(D) Univariate and multivariate analyses of age, gender, grade, and risk score and the T, N, and M stages. (E) The ROC curve of the risk 
model for 1- year, 3- year, and 5- year survival

https://genome-cancer.ucsc.edu
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survival, is a clinically, gnomically, and immunologically 
distinct subgroup of head and neck tumors that arise from 
the base of the tongue.2 Current treatments for TSCC, 
including surgical techniques and chemoradiotherapy 
combined with cetuximab have failed to achieve satisfac-
tory therapeutic effects; thus, immune checkpoint inhibi-
tors are expected to prolong OS in advanced TSCC.22 It is 
generally agreed that PD1 or PDL1 acted as major indica-
tors to guide the selection of immune checkpoint inhibi-
tors.23 However, there are conflicting opinions on these 
indicators in the literature. Sanni Tervo reported that the 

higher density and intensity of PD1 were significantly cor-
related with better survival.24 Yet Tomofumi Naruse and 
Naoki Akisada demonstrated that patients with high PD- 
L1 expression had a remarkably shorter DFS and increased 
local recurrence.25,26 Currently, PD1/PDL1 remains inap-
plicable in the prediction of TSCC prognosis; thus, it is ur-
gent to elucidate the underlying genetic pathogenesis in 
TSCC and to identify reliable prognostic biomarkers based 
on the immune landscape.

In this study, we performed an ssGSEA of im-
mune genes from the ImmPort database to calculate an 

F I G U R E  6  Comprehensive evaluation of PGK1. (A) The relationship between PGK1 expression and clinical characteristics. (B) 
The relationship between PGK1 expression and ESTIMATE scores, PD1 (PDCD1)/PD- L1 (CD274). (C) The relationship between PGK1 
expression and tumor- infiltrating cells
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immune- based prognostic score and determine the specific 
immune infiltration, which is more generic than the nor-
mal gene signature. First, we conducted the ESTIMATE 
and CIBERSORT analyses to find the ssGSEA- based clus-
ters that were highly associated with ESTIMATE scores 
and immune scores. Furthermore, T cells, CD4 memory- 
activated T cells, CD8 T cells, and follicular helper T cells 
were found to be remarkably increased in the cluster 
with a better prognosis. Many studies have reported that 
a higher degree of T cell infiltrates, especially CD8+, im-
proved OS in HPV- positive and HPV- negative oral squa-
mous carcinoma,27 and DFS in patients with respectable 
laryngeal cancer.28,29  Moreover, some researchers found 
that the frequency of PD1+ CD8+ T cells in the tumor 
microenvironment, which negatively impacts effector and 
immunosuppressive functions, can predict the clinical 
efficacy of PD1 inhibitors better than PD1 or PD- L1 ex-
pression or TMB.30 Next, we explored specific mRNAs that 
could potentially mediate CD8+ T cells and constructed 

a prognostic signature with a broad scope of applications 
that could accurately identify cases with worse survival. 
The results indicated that the constructed risk model was 
much better than the current TNM classification sys-
tem, but its utility needs to be reverified with other TSCC 
groups.

In our analysis, we identified and selected three hub 
genes, PGK1, GPI, and RPE, which are involved in the gly-
colysis pathway. Glycolysis is the metabolism of glucose 
to lactate despite the presence of adequate oxygen, which 
is also called the Warburg effect.31  The Warburg effect 
has been recognized to be one of the hallmarks of can-
cer and to provide essential evidence that oncogenes and 
tumor suppressors alter the regulation of energy metabo-
lism.32 More recent studies have found that glycolysis and 
lactate production, in particular, are strongly increased in 
peripheral T cells.33 Excessively increased glucose uptake 
induces T cell activation and proliferation and can lead to 
increased proliferation and lymphoproliferative disease.34 

F I G U R E  7  Interaction and 
verification of PGK1 in TSCC. (A) The 
verification of PGK1, GPI, and RPE 
expression in immunohistochemistry. (B) 
The interactive network of PGK1
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Our findings demonstrated a similar relationship between 
the tumor immune environment and glycolysis in TSCC.

Phosphoglycerate kinase 1 (PGK1), an isoform of the 
PGK family that catalyzes ATP formation in the glycol-
ysis pathway,35 plays a rate- limiting role in controlling 
ATP and 3- PG levels36 and is a mediator in the regula-
tion of autophagy initiation, DNA replication, and repair 
in mammal cell nuclei.37- 39  More notably, via the pan- 
cancer analysis in our study, the mRNA expression level 
of PGK1 was significantly associated with the prognosis 

of multiple cancers, including head and neck, liver, and 
breast cancer. PGK1 has gradually become a novel target 
in clinical research for various cancers. Researchers have 
found that enhanced glycolysis activity combined with 
higher PGK1 expression in breast cancer was associated 
with pro- tumor immunity via upregulation of immune/
inflammation pathways, especially the IL- 17  signaling 
pathway.40 However, little is known about the relationship 
between PGK1 and the tumor immune microenvironment 
in TSCC. In this study, we first identified the key role of 

F I G U R E  8  Pan- cancer analysis of PGK1. (A) The expression of PGK1 in 32 cancer species. (B) The relationship between PGK1 
expression and OS, DSS, and PFI in HNSCC. (C) The relationship between PGK1 expression and TMB in 32 cancer species. (D) The 
relationship between PGK1 expression and immune- related regulators
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PGK1 in TSCC and comprehensively evaluated its profile 
in the immune landscape. Additionally, we constructed an 
interactive network with PGK1 at the core and many in-
tersections were verified experimentally. Han RL reported 
that miR- 383  suppressed the expression level of LDHA, 
an mRNA highly correlated with PGK1, by directly bind-
ing to its 3'- untranslated region and thus silenced aerobic 
glycolysis in ovarian cancer cells.41 Similarly, Fang found 
that overexpression of miR- 383 could inhibit cell prolifer-
ation and invasion triggered by LDHA in hepatocellular 
cancer.42 Furthermore, Li verified that circ_0136666 ac-
celerated the progression of colorectal cancer by directly 
targeting and downregulating miR- 383.43 Hence, based 
on these reports, the interactive network constructed in 
this study was acceptable for the in- depth exploration of 
in vitro experiments.

Glycosylphosphatidylinositol (GPI)- anchored proteins 
have been regarded as well- established cancer biomark-
ers that correlate with changes in GPI- T expression. With 
GPI- T, the importance of these proteins truly came to light 
only after their discovery in bladder cancer.44 Several in-
teresting findings have demonstrated the highly intimate 
relationship between the levels of GPI- T subunits and 
different cancer types.45 Ribulose- phosphate 3- epimerase 
(RPE), an important protein involved in carbohydrate 
degradation can catalyze the reversible epimerization 
of D- ribulose 5- phosphate to D- xylulose 5- phosphate.46 
However, evidence supporting the oncogenic nature of 
RPE, particularly with respect to tumorigenesis, was min-
imal. Together, none of the past studies focused on the 
role of both biomarkers in TSCC; thus, our study is the 
first to unravel the genomic properties of these biomark-
ers in the field of immunology. Certainly, our findings 
in this study may be the tip of an iceberg, and there are 
some limitations that need to be improved; for instance, 
the mechanism underlying TSCC progression still has 
immense potential to be further elucidated, and further 
clinical trials and molecular experiments are required to 
verify our results.

5  |  CONCLUSION

This study systematically evaluated TSCC patients from 
the TCGA database and constructed different clusters 
based on ssGSEA analysis and profiled the immune land-
scape and immune cell infiltration in the tumor environ-
ment. After analyzing the correlation among clusters, we 
established a signature of 15 immune- related genes that 
were identified as having independent prognostic signifi-
cance for TSCC and selected three hub genes, PGK1, GPI, 
and RPE. Our findings suggest that these immune- related 
genes may be promising indicators for the mediation of 

the immune microenvironment and may provide novel 
insights into immunotherapy for TSCC.

CONFLICT OF INTEREST
The authors declare that they have no competing interest.

AUTHOR CONTRIBUTION
KC designed the study. YJ analyzed, interpreted the data, 
wrote the original draft. ZWW, and DH wrote this manu-
script. YXZ and YXC edited and revised the manuscript. 
All authors have seen and approved the final version of 
the manuscript.

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are avail-
able from the corresponding author upon reasonable 
request.

ORCID
Yi Jin   https://orcid.org/0000-0002-8521-634X 
Zhanwang Wang   https://orcid.
org/0000-0002-3655-0704 
Yuxing Zhu   https://orcid.org/0000-0002-8757-0676 
Xingyu Chen   https://orcid.org/0000-0002-9284-4950 
Ke Cao   https://orcid.org/0000-0001-5392-2306 

REFERENCES
 1. Gillison ML, Chaturvedi AK, Anderson WF, et al. Epidemiology 

of human papillomavirus- positive head and neck squamous 
cell carcinoma. J Clin Oncol. 2015;33(29):3235- 3242.

 2. Bello IO, Soini Y, Salo T. Prognostic evaluation of oral tongue 
cancer: means, markers and perspectives (II). Oral Oncol. 
2010;46(9):636- 643.

 3. van Dijk BAC, Brands MT, Geurts SME, et al. Trends in oral cav-
ity cancer incidence, mortality, survival and treatment in the 
Netherlands. Int J Cancer. 2016;139(3):574- 583.

 4. Bagan J, Sarrion G, Jimenez Y. Oral cancer: clinical features. 
Oral Oncol. 2010;46(6):414- 417.

 5. Almangush A, Heikkinen I, Mäkitie AA, et al. Prognostic bio-
markers for oral tongue squamous cell carcinoma: a systematic 
review and meta- analysis. Br J Cancer. 2017;117(6):856- 866.

 6. Poeta ML, Manola J, Goldwasser MA, et al. TP53 mutations and 
survival in squamous- cell carcinoma of the head and neck. N 
Engl J Med. 2007;357(25):2552- 2561.

 7. Bonner JA, Harari PM, Giralt J, et al. Radiotherapy plus cetux-
imab for squamous- cell carcinoma of the head and neck. N 
Engl J Med. 2006;354(6):567- 578.

 8. Bonner JA, Harari PM, Giralt J, et al. Radiotherapy plus cetux-
imab for locoregionally advanced head and neck cancer: 5- year 
survival data from a phase 3 randomised trial, and relation 
between cetuximab- induced rash and survival. Lancet Oncol. 
2010;11(1):21- 28.

 9. Bauml J, Seiwert TY, Pfister DG, et al. Pembrolizumab for 
Platinum-  and Cetuximab- refractory head and neck can-
cer: results from a single- arm. Phase II Study. J Clin Oncol. 
2017;35(14):1542- 1549.

https://orcid.org/0000-0002-8521-634X
https://orcid.org/0000-0002-8521-634X
https://orcid.org/0000-0002-3655-0704
https://orcid.org/0000-0002-3655-0704
https://orcid.org/0000-0002-3655-0704
https://orcid.org/0000-0002-8757-0676
https://orcid.org/0000-0002-8757-0676
https://orcid.org/0000-0002-9284-4950
https://orcid.org/0000-0002-9284-4950
https://orcid.org/0000-0001-5392-2306
https://orcid.org/0000-0001-5392-2306


8706 |   JIN et al.

 10. Weiss MA, Nguyen DT, Khait I, et al. Two- dimensional NMR 
and photo- CIDNP studies of the insulin monomer: assignment 
of aromatic resonances with application to protein folding, 
structure, and dynamics. Biochemistry. 1989;28(25):9855- 9873.

 11. Cohen EEW, Soulières D, Le Tourneau C, et al. Pembrolizumab 
versus methotrexate, docetaxel, or cetuximab for recur-
rent or metastatic head- and- neck squamous cell carcinoma 
(KEYNOTE- 040): a randomised, open- label, phase 3 study. 
Lancet. 2019;393(10167):156- 167.

 12. Wang Q, Hu B, Hu X, et al. Tumor evolution of glioma- intrinsic 
gene expression subtypes associates with immunological 
changes in the microenvironment. Cancer Cell. 2017;32(1):42- 56.

 13. Gonzalez H, Hagerling C, Werb Z. Roles of the immune sys-
tem in cancer: from tumor initiation to metastatic progression. 
Genes Dev. 2018;32(19– 20):1267- 1284.

 14. Colaprico A, Silva TC, Olsen C, et al. TCGAbiolinks: an R/
Bioconductor package for integrative analysis of TCGA data. 
Nucleic Acids Res. 2016;44(8):e71.

 15. Hänzelmann S, Castelo R, Guinney J. GSVA: gene set variation 
analysis for microarray and RNA- seq data. BMC Bioinformatics. 
2013;14:7.

 16. Yoshihara K, Shahmoradgoli M, Martínez E, et al. Inferring 
tumour purity and stromal and immune cell admixture from 
expression data. Nat Commun. 2013;4:2612.

 17. Newman AM, Liu CL, Green MR, et al. Robust enumeration 
of cell subsets from tissue expression profiles. Nat Methods. 
2015;12(5):453- 457.

 18. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor 
package for differential expression analysis of digital gene ex-
pression data. Bioinformatics. 2010;26(1):139- 140.

 19. Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrich-
ment analysis: a knowledge- based approach for interpreting 
genome- wide expression profiles. Proc Natl Acad Sci U S A. 
2005;102(43):15545- 15550.

 20. Tibshirani R, Bien J, Friedman J, et al. Strong rules for discard-
ing predictors in lasso- type problems. J R Stat Soc Series B Stat 
Methodol. 2012;74(2):245- 266.

 21. Chin C- H, Chen S- H, Wu H- H, et al. cytoHubba: identifying 
hub objects and sub- networks from complex interactome. BMC 
Syst Biol. 2014;8(Suppl 4):S11.

 22. Burtness B, Harrington KJ, Greil R, et al. Pembrolizumab alone 
or with chemotherapy versus cetuximab with chemotherapy 
for recurrent or metastatic squamous cell carcinoma of the 
head and neck (KEYNOTE- 048): a randomised, open- label, 
phase 3 study. Lancet. 2019;394(10212):1915- 1928.

 23. Seliger B. Basis of PD1/PD- L1 Therapies. J Clin Med. 
2019;8(12):2168.

 24. Tervo S, Seppälä M, Rautiainen M, et al. The expression and 
prognostic relevance of programmed cell death protein 1 in 
tongue squamous cell carcinoma. APMIS. 2020;128(12):626- 636.

 25. Naruse T, Yanamoto S, Okuyama K, et al. Immunohistochemical 
Study of PD- 1/PD- L1 axis expression in oral tongue squamous 
cell carcinomas: effect of neoadjuvant chemotherapy on local 
recurrence. Pathol Oncol Res. 2020;26(2):735- 742.

 26. Akisada N, Nishimoto K, Takao S, et al. PD- L1 expression 
in tongue squamous cell carcinoma. Med Mol Morphol. 
2021;54(1):52- 59.

 27. Badoual C, Hans S, Merillon N, et al. PD- 1- expressing 
tumor- infiltrating T cells are a favorable prognostic 

biomarker in HPV- associated head and neck cancer. Cancer 
Res. 2013;73(1):128- 138.

 28. Wang J, Wang S, Song X, et al. The prognostic value of systemic 
and local inflammation in patients with laryngeal squamous 
cell carcinoma. Onco Targets Ther. 2016;9:7177- 7185.

 29. Vassilakopoulou M, Avgeris M, Velcheti V, et al. Evaluation of 
PD- L1 expression and associated tumor- infiltrating lympho-
cytes in laryngeal squamous cell carcinoma. Clin Cancer Res. 
2016;22(3):704- 713.

 30. Kumagai S, Togashi Y, Kamada T, et al. The PD- 1 expression 
balance between effector and regulatory T cells predicts the 
clinical efficacy of PD- 1 blockade therapies. Nat Immunol. 
2020;21(11):1346- 1358.

 31. Koppenol WH, Bounds PL, Dang CV. Otto Warburg's contribu-
tions to current concepts of cancer metabolism. Nat Rev Cancer. 
2011;11(5):325- 337.

 32. Ganapathy- Kanniappan S, Geschwind JF. Tumor glycolysis as 
a target for cancer therapy: progress and prospects. Mol Cancer. 
2013;12:152.

 33. Bental M, Deutsch C. Metabolic changes in activated T cells: 
an NMR study of human peripheral blood lymphocytes. Magn 
Reson Med. 1993;29(3):317- 326.

 34. Michalek RD, Gerriets VA, Jacobs SR, et al. Cutting edge: dis-
tinct glycolytic and lipid oxidative metabolic programs are 
essential for effector and regulatory CD4+ T cell subsets. J 
Immunol. 2011;186(6):3299- 3303.

 35. Hu H, Zhu W, Qin J, et al. Acetylation of PGK1 promotes 
liver cancer cell proliferation and tumorigenesis. Hepatology. 
2017;65(2):515- 528.

 36. Wang S, Jiang B, Zhang T, et al. Insulin and mTOR pathway reg-
ulate HDAC3- mediated deacetylation and activation of PGK1. 
PLoS Biol. 2015;13(9):e1002243.

 37. Qian XU, Li X, Cai Q, et al. Phosphoglycerate Kinase 1 
phosphorylates Beclin1 to induce autophagy. Mol Cell. 
2017;65(5):917- 931.

 38. Cai Q, Wang S, Jin L, et al. Long non- coding RNA GBCDRlnc1 
induces chemoresistance of gallbladder cancer cells by activat-
ing autophagy. Mol Cancer. 2019;18(1):82.

 39. Qian X, Li X, Lu Z. Protein kinase activity of the glycolytic en-
zyme PGK1 regulates autophagy to promote tumorigenesis. 
Autophagy. 2017;13(7):1246- 1247.

 40. Li W, Xu M, Li YU, et al. Comprehensive analysis of the asso-
ciation between tumor glycolysis and immune/inflammation 
function in breast cancer. J Transl Med. 2020;18(1):92.

 41. Han R L, Wang F P, Zhang P A, et al. miR- 383 inhibits ovarian 
cancer cell proliferation, invasion and aerobic glycolysis by tar-
geting LDHA. Neoplasma. 2017;64(2):244- 252.

 42. Fang Z, He L, Jia H, et al. The miR- 383- LDHA axis regulates 
cell proliferation, invasion and glycolysis in hepatocellular can-
cer. Iran J Basic Med Sci. 2017;20(2):187- 192.

 43. Li Y, Zang H, Zhang X, et al. circ_0136666 Facilitates the 
Progression of Colorectal Cancer via miR- 383/CREB1 Axis. 
Cancer Manag Res. 2020;12:6795- 6806.

 44. Montie JE. CDC91L1 (PIG- U) is a newly discovered oncogene 
in human bladder cancer. J Urol. 2005;174(3):869- 870.

 45. Zhao P, Nairn AV, Hester S, et al. Proteomic identification 
of glycosyl-  phosphatidylinositol anchor- dependent mem-
brane proteins elevated in breast carcinoma. J Biol Chem. 
2012;287(30):25230- 25240.



   | 8707JIN et al.

 46. Liang W, Ouyang S, Shaw N, et al. Conversion of D- ribulose 
5- phosphate to D- xylulose 5- phosphate: new insights from 
structural and biochemical studies on human RPE. FASEB J. 
2011;25(2):497- 504.

SUPPORTING INFORMATION
Additional supporting information may be found in the 
online version of the article at the publisher’s website.

How to cite this article: Jin Y, Wang Z, He D, Zhu 
Y, Chen X, Cao K. Identification of novel subtypes 
based on ssGSEA in immune- related prognostic 
signature for tongue squamous cell carcinoma. 
Cancer Med. 2021;10:8693– 8707. doi:10.1002/
cam4.4341

https://doi.org/10.1002/cam4.4341
https://doi.org/10.1002/cam4.4341

