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Introduction. Epidemiological models benefit from incorporating detailed time-to-event data to understand how dis-
ease risk evolves. For example, decompensation risk in liver cirrhosis depends on sojourn time spent with cirrhosis.
Semi-Markov and related models capture these details by modeling time-to-event distributions based on published
survival data. However, implementations of semi-Markov processes rely on Monte Carlo sampling methods, which
increase computational requirements and introduce stochastic variability. Explicitly calculating the evolving transition
likelihood can avoid these issues and provide fast, reliable estimates. Methods. We present the sojourn time density
framework for computing semi-Markov and related models by calculating the evolving sojourn time probability den-
sity as a system of partial differential equations. The framework is parametrized by commonly used hazard and mod-
els the distribution of current disease state and sojourn time. We describe the mathematical background, a numerical
method for computation, and an example model of liver disease. Results. Models developed with the sojourn time
density framework can directly incorporate time-to-event data and serial events in a deterministic system. This
increases the level of potential model detail over Markov-type models, improves parameter identifiability, and reduces
computational burden and stochastic uncertainty compared with Monte Carlo methods. The example model of liver
disease was able to accurately reproduce targets without extensive calibration or fitting and required minimal compu-
tational burden. Conclusions. Explicitly modeling sojourn time distribution allows us to represent semi-Markov sys-
tems using detailed survival data from epidemiological studies without requiring sampling, avoiding the need for
calibration, reducing computational time, and allowing for more robust probabilistic sensitivity analyses.

Highlights

� Time-inhomogeneous semi-Markov models and other time-to-event–based modeling approaches can capture
risks that evolve over time spent with a disease.

� We describe an approach to computing these models that represents them as partial differential equations
representing the evolution of the sojourn time probability density.

� This sojourn time density framework incorporates complex data sources on competing risks and serial events
while minimizing computational complexity.
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Health economic modeling evaluates the impact and
cost-effectiveness of interventions by synthesizing and
extrapolating data on health and cost outcomes. Almost
all health economic models are state-transition models,1

capturing a set of discrete health states an individual can
be in and the likelihood of transitioning between these
states. These models can simulate health care scenarios
to predict outcomes, aiding informed decision making in

resource allocation. There are various mathematical and
computational approaches to state-transition modeling,
each with their own strengths and limitations.2

Many health economic analyses use Markov models,
which are easy to comprehend, implement, and compute,
and they often have high parameter identifiability (i.e.,
transition rates can be supported by the available data)
due to the clear delineation of health states. However,
Markov models have notable disadvantages. The Markov
property restricts the likelihood of a state transition to be
either constant (time homogeneous) or dependent on only
the current model time (time inhomogenous); they cannot
depend on the time spent in the current state (the sojourn
time). Consequently, shorter sojourn times for any partic-
ular state transition at a given time are more likely than
any longer times.3 While this may be addressed with the
addition of hidden states, this can lead to serious prob-
lems such as overfitting4 due to lack of identifiability,5

leading to poorly fitted models and spurious findings. A
poor choice of time discretization/cycle length6 can also
dramatically bias a Markov model’s outcomes, and alter-
ing the cycle length can lead to numerical errors.7

Semi-Markov models (or equivalently, Markov renewal
processes)8–10 can capture significantly more detail than
Markov models can, allowing the time between state tran-
sitions to vary according to any distribution11 rather than
being constrained to a geometric distribution. This can
dramatically increase model fidelity. This means the risk of
developing a disease can depend directly on the length of
time spent with a precursor condition,12,13 the sojourn
time. Detailed survival analyses from prior studies can be
used directly to inform disease risk, which has been identi-
fied as a priority in health technology assessments.14,15

This approach conserves identifiability by explicitly includ-
ing states for which survival data are available. By further
generalizing to time-inhomogeneous semi-Markov pro-
cesses,11 transitions can change over time, allowing the
model to also capture risks that vary by age and secular
trends. Semi-Markov models are also used in fields such as
actuarial science16–18 and engineering.19 For example,
semi-Markov models of cancer control can be used to
increase the fidelity of estimates of disease progression and
the impact of interventions.20,21
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Unlike Markov models, the dynamics of semi-
Markov models cannot usually be analytically com-
puted. Instead, Monte Carlo sampling methods are
typically used to estimate patient-level dynamics.22–24 In
this formulation, the semi-Markov model will describe a
patient-level simulation approach25 equivalent to a
microsimulation or discrete event simulation,26–29 which
allows for a significant level of depth and detail.2,30

However, Monte Carlo sampling introduces stochastic
uncertainty to the model (first-order uncertainty).25,31 In
general, there is no consistent method of estimating the
number of samples required to estimate a particular out-
come. As a first-order approximation, if outcomes are
assumed to be binomially distributed by the model, the
length of confidence interval for the outcome is approxi-
mately O 1=

ffiffiffiffi
N
p� �

, meaning an increasing number of
simulations is required to accurately estimate an out-
come, particularly for rare events. This can dramatically
increase the computation time required for modeling,
which both slows model development and limits the abil-
ity to conduct extensive sensitivity analyses, a priority
for health economic estimates.32 The tradeoff between
discrete-time Markov-type models and continuous-time
semi-Markov simulation models can lead to many poten-
tial sources of bias and inaccuracy.33

We developed the sojourn density model framework
for explicit evaluation of semi-Markov and related mod-
els. This approach models the dynamics of the probabil-
ity density of the sojourn time as a system of partial
differential equations (PDEs), tracking both the likeli-
hood of being in a given state and the time spent in that
state, avoiding the need for stochastic sampling methods.
The modeling framework is parametrized by the cause-
specific hazard rates34,35 (analogous to transition intensi-
ties36 or the force of increment37), allowing us to exploit
survival data and methods38 such as Kaplan–Meier esti-
mators34,39,40 and risk ratios.41 This captures the same
detail as survival models, with the addition of serial state
transitions. This approach is adapted from existing meth-
ods used in actuarial science,11,16–18 which use the Kol-
mogorov forward equation.42 We have modified this for
an epidemiology and health economic context, including
adapting the notation and simplifying the construction
where possible.

In this study, we describe the model structure for
sojourn density models, compare their strengths and
weaknesses versus other modeling approaches, and
describe a numerical scheme for calculating these mod-
els. To demonstrate the advantages of this approach, we
include an illustrative model of liver disease. In Austra-
lia, liver cancer is the seventh most common cause of
cancer-related death,43 with increasing incidence and

mortality trends.44 Routine surveillance of patients with
liver cirrhosis (late-stage liver scarring) can increase
detection at early stages and improve survival45 but
requires an understanding of the competing risk of liver
cancer versus other-cause mortality. Our modeling
approach allows us to incorporate competing risks of
decompensation, cancer, and other-cause mortality and
complex survival data,46,47 which have been noted as key
considerations in liver disease modeling.48

Methods

We now describe the sojourn density model framework
and demonstrate its useful mathematical properties. We
also develop a numerical scheme for the calculation of
these models.

Sojourn Density Model

Consider a state transition model with N possible discrete
states labeled 1, 2, :::,N , such that at any time t 2 T � R

(typically T = ½0,‘)), an individual is in exactly 1 of these
states. We not only describe the likelihood of an individ-
ual being in a given state but also track the distribution
of the length of time spent in that state, the sojourn time
t 2 T .

Doing so defines a continuous-time random process
fXtgt2T with discrete state space f1, 2, :::,Ng such that
P Xt = ið Þ=P individual in state i at time tð Þ. We can
equivalently define the jump process fYn, Tngn= 0, 1, 2, ...

such that Yn =Xt 8 t 2 ½Tn, Tn+ 1), Yn 6¼ Yn+ 1.
49

The cause-specific hazard rates

li, j t, tð Þ, ð1Þ

depending on both the model time t and sojourn time t,
are the key parameters for the model. These are the
instantaneous transition rates for an individual in state i

to transition to state j at time t, given that the individual
has so far spent time t in i without any transitions (i.e,
entered state i at time t � t). Hazard rates are widely used
parameters in public health modeling.22 In some cases, h

is used for hazard rates.50 They are equivalent to the
force of increment discussed in equation 4.6 of Hoem11

in the case s= t (i.e., the reference time when the model
is in state i is the same as the start of the period over
which the transition may occur).

As the transition likelihoods depend on only the cur-
rent state and the sojourn time, the random process Xt is
a semi-Markov proccess,36 as the sequence of transitions
is Markov, but the time between transitions is not necce-
sarily exponentially distributed. By allowing the hazard
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rate to depend on t, this generalizes to time-
inhomogeneous semi-Markov models. This t dependency
can capture temporal trends as well as evolving risk with
age a= a0 + t, where a0 is the age at t = 0. While Xt is a
semi-Markov process, the jump process Yn, Tnð Þ is a
Markov renewal process.51

For the hazard rate li, j t, tð Þ to represent the transition
rate from state i to state j at time t given sojourn time t,
by equation (3) in Król et al.,22 the following should
hold:

li;j t; tð Þ ¼ lim
Dt!0

1

Dt
PðYn+ 1 ¼ j;

Tn+ 1 2 ½t; t+DtÞ jYn ¼ i;Tn ¼ t � tÞ

¼ lim
Dt!0

1

Dt
P Xt+Dt ¼ j j Xs ¼ i 8 s 2 ½t � t; tð Þ; Xt�t 6¼ iÞ:

ð2Þ

For convenience, assume li, i t, tð Þ= 0 (i.e., there are no
self-loops). If there is no possible transition between i

and j, then li, j = 0.
To track the model state and the sojourn time, we

introduce the dynamic density functions for the sojourn
time:

fi t, tð Þ : T 3 T ! ½0,‘) ð3Þ

for i= 1, 2, :::,N . For a fixed time t 2 T , these are prob-
ability density functions on the space of sojourn times
and states t, ið Þ 2 T 3 f1, 2, :::Ng, describing the likeli-
hood of being in a particular state with a particular
sojourn at the present time. This notation is based on the
notation introduced by Asanjarani et al.,36 who described
an equivalent density function with a single time/sojourn
time variable.

Then we can define the process Xt by the total prob-
ability mass in that state:

P Xt = ið Þ=
Ð ‘

0
fi t, sð Þds ¼: gi tð Þ: ð4Þ

We should expect the total probability mass to be 1, that
is, X

i

gi tð Þ= 1: ð5Þ

Our goal now is to describe the dynamics of fi t, tð Þ
and then show this definition satisfies (2) and (5). Let
fi t, tð Þ satisfy the partial differential equation

∂

∂t
fi t, tð Þ+ ∂

∂t
fi t, tð Þ=�

X
j

li, j t, tð Þ
 !

fi t, tð Þ ð6Þ

with boundary condition

fi t, 0ð Þ=
X

j

ð‘

0

lj, i t, tð Þfj t, tð Þdt

� �
: ð7Þ

This equation is equivalent to the Kolmogorov for-
ward equation.17,42 The left-hand side of (6) represents
the transport equation along lines of constant t � t, rep-
resenting the likelihood of remaining in state i while both
t and t increase, whereas the right-hand side captures the
likelihood of making a transition to a subsequent state.
Along the directional derivative r 1, 1ð Þfi, the likelihood
decays proportionally to the hazard rate (see the
‘‘Method of Characteristics and Survival Analysis’’ sec-
tion). More rigorous derivations of this PDE are
included elsewhere.16,17 The findings here have been sim-
plified for a health economic context and assume the
hazard rates li, j t, tð Þ are smooth.

The boundary condition (7) represents the accumula-
tion of probability mass in state i post-transition. By (5),
the initial conditions fi 0, tð Þ should satisfy

X
i

ð‘

0

fi 0, tð Þdt = 1: ð8Þ

In addition,

lim
t!‘

fi t, tð Þ= 0 ð9Þ

(i.e., supported on finite time).
Compare (6) to equation (2.37.1) in Helwich.17 Hel-

wich considered the likelihood pij s, t, u, vð Þ of transition
from state y to state z such that Xs = i with sojourn time
u and Xt = j with sojourn time less than v. In our nota-
tion, this is equivalent to fixing the model at state i with
sojourn time u at time s (i.e., fk s, tð Þ= d t � uð Þ if k = i

else 0), then tracking the evolution of fj t, tð Þ for t in a
small neighbourhood of s.

We now have a complete description of the random
process Xt through (4), (6), (7) and appropriate initial
conditions. This constitutes what we will call a sojourn
density model. With this current definition, sojourn den-
sity models are a type of semi-Markov model as a spe-
cific parametrization using hazard rates and computed
through the sojourn density functions. In the sections
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‘‘Sojourn-Preserving Transitions’’ and ‘‘Inhomogeneous
Hazard Rates and Infectious Disease Modeling,’’ we
introduce modifications that expand the sojourn density
framework to include some non-semi-Markov models.

We now show that the process defined by (4) is well-
defined and driven by the hazards li, j t, tð Þ as expected.

Theorem 2.1. The random process defined by (4) with
dynamics defined by (6) and (7) satisfies the conditions
(2) and (5).

Proof. The boundary condition (7) can be justified by cal-
culating the derivative of gi tð Þ, that is, the rate of change
in likelihood of being in state i at time t:

d

dt
gi tð Þ ¼ d

dt

ð‘

0

fi t; tð Þdt

¼
ð‘

0

∂

∂t
fi t; tð Þdt

¼ �
ð‘

0

∂

∂t
fi t; tð Þdt �

ð‘

0

X
j

li;j t; tð Þ
 !

fi t; tð Þdt

¼ fi t; 0ð Þ �
ð‘

0

X
j

li;j t; tð Þ
 !

fi t; tð Þdt

¼
X

j

ð‘

0

lj;i t; tð Þfj t; tð Þdt|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
entering state i

0
BBB@

1
CCCA�

ð‘

0

X
j

li;j t; tð Þ
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
leaving state i

0
BBBB@

1
CCCCAfi t; tð Þdt:

ð10Þ

This satisfies the definition of the hazard rate: the likeli-
hood of being in state i decreases proportionally to the
hazard of every transition leaving state i

P
j li, j t, tð Þ and

increases for every transition entering state i
P

j lj, i t, tð Þ
proportional to the weight of those states fj t, tð Þ. In
addition,

d

dt

X
i

gi tð Þ
 !

= 0, ð11Þ

that is, that the total probability mass is conserved.
Therefore, with initial conditions satisfying equation (8)
and boundary conditions (7), (5) is satisfied.

The propagation of hazards (2) through (6) can be
observed through analogy with corollary 2.37 in Hel-
wich17 as noted above; a proof in the current notation is
included in Appendix A. n

Method of Characteristics and Survival Analysis

We now compute the survival curves using method of
characteristics. We refer to survival in the sense of the
time until an event of interest, which may or may not be
mortality, as is often used in epidemiological analy-
ses.34,52 The use of characteristics is equivalent to the
approach in section 2.5 of Buchardt et al.16 or the expli-
cit solution in equation 9 from Asanjarani et al.36 As
noted, equation (6) is best interpreted along characteris-
tics of constant t � t corresponding to the state entry
time (Figure 1). This allows explicit solutions through
method of characteristics as well as analogies to other
survival modeling approaches.

Consider the characteristic t = t�+ t for fixed t� 2 R

(Figure 1). Then, along this characteristic,

d

dt
fi t�+ t, tð Þ =

∂

∂t
fi t�+ t, tð Þ d

dt
t�+ tð Þ+ ∂

∂t
fi t�+ t, tð Þ ð12Þ

=�
X

j

li, j t�+ t, tð Þ
 !

fi t�+ t, tð Þ: ð13Þ

If t�.0, then t.t, which corresponds to a characteristic
starting from the boundary t = 0; if t� � 0, then t� t,
which corresponds to a characteristic from the initial
condition t = 0.

Defining t0 =max t�, 0ð Þ, t0 =max �t�, 0ð Þ (so that
t�= t0 � t0, t0, t0 � 0), the initial condition (at the obser-
vable start of the characteristic; not necessarily at t = 0)
is at t0, t0ð Þ and so (12) has solution

fi t�+ t, tð Þ= fi t0, t0ð Þe�li t�+ t, tð Þ ð14Þ

where

li t, tð Þ=
X

j

ðt

t0

li, j t � t + s, sð Þds

� �
: ð15Þ

The function li t, tð Þ is the overall cumulative hazard 41

along the characteristic t � t = t�. Then,

Si t, tð Þ= e�li t, tð Þ, ð16Þ

is the overall survival (i.e., the likelihood no transitions
occur) along this characteristic, and fi t�+ t, tð Þ=
fi t0, t0ð ÞSi t�+ t, tð Þ.
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We can correspondingly calculate the time-to-event
distribution after entering state i at time t � t as the
distribution

li, j t, tð ÞSi t, tð Þ ð17Þ

across j= 1, 2, :::,N . This allows translation to time-to-
event epidemiological models and access to time-to-event
methodology.35,53,54

It follows that the probability of the next transition
being from i! j before time t = t�+ t given entry to
state i at time t0, is

P(next transition time \t \ next transition i! j j
entered state i at time t0)

=P Yn+ 1 = j, Tn+ 1\t jYn = i, Tn = t0ð Þ
=
Ð t

t0
li, j s, s� t�ð ÞSi s, s� t�ð Þds:

ð18Þ

The limit of this is the likelihood of the next transition
being to a particular state:

P(next transition i! j j entered state i at time t0)

=

ð‘

t0

li, j s, s� t�ð ÞSi s, s� t�ð Þds:
ð19Þ

We can also calculate the cause-specific survival,
assuming other transitions (or events) are censored:

Si, j t, tð Þ= e
�
Ð t

t0
li, j t�t + s, sð Þds

: ð20Þ

Where cause-specific survival data (equivalently, cause-
specific cumulative incidence) is available with compet-
ing events censored, this may provide a calibration target
for the hazard rates, which can be directly identified
from the survival model (see ‘‘Hazard and Cumulative
‘‘Hazard in Clark et al.34); parametrization of li, j t, tð Þ
across t� can then be identified.

Compare this with the common approach in analytical
epidemiological models in which the likelihood of transi-
tion is computed explicitly as the convolution of the t-
dependent hazard rate and the time of entry.55–57 In our
formulation, this is reflected in the boundary conditions

fi t, 0ð Þ=
P

j

Ð ‘

0
lj, i t, tð Þfj t, tð Þdt

� �
=
P

j

Ð ‘

0
fj t � t, 0ð Þlj, i t, tð ÞSj t, tð Þdt

� �
:

ð21Þ

If we define entry time distribution Fj xð Þ= fj x, 0ð Þ and
survival-adjusted cause-specific hazard rate H j, ið Þ
xð Þ= lj, i t, xð ÞSj t, xð Þ, then Fi tð Þ=

P
j Fj�Hj, i

� �
tð Þ, the

convolution of these. Our approach generalizes this to
incorporate serial transitions.

Initial Conditions

The appropriate initial conditions are highly dependent
on the system being modeled. The Dirac delta function
around t = 0 is a potential initial condition, correspond-
ing to starting in state i with no existing sojourn time;
explicitly,

Figure 1 Characteristics of constant t�= t � t for fi t, tð Þ (left) and the corresponding elements F
m, n
i with constant m� n for the

numerical scheme (right).
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fj 0, tð Þ= d tð Þ if i= j

0 if i 6¼ j:

�
ð22Þ

In practice, modeling may start in situ, that is, after
some sojourn time, informing a distribution for the ini-
tial condition. For example, this could reflect the time an
individual would have spent in a health state by the start
of a trial (‘‘Incorporating Lead-Time Biases’’ section).

Numerical Scheme

The characteristic solutions developed in the ‘‘Method of
Characteristics and Survival Analysis’’ section can be
used to develop a numerical scheme. For a discretization
of T by fixed time steps Dt 2 R

+, define

F
m, n
i :¼ fi mDt, nDtð Þ

=
fi m� nð ÞDt, 0ð Þe�li mDt, nDtð Þ for m � n

fi 0, n� mð ÞDtð Þe�li mDt, nDtð Þ for m\n

(

=
F

m�n, 0
i e�li mDt, nDtð Þ for m � n

F
0, n�m
i e�li mDt, nDtð Þ for m\n

( ð23Þ

for m, n 2 Z
+. Each value of m� n 2 Z corresponds to a

characteristic with t�= m� nð ÞDt. For m\n, the initial
condition is F

0, n�m
i = fi 0, n� mð ÞDtð Þ. For m � n, the ini-

tial condition F
m�n, 0
i = fi m� nð ÞDt, 0ð Þ is the boundary

condition of the full PDE.
The cumulative hazard functions li t, tð Þ may be com-

puted by (15) in simple cases or otherwise approximated.
Equivalently, each F

m, n
i element can be calculated itera-

tively by

F
m, n
i =Fm�1, n�1e

�
P

j

Ð Dt

0
li, j m�1ð ÞDt + s, n�1ð ÞDt + sð Þds

: ð24Þ

(see Figure 1 for an illustration of this; compare
Buchardt et al.16). In many cases, the integral in (24) can
be explicitly computed; otherwise, it can be approxi-
mated by the midpoint

Ð dt

0
li, j m� 1ð ÞDt+ s, n� 1ð Þð

Dt + sÞds’Dtli, j m� 0:5ð ÞDt, n� 0:5ð ÞDtð Þ. The expo-
nential function could similarly be approximated using
the appropriate Taylor polynomial for improved
performance.

A first-order scheme for the boundary conditions can
be computed as

F
m, 0
i = fi mDt, 0ð Þ

=
X

j

ð‘

0

lj, i mDt, tð Þfj mDt, tð Þdt

� �

’
X

j

X
k.0

Dtlj, i mDt, kDtð Þfj mDt, kDtð Þ
 !

=
X

k.0, j

Dtlj, i mDt, kDtð ÞFm, k
j

	 

ð25Þ

for m � 0.
One can subsequently estimate the evolution of the

random process Xt as

P Xt = ið Þ= gi mDtð Þ

’
X‘

k = 0

Dtfi mDt, kDtð Þ

’
X‘

k = 0

DtF
m, k
i :

ð26Þ

An improvement can be made to this numerical
scheme by adjusting the boundary conditions to exactly
preserve the total mass at all timesteps:

F
m, 0
i =

X
j, k

~hm, k
j, i F

m�1, k�1
j � F

m, k
j

	 

ð27Þ

where

~hm, k
i, j =

li, j m� 1
2

� �
Dt, k � 1

2

� �
Dt

� �P
l li, l m� 1

2

� �
Dt, k � 1

2

� �
Dt

� � : ð28Þ

We can then verify that
P

i, k F
m, k
i is constant; that is,

the total probability mass
P

i gi tð Þ is conserved. We have
here used the midpoint estimates for li, j. This scheme
can improve accuracy when there is a significant scale
difference between hazards for competing events.

In epidemiological contexts, hazards are often mod-
eled as continuous and smooth functions, so this scheme
will have high accuracy and be convergent due to the
inclusion of attractor death states.

A straightforward way to approach the numerical
scheme is to calculate F

m, n
i across all i and all m\0,

tracking the accumulated boundary conditions Fm, 0 for
m.0, and then computing F

m, n
i for each m � 0 across all

i, n. This has been implemented in Supplementary Mate-
rial: Example Code.
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Hazard Functions and Common Parametric Distributions

The sojourn time density modeling scheme is determined
by the hazard rates li, j t, tð Þ. It is common to describe
these rates parameterically25,58 to define a manageable
set of model parameters. For example, constant hazard
rates li, j t, tð Þ= c correspond to an exponential time-to-
event distribution, while li, j t, tð Þ= bktk�1 and
li, j t, tð Þ= pert correspond to Weibull and Gompertz dis-
tributions, respectively.59 There are many other potential
choices for li, j t, tð Þ, which may vary with t, t, or both.

The choice of hazard function is highly dependent on
the nature of the system being modeled and the available
data sources.60 van Wijk et al.58 provided a tutorial and
general overview of determining appropriate parame-
trized hazard functions, including periodic functions that
can represent seasonal variations or other cyclical pat-
terns. Hazard rates can be estimated from processed sur-
vival data, such as smoothed61 Kaplan–Meier or Fine–
Grey estimates or time-to-event distributions.36,62 Cov-
ariates can be directly included in hazard rates; for
instance, Cox proportional hazard ratios can be used to
define ~li, j t, t j xð Þ= li, j t, tð Þeb�x for some vector of cov-
ariates x 2 R

n and a baseline hazard function
li, j t, tð Þ.41,63 Constant multipliers for the hazards can be
used as calibration targets, to maintain the shape of the
distribution.64

Asanjarani et al.36 showed how time-to-event/discrete
event simulation distributions38,65 can be translated into
hazard rates. Hazard rate can often be defined piece-
wise,64 for example, from life tables.66,67 There are also
more advanced methods for calculating and representing
hazard rates, including nonparametric smoothing61 and
rational polynomial fraction parametrization.68 Arbitra-
rily detailed and complex hazard rates can be used in
sojourn density models; an appropriate level of detail
supported by the data must be chosen to avoid
overfitting.

Sojourn-Preserving Transitions

In an epidemiological model, there are often transitions
that are independent of the underlying growth of disease.
For instance, in a model of cancer development and
screening, entry into an ‘‘surveillance’’ cohort would not
affect the progress of the disease. This can be reflected in
our model framework by introducing transitions that
preserve the sojourn time.

To achieve this, we can introduce a new set of hazard
rates mi, j t, tð Þ that are the transition rates for an individ-
ual in state i to transition to state j, at time t, given that
the individual has already spent time t in the state

without any transitions occurring, while conserving the
sojourn time. These rates mi, j will depend on the type of
transition being modeled but would typically have form
similar to the li, j hazard rates (‘‘Hazard Functions and
Common Parametric Distributions’’ section). Then,
equation (6) can be modified as follows:

∂
∂t

fi t, tð Þ+ ∂
∂t

fi t, tð Þ=�
P

j

li, j t, tð Þ
 !

fi t, tð Þ

�
P

j

mi, j t, tð Þ
 !

fi t, tð Þ+
P
k

mk, i t, tð Þfk t, tð Þ
� �

ð29Þ

with boundary condition (7). With this formulation, the-
orem 2.1 holds with minor alterations.

This approach may be useful for models in which
there are multiple categories of states; for example, a
health economic model may have a ‘‘health outcome’’
state space f1, 2, 3, :::g (e.g., no lesions, precancerous
lesions, cancer) as well as an ‘‘intervention’’ state space
fa, b, c:::g (e.g., screened, unscreened). The state space
corresponding to the Cartesian product of these
1, að Þ, 1, bð Þ, 2, að Þ and so forth can be used for a model
that tracks both, with transitions between intervention
states governed by the l parameters and transitions
between the intervention states governend by m.

This can be further extended by continuing to track
the sojourn time across multiple independent types of
transitions. For instance, one could classify k indepen-
dent ‘‘types’’ of transitions l1

i, j, l2
i, j, ... lk

i, j corresponding
to k independent sojourn times t1, t2, :::, tk which are
each tracked by the model. Then (29) can be generalized
to keep track of multiple sojourn times as

∂
∂t

fi t, tð Þ +
P

k

∂
∂tk fi, j t, tð Þ=�

P
k, j

lk
i, j t, tð Þ

 !
fi t, tð Þ

ð30Þ

where t= t1, t2, :::, tk
� �

, with new boundary conditions
for each sojourn time ti

fi t, t1 1� d1, nð Þ, t2 1� d2, nð Þ, :::, tk 1� dk, nð Þ
� �

=X
k, j

ð‘

0

lk
i, j t, tð Þfj t, tð Þdtk

� �
ð31Þ

for n= 1, 2, :::k where dx, y is the Kronecker delta
function. Then, each transition type lk ‘‘sends’’ the den-
sity to the corresponding boundary condition at tk = 0.
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This expansion allows for a more general and class of
models.

Computing Health Economic Outcomes

In addition to the likelihood of being in each state, there
are other outcomes relevant for health economic analyses
that can be computed from these models. These can usu-
ally be assessed via either the expected time spent in each
state or the likelihood of transition into a state.

For example, the quality-adjusted life-years (QALYs69)
can be calculated based on the expected time spent in each
state. If a person in state i has a QALY value of xi, the
expected QALY value over the period t0 to t1 is the
weighted sum

X
i

xi

ðt1

t0

gi tð Þdt: ð32Þ

Outcomes such as costs associated with entering a par-
ticular state can be calculated via the boundary condi-
tion. For instance, the likelihood of entering state i over
the period t0 to t1 is ðt1

t0

fiðt, 0Þdt: ð33Þ

If there is a cost ai associated with entering state i, the
total expected cost across this period is

X
i

ai

ðt1

t0

fi t, 0ð Þdt: ð34Þ

If there are ongoing costs associated with the time spent
in a particular state, these can be calculated in the same
way as QALYs above.

Inhomogeneous Hazard Rates and Infectious
Disease Modeling

By relaxing the assumptions on the form of the hazard
functions, the sojourn time density models can be used to
simulate a more general class of models than semi-Mar-
kov models. For example, we could allow the hazard to
depend on the current model state, that is, have the form

li, j t, t, g tð Þð Þ ð35Þ

where g tð Þ= fgi tð Þg is a vector of the values (4). One can
then simulate models where the effect size is dependent
on the current state of the system.

For example, the standard SIR model70 has states S

(susceptible), I (infectious), R (recovered). The risk of
infection is proportional to the currently infected popula-
tion, leading to the hazard

lS, I t, t, g tð Þð Þ=bP Xt = Ið Þ

=b

ð‘

0

fI t, tð Þdt

=bgI tð Þ:

ð36Þ

The recovery rate for infected individuals is constant,
that is,

lI ,R t, t, g tð Þð Þ= g: ð37Þ

These hazards can be used to define a sojourn density
model; we can confirm that

dgS

dt
= � bgS tð ÞgI tð Þ,

dgI

dt
=bgS tð ÞgI tð Þ � ggI tð Þ, dgR

dt
= ggI tð Þ, ð38Þ

that is, the defining equations for the standard SIR
model. Using this starting point, we could modify this to
introduce more complex risks of infection and recovery.
For instance, a distribution for time to disease recovery
could be simulated by modifying lI ,R to be a function of
t, the time in infectious state, to reflect an inflection that
can clear after only a few days minimum. In the sojourn
density model framework, new dynamics can be included
by modifying the hazard functions rather than by adjust-
ing the design of the model.

This addition of heterogeneous generalizes the sojourn
density model framework and could allow for the synthesis
of different model types into one framework. For example,
a model of both a viral infection and a resulting disease
(such as hepatitis and liver cancer) could be directly mod-
eled. The addition of proportional terms to the hazard
does not affect theorem 2.1 but does mean the method of
characteristics described in the Method of Characteristics
and survival analysis section may no longer be applied.

Incorporating Lead-Time Biases

As the sojourn time is modeled explicitly in this frame-
work, this allows us to incorporate lead-time bias. Lead-
time biases occur in many contexts; for instance, screen
detection of cancer artificially increases survival times
due to the increased observation window.71,72 A related
bias occurs in modeling that has been informed by
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survival data measured from the start of a trial rather
than onset of disease.

These biases can be addressed by modifying the
hazard rate. A highly simplistic approach may be to
define the adjusted hazard rate

~hi, j t, tð Þ= 0 for t\t0

li, j t, t � t0ð Þ t � t0

�
ð39Þ

where hi, j t, tð Þ is the observed cause-specific hazard rate
from a trial that may include a lead-time bias and t0 is a
cutoff time. This assumes that there is no risk of transi-
tion until some given time t0. Alternatively, the hazard
could be assumed to increase to the observed rates at
time t0, linearly or otherwise. In practice, a useful esti-
mate for t0 may be difficult to determine, requiring a
sensitivity analysis over a range; there are many useful
methods for estimating the lead time.73–76

Example Model: Liver Disease

To demonstrate our new approach to modeling, we now
describe a model of liver disease and development of can-
cer. A key intervention in the prevention of liver cancer
death is early detection via routine surveillance. Recom-
mendations like 6-monthly ultrasound for people with
cirrhosis (late-stage liver scarring) can increase the

likelihood of detection at early stages when curative
treatment is possible.77 However, people with cirrhosis
are also at high risk of both liver decompensation (irre-
versably worsened liver damage) and noncancer death.
People who develop liver decompensation or die before
the onset of liver cancer cannot benefit from early detec-
tion. It is therefore critical to understand the competing
risks of liver cancer, liver decompensation, and other-
cause death when assessing whether routine surveillance
is advisable or whether the costs and patient discomfort
caused by surveillance outweigh the health benefits. This
model shows how the risk of liver cancer, and competing
risk of decompensation, can be captured in a way that
evolves with the length of time spent with liver cirrhosis.

The structure of the simplified model is shown in Fig-
ure 2 and captures individuals with liver cirrhosis,
decompensation events, onset of liver cancer, and death.
As the model is designed to illustrate the potential utility
of surveillance for liver cancer in the presence of compet-
ing risks of decompensation and death, liver cancer and
death were used as terminal states. Hazard rates for rele-
vant transitions (decompensation, onset of liver cancer,
death) were calibrated by identifying appropriate para-
metric forms and calibrating to relevant data sources.
With this approach, the design of the model states and
flow is kept simple, while the complexity is shifted to
computing the hazard rates determining the transitions

Figure 2 Schematic of the example liver disease model and the sojourn- and time-dependent hazards for competing risks for
people with compensated cirrhosis.
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between states. Each cause-specific hazard was fitted in
turn, and the overall fit assessed. For this iteration of the
model, a cohort aged 55 y was simulated, based on the
mean age of cirrhosis diagnosis.

The modeling described in this article is part of a
larger model developed to inform the ‘‘Clinical Practice
Guidelines for Liver Cancer Surveillance for People at
High Risk in Australia.’’78 The development of these
guidelines, including the modeling, was led by clinicians
in the area of liver disease and liver cancer alongside a
multidisciplinary working party, which included health
care and clinical representatives, representatives with
lived experience, and other community representatives.
The full model includes detailed liver cancer stage pro-
gression and survival as well as economic details. For
further details, see Worthington et al.79

For this analysis, published survival curves were used
as target data for the modeling. Where patient-level data
are available, this could be used as a calibration target
instead, using methods in the existing literature on semi-
Markov models.22

Results

Performance of Sojourn Density Models

The described model structure can capture the same level
of detail as semi-Markov models and many other patient-
level simulations, increasing the level of detail while
allowing for deterministic evaluation. The computational
complexity of the numerical algorithm described in the
‘‘Numerical Scheme’’ section is O T2S2ð Þ, where T is the
number of timesteps and S is the number of model states.
Vectorization across characteristics can improve perfor-
mance considerably, for example, via the Python NumPy
library or other scientific computing libraries. For models

in which not every state has a transition to every other
state, the complexity is O T2Uð Þ where U\S2 is the num-
ber of possible transitions. Compare this with a patient-
level simulation, including most implementations of semi-
Markov models, in which the computational complexity
is driven by the number of patients simulated O TNð Þ,
where N is the number of simulated patients. As noted
previously, the precision of such models is approximately
O 1=

ffiffiffiffi
N
p� �

, and so in some applications, N may need to
be very large for precise estimates. This is avoided in the
sojourn time density model. For comparison, a standard
numerical algorithm for a Markov model would have
computational complexity O TS2ð Þ.

In practice, sojourn density models can run in less
than 1 s on a standard computer. This allows for runs
with a variety of parameter values to assess sensitivity
analyses, particular with parallel computing. In most
cases, the optimal timestep Dt can be identified by asses-
sing a particular parameter set, selecting a small enough
value for the results of interest to converge. This choice
will be highly dependent on the problem being assessed,
roughly scaling with the expected transition time. Future
work is planned to assess the effect of the timestep.

With an appropriate implementation of the numerical
algorithm described in the ‘‘Numerical Scheme’’ section,
computing a sojourn density model requires specifying
only the model states and the form of the hazard rates
between them. Listing 1 shows the syntax of the code for
this model; the full code, including the implementation
of the numerical scheme, has been included in Supple-
mentary Material: Example Code.

Liver Disease Model Calibration

The model was calibrated to reproduce key targets, with
model parameters shown in Table 1. For each target, an

Listing 1 Excerpt Showing Code Syntax for the Liver Disease Modela

Liver_Disease_Model=Sojourn_Model.Model()
state_names=["Compensated cirrhosis","Decompensated cirrhosis","Liver
�! cancer","Death"]

Liver_Disease_Model.add_state(state_names)
#Liver cancer onset transition
Liver_Cancer_Hazard=Hazard_Functions.Hazard( Hazard_Type =
�! "gompertz_sojourn", Parameters={"p":1.197e-02,"r":6.654e-02})
Liver_Disease_Model.add_transition("Compensated cirrhosis","Liver
�! cancer",Liver_Cancer_Hazard)

///Other transitions omitted for brevity

res_df=Liver_Disease_Model.run_model(dt=0.01, max_t=10,
�! init_conds=["Compensated cirrhosis"])

aFull code is included in Supplementary Material: Example Code.
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appropriate parameterized hazard rate was selected, and
optimal parameters were calculated using the BFGS
algorithm in the SciPy package. We also calibrated distri-
butions for hazard ratios for each of the hazard rate
functions. These were calibrated to reproduce the 95%
confidence intervals in each data source across the range
of hazard ratio values and act as multipliers for each dis-
tribution for the probabilistic sensitivity analysis. The
model was well-fitted to the target data, reproducing ter-
minal values for the survival curves and remaining within
the 95% confidence intervals for the duration. Key tar-
gets are shown in Figure 3. For all-cause death rates, a
piecewise constant hazard was used based on age-specific
rates published by the Australian Bureau of Statistics.82

A code snippet showing the syntax to define a model
using the included code is shown in Listing 1. Examples of
the kinds of outputs that can be generated are shown in
Figure 4. This includes the likelihood of Xt being in a given
state by time (through g tð Þ). This was used to calculate the
5-y risk of liver cancer or non–liver cancer death in people
who have not yet developed liver cancer or died, a key out-
come for assessing the benefits of liver surveillance.

A probabilistic sensitivity analysis was run by sam-
pling hazard ratios from the distributions given in Table
1. The sensitivity analysis ran 100,000 parameter sets,
which was completed in under 2 h. In the 5-y risk out-
comes in Figure 4, this was used to develop a prediction
interval; 95% of the simulated parameter sets led to out-
comes in the indicated range.

Discussion

We described a novel approach to epidemiological mod-
eling by calculating the evolution of the probability den-
sity of the sojourn time. This allows detailed survival
data sources to be used to model competing risks. We
demonstrated this sojourn density model approach by
presenting a model of liver disease. The model was cali-
brated and reproduced the targets accurately with low
computational burden.

The novel sojourn density model structure allows for
flexible analyses that rely on detailed survival data and
flexible time scales. This gives advantage over typical epi-
demiological modeling approaches, improving detail
without sacrificing interprability while limiting computa-
tional burden. Designing models that reduce computa-
tional burden to facilitate probabilistic sensitivity
analyses has been identified as a priority for health tech-
nology assessments,32 often requiring surrogate methods
such as meta-modeling/emulators to reduce the reliance
on computationally expensive models.83–86T
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Figure 3 Selected calibration outcomes. Top row: Liver cancer incidence rates (left; target Vilar Gomez et al.80) and
decompensation rates (right). Bottom row: all-cause death rates in patients with compensated (left; includes any decompensation
events) and decompensated (right) cirrhosis.

Figure 4 Outcomes from the example model of liver disease. Left: evolving likelihood of liver decompensation, liver cancer, and

non–liver cancer death. Right: 5-y risk of liver cancer versus 5-y risk of non–liver cancer death for patients who have not yet
developed liver cancer/died, including 95% model range based on probabilistic sensitivity analysis.
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By using the hazard rates as parameters, the models can
be interpreted directly in the context of source epidemiol-
ogy studies, and parameter values can be directly inferred
from survival data. In the context of liver disease modeling,
this means the model can reflect the true health benefits of
early-stage diagnosis by accurately capturing disease pro-
gression. The ability to numerically evaluate our model at
any time scale also allows us to accurately model phenom-
ena such as surveillance intervals, which were not been
included in real-world trials with a high degree of preci-
sion. Avoiding a fixed time discretization reduces the likeli-
hood of numerical errors if chosen poorly87 and improves
the ability to capture short time scale events.

There is great potential to refine survival analysis esti-
mates designed to guide policy recommendations,15 and it
is hoped that this modeling approach allows for the devel-
opment of straightforward models that incorporate existing
data sources in a clear and flexible way, reducing the need
for model calibration and minimizing data postprocessing
and model design effort. The benefits of this approach are
demonstrated in the closeness of fit to the calibration tar-
gets (Figure 3) as well as the flexibility to evaluate surveil-
lance at a wide range of intervals.79 By providing a
numerical implementation, we have also reduced the imple-
mentation burden on health economic practitioners, requir-
ing only the specification of the model states and the
hazard rates associated with the transitions between them.

The limitations of this model structure include the
semi-Markov property; each state transition depends
only on the current state, the sojourn time, and the model
time. This approach may therefore not be appropriate in
contexts where multiple prior events are required to
inform future likelihoods.

The liver disease model described here is a part of a
larger model of liver disease,79 which was used to
evaluate surveillance recommendations for the ‘‘Clinical
Practice Guidelines for Hepatocellular Carcinoma Sur-
veillance for People at High Risk in Australia.’’78 The
flexible sojourn density model allowed us to analyze
combinations of surveillance technologies and intervals
to analyze more complex surveillance algorithms and
optimize these algorithms through iterative design
enabled by the fast computation time and high precision.

There are many potential future developments to
build on the work presented here. Higher-order approxi-
mations for the integrals in (25) and (24) could be used
to derive more accurate numerical schemes, which may
help when dealing with pathological hazards such as
those that are nonsmooth or have discontinuities. It may
also be possible to develop spectral methods to approxi-
mate solutions without time discretization.88 Further
work could also use these models to assess the potential

impact of lead-time biases, and the loss in precision when
these are not considered in modeling. It is hoped that the
method described here will be of general use to health
economic practitioners.

Conclusions

To inform health policy and make an impact, epidemio-
logical models must be able to provide reliable, timely,
and interpretable results. Sojourn density models can
incorporate published survival data and generate com-
peting risk estimates quickly, allowing for simple design
and fast calibration. We hope this approach will be of
use to modelers in public health.
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