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Abstract: The volatile fractions from fresh inflorescences of naturally growing orchids Anacamptis
coriophora (L.) R. M. Bateman, Pridgeon & M. W. Chase subsp. fragrans (Pollini), Anacamptis pyramidalis
(L.) R. Ophrys holosericea (Burm.) Greuter and Serapias vomeracea (Burm. f.) B. were isolated by
steam distillation and analyzed by GC/FID and GC/MS. Saturated hydrocarbons were quantified
as the major constituents of the volatile fraction (47.87–81.57% of the total essential oil), of which
long-chain monounsaturated hydrocarbons accounted from 9.20% to 32.04% of the total essential oil.
Double bond position in linear alkenes was highlighted by dimethyl disulfide derivatization and
MS fragmentation. Aldehydes (from 3.45 to 18.18% of the total essential oil), alcohols (from 0.19% to
13.48%), terpenes (from 0.98 to 2.50%) and acids (0.30 to 2.57%) were also detected. These volatiles
compounds may represent a particular feature of these plant species, playing a critical role in the
interaction with pollinators. DPPH assay evaluating the antioxidant activity of the essential oils was
carried out, showing a dose-dependent antioxidant activity.

Keywords: Anacamptis coriophora; Anacamptis pyramidalis; Ophrys holosericea; Serapias vomeracea;
alkenes; volatiles; pollinators

1. Introduction

Pollination of flowers by animals is often influenced by a wide variety of volatile molecules [1,2].
The floral scent in plants has the primary aim to attract and guide pollinators [3,4], playing a critical role
both in long- and short-distance attraction [2,5,6]. In fact, bees learn odours easier and more rapidly
than colours [3,7]. Furthermore, the floral scent may thus influence/drive pollinator constancy [3,8],
which ensures pollen transfer, reduces pollen loss and contributes to maintaining both the plant
reproductive fitness and their barriers among species [9,10]. Additional functions of floral volatile
chemicals occur as defensive and protective mechanisms vs. biotic and abiotic stresses [11–13]. This
may explain the wide variety of volatiles fragrances emitted by orchids acting as key characters to
drive pollinators when food or sexual deception takes place [2].

Orchidaceae is considered one of the well-represented flowering plant families, worldwide
distributed accounting approximately 28,000 species [14]. This abundance leads to a great complexity
of floral scents; in fact, orchids can potentially produce almost all the fragrances occurring in nature [15].
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This wide variety of floral scents is primarily due to the combination of the great number of orchid
species and of the evolution of pollination systems. The mechanisms of deception in orchids include
generalized food deception, food-deceptive floral mimicry, brood-site imitation, shelter imitation,
pseudo-antagonist, rendezvous attraction and sexual deception, where generalized food deception is
the most common mechanism (38 genera) followed by sexual deception (18 genera) [16,17]. In the
Orchidoideae subfamily, in particular, consisting of 7 subtribes and about 3630 species [18], the sexual
deception mechanism can be recognized for orchid genera such as Drakea or Ophrys [18]. Furthermore,
orchids using food-deceptive strategy show flowers resembling those of rewarding co-occurring
species [19].

Italy hosts about 236 orchid species [20], that frequently co-occur in the same habitat and
population [21]. A peculiar pollination strategy is the sexual deception of the genus Ophrys: in this
orchid genus the shape of the labellum looks like the female abdomen of the bee pollinator species
and the floral scent contains interactive chemicals resembling the sex pheromones of pollinators.
These intriguing visual and olfactory signals are, therefore, of critical importance to driving pollinator
choices [22]. On the other hand, genera such as Orchis, Dactylorhiza and some Anacamptis employ a
generalized food-deceptive strategy [19], in which these flowers provide floral cues indicating a food
reward while animal pollination is achieved without providing nectar, pollen or other food rewards.
On the contrary species of the genus Serapias employ an unusual pollination strategy called shelter
deception. In fact, these flowers, nectarless and not so brightly coloured, form a small tube used by
pollinators as a refuge during cold or rainy weather to rest or sleep [23–25].

The aim of the present investigation was to isolate and compare the essential oils from inflorescences
of four sympatric orchid species (Anacamptis coriophora (L.) R.M. Bateman, Pridgeon & M. W. Chase
subsp. fragrans (Pollini), Anacamptis pyramidalis (L.) R., Serapias vomeracea (Burm. f.) B. and Ophrys
holosericea (Burm) Greuter), co-occurring in the same natural site in Italy, in order to characterize their
chemical composition and antioxidant activity.

2. Results

The essential oil obtained by steam distillation from fresh inflorescences were evaluated as 1.3 mg
for A. coriophora subsp. fragrans, 1.8 mg for A. pyramidalis, 2.6 mg O. holosericea and 3.4 mg for S. vomeracea,
respectively. The yields were evaluated as 0.03%, 0.02%, 0.52% and 0.10% (weight/fresh weight basis),
respectively. Table 1 shows the results of qualitative and quantitative essential oil analyses on the
Elite-5 MS column. The compounds are listed in order of their elution time and reported as percentages
of the total essential oil. The total number of peaks for A. coriophora subsp. fragrans was 60 with number
of identified peak of 43 (72% identification), A. pyramidalis was 58 with number of identified peak of 45
(78% identification). O. holosericea was 59 with number of identified peak of 49 (83% identification),
S. vomeracea was 65 with number of identified peak of 59 (91% identification). As evidenced, the main
represented volatiles constituents are saturated hydrocarbons, especially in A. coriophora subsp. fragrans
followed by S. vomeracea, O. holosericea and A. pyramidalis, and unsaturated hydrocarbons mainly
present in O. holosericea essential oil. Differences in the qualitative and quantitative composition of the
volatile essential oils obtained from the four sympatric Italian orchids have been observed.
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Table 1. Percentage composition of the volatile fraction from inflorescences of A. coriophora subsp.
fragrans, A. pyramidalis, O. holosericea and S. vomeracea.

Percentage Peak Area

Compound RI a RI b A. coriophora
subsp. Fragrans A. pyramidalis O. holosericea S. vomeracea

Hexanal 801 799 tr 0.30 tr 0.21
2,4-Dimethyl heptane 820 819 - 0.13 0.21 0.19
2-Methyl-2-pentenal 821 829 - 0.16 0.30 0.24

Diacetone alcohol 841 844 - 0.24 0.37 1.03
Heptanal 901 901 0.17 4.02 1.39 1.57

Benzaldehyde 961 957 0.10 0.59 0.18 0.13
Heptanol 972 971 tr tr 0.10 tr
Nonane 1000 999 0.45 - 0.08 0.06
Octanal 1001 1003 - - 0.07 0.22

Benzyl alcohol 1032 1033 tr 1.13 2.59 tr
Phenylacetaldehyde 1042 1042 0.70 3.82 2.07 3.91
2,4-Dimethyldecane 1067 1068 0.56 0.55 1.24 0.57
3,5-Octadien-2-one 1072 1071 - - 0.08 -

Heptanoic acid 1083 1083 0.14 1.41 - 0.37
Undecane 1100 1100 - 0.31 - 0.18
Nonanal 1102 1104 1.61 5.44 4.65 7.87

2-Phenylethanol 1107 1112 - 12.11 tr tr
p-Cresol 1158 1158 0.87 - - -

Octanoic acid 1173 1173 - - - 0.07
1-Dodecene 1192 1192 - - - 0.19
Dodecane 1200 1200 0.47 0.42 0.45 0.26
Decanal 1204 1206 - 0.17 0.15 0.49

Anisaldehyde 1251 1253 0.68 - - -
Nonanoic acid 1275 1272 0.16 1.16 tr 0.71

Thymol 1277 1281 0.36 0.30 0.66 0.28
Undecanal 1307 1307 - tr 0.36 1.35

2,5-Dimethoxy benzyl alcohol 1328 1327 0.19 - 0.14 -
α-Copaene 1376 1376 0.26 0.45 0.56 tr

1-Tetradecene 1390 1392 - tr - 0.39
Tetradecane 1400 1400 0.45 0.54 0.50 1.68
Dodecanal 1412 1409 - 0.05 0.26 0.38

trans-Caryophyllene 1418 1421 - 0.09 0.04 -
trans-β-Farnesene 1452 1458 - - - 0.84

γ-Muurolene 1471 1468 0.08 0.05 0.48 0.39
Pentadecane 1500 1500 0.15 0.19 0.12 0.36
α-Cadinene 1537 1538 0.16 0.14 - 0.09

1-Hexadecene 1591 1592 1.21 - - 0.51
Hexadecane 1600 1600 0.19 0.14 0.19 0.15
Tetradecanal 1613 1613 - 0.09 0.31 0.60
γ-Eudesmol 1627 1635 0.12 - - -

Methyl-p-methoxycinnamate 1617 1614 0.58 - - -
Heptadecane 1700 1700 0.24 0.24 0.45 0.65
Pentadecanal 1713 1713 - 0.11 - 0.28

1-Heptadecene 1755 1748 0.06 - - 0.40
Octadecane 1800 1800 - - - 0.08
Nonadecane 1900 1900 20.51 2.26 0.56 2.45

Isophytol 1944 1949 - 1.47 tr 0.84
Palmitic acid 1950 1960 - - - 0.77

Eicosane 2000 1999 1.56 0.14 - 0.17
Octadecanal 2021 2020 0.19 1.44 1.00 0.93

9-Heneicosene 2071 2073 - - - 0.71
Heneicosane 2100 2100 25.10 7.50 4.34 5.68

Docosane 2200 2199 0.96 - 1.01 0.80
11-Tricosene 2261 2265 0.17 - 0.15 0.65
9-Tricosene 2279 2274 1.42 - 3.19 1.19
7-Tricosene 2287 2280 - - 2.72 1.18
Tricosane 2300 2300 17.16 17.17 27.71 14.21

Tetracosane 2400 2400 0.76 - 1.58 1.90
11-Pentacosene 2469 2469 - - 1.77 -
9-Pentacosene 2474 2474 3.39 4.69 2.95 3.92
7-Pentacosene 2483 2482 - tr 16.60 2.48
Pentacosane 2500 2500 9.31 16.24 6.84 17.59
Hexacosane 2600 2600 0.27 0.47 - 0.85

9-Heptacosene 2676 2675 2.30 3.90 2.17 2.87
7-Heptacosene 2683 2681 0.34 1.38 2.36 3.71
Heptacosane 2700 2699 3.43 6.04 2.22 4.99

9-Nonacosene 2876 2874 0.31 0.37 0.13 0.43
Nonacosane 2900 2902 - 0.09 0.37 0.47

Saturated hydrocarbons 81.57 52.43 47.87 53.29
Unsaturated hydrocarbons 9.20 10.34 32.04 18.63

Aldehydes 3.45 16.19 10.74 18.18
Alcohols 0.19 13.48 3.20 1.03
Terpenes 0.98 2.50 1.74 2.44

Acids 0.30 2.57 tr 1.92
Miscellaneous 1.45 - 0.08 -

RI a: Retention Indices from literature [26]. RI b: Retention Indices calculated by GC/FID using n-alkane series (from
C8 to C23) under the same analytical conditions as for samples. tr, traces (<0.01%); >0.01% quoted to nearest 0.01%.
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2.1. Anacamptis Coriophora subsp. Fragrans

Major constituents of the volatile fractions of this orchid species were found to be saturated
hydrocarbons (81.57% of the total essential oil), from which heneicosane (25.10%), nonadecane (20.51%),
tricosane (17.16%), pentacosane (9.31%) and heptacosane (3.43%) are the most abundant compounds.
A series of unsaturated linear chain hydrocarbons were identified, of which 9-pentacosene and
9-heptacosene represent the 3.39% and 2.30% of the total volatiles, followed by 9-tricosene and
1-hexadecene accounting for 1.42% and 1.21% of the total essential oil, respectively. Aldehydes
are present in the percentage of 3.45%, being nonanal (1.61%), phenylacetaldehyde (0.70%) and
anisaldehyde (0.68%) the most represented. Alcohols (0.19%) and terpenes (0.98%) consisted of
2,5-dimethoxybenzyl alcohol (0.19%), thymol (0.36%) and α-copaene (0.26%), respectively.

2.2. Anacamptis Pyramidalis

Major constituents of the volatile fractions of A. pyramidalis were found to be saturated
hydrocarbons accounting for 52.43% of the total essential oil. Tricosane (17.17%), pentacosane
(16.24%), heneicosane (7.50%) and heptacosane (6.04%) are the most abundant constituents of this
class of compounds. Aldehydes present as 16.19% were basically represented by nonanal (5.44%),
heptanal (4.02%) phenylacetaldehyde (3.82%) and octadecanal (1.44%). Alcohols (13.48%) consist of
2-phenylethanol (12.11%) followed by benzyl alcohol (1.13%). A series of unsaturated linear chain
hydrocarbons (10.34%) was instead identified with 9-pentacosene and 9-heptacosene as the 4.69% and
3.90%, followed by 7-heptacosene evaluated as 1.38% of the total essential oil. Acids are also detected
as 2.57%, being heptanoic acid (1.41%) the most abundant followed by nonanoic acid (1.16%). Terpenes
(2.50%) are mainly represented by α-copaene (0.45%), thymol (0.30%) and α-cadinene (0.14%).

2.3. Ophrys Holosericea

Saturated hydrocarbons, accounting for 47.87% of the total essential oil were found to be the
major constituents also of O. holosericea volatiles. Tricosane (27.71%), pentacosane (6.84%), heneicosane
(4.34%), heptacosane (2.22%) are the most abundant compounds. A series of unsaturated linear chain
hydrocarbons (32.04%) was also identified, of which 7-pentacosene (16.60%) was the major represented,
followed by 9-tricosene (3.19%), 9-pentacosene (2.95%), 7-tricosene (2.72%), 7-heptacosene (2.36%),
9-heptacosene (2.17%) and 11-pentacosene (1.77%). Aldehydes (10.74% of the total essential oil) consist
mainly of nonanal (4.65%), phenylacetaldehyde (2.07%), heptanal (1.39%) and octadecanal (1.00%).
Alcohols (3.20% of the total) are represented by benzyl alcohol (2.59%) and terpenes (1.74% of the total)
by thymol (0.66%), α-copaene (0.56%) and γ-muurolene (0.48%).

2.4. Serapias Vomeracea

More than 50% of the S. vomeracea volatile fraction consists of saturated hydrocarbons accounting
for 53.29% of the total essential oil. Pentacosane (17.59%), tricosane (14.21%), heneicosane (5.68%),
heptacosane (4.99%), nonadecane (2.45%), tetracosane (1.90%) and tetradecane (1.68%) were the most
representative compounds. Monounsaturated linear chain hydrocarbons (18.63%) were also identified,
of which the 9- and 7- isomers were the most represented. In details the rank order is: 9-pentacosene
(3.92%) > 7-heptacosene (3.71%) > 9-heptacosene (2.87%) > 7-pentacosene (2.48%) > 9-tricosene (1.19%)
> 7-tricosene (1.18%). Aldehydes accounting for 18.18% of the total volatiles consist mainly of nonanal
(7.87%), phenylacetaldehyde (3.91%), heptanal (1.57%), undecanal (1.35%) and octadecanal (0.93%).
Acids (1.92% of the total) are represented by palmitic acid (0.77%), nonanoic acid (0.71%) and heptanoic
acid (0.37%). Terpenes (2.44%) account for trans-β-farnesene (0.84%), γ-muurolene (0.39%) and thymol
(0.28%). The only alcohol found in S. vomeracea volatile fraction was diacetone alcohol as 1.03% of the
total essential oil.
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2.5. Venn’s Diagram

Figure 1 shows the Venn’s diagram [27] in which 22 compounds are shared among all the
4 sympatric Italian orchids. Even if just a few, some peculiarities were found to be species-specific.
In detail, four compounds were found only in A. coriophora subsp. fragrans, i.e., creosol, anisaldehyde,
γ-eudesmol and methyl-p-methoxycinnammate, although poorly represented (<1% of the total essential
oil). In A. pyramidalis only one compound, 2-phenylethanol (12.11% of the total essential oil), seems
to be species-specific, further characterizing this species. O. holosericea showed to have four peculiar
compounds, i.e., heptanol, 3.5-octadien-2-one, 2.3-dimethyldecane and 11-pentacosene. It should
be stressed that only the latter one is present with a valuable amount, reaching 1.77% of the total
essential oil. On the contrary, S. vomeracea was the species showing eight unique chemicals, being
trans-β-farnesene, that represents the 50% of total terpenes, palmitic acid and 9-heneicosene the most
abundant reaching the 0.84%, 0.77% and 0.71% of the total essential oil, respectively.

2.6. DPPH Assay

All samples demonstrated a good, dose-dependent, antioxidant activity by the DPPH assay
(Figure 2). ANOVA analysis evidenced that the ROS-scavenging activity is strongly influenced both
by the sample and concentrations tested (p < 0.0001). In particular, O. holosericea shows the strongest
antioxidant activity, especially at a concentration of 1.5 mg/mL. For S. vomeracea, the concentration did
not influence the antioxidant activity (p > 0.05).
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3. Discussion

A high percentage of saturated hydrocarbons has been detected in the volatile fraction of all the
four Italian sympatric orchid species. The presence of saturated hydrocarbons in higher percentage
with respect to other published research [28] is probably due to the different extraction procedures
like solid-phase microextraction that work at lower extraction temperatures. In detail, a series of
homologous linear chain compounds ranged from C9 to C29 have been reported for all the terrestrial
and epiphytic orchids. The presence of hydrocarbons as allelochemicals is associated with epicuticular
wax chemistry playing an important role in plant/herbivore interactions. Saturated alkanes exerted an
interesting, although limited, activity in pollinator deception in different floral species [25,29–31].

The position of the double bond in linear alkene isomers was determined by GC/MS after
iodine-catalyzed reaction with dimethyl disulfide. Derivatization procedure was applied to
alkene mixtures, which have chemotaxonomic value for the pollinator populations. Linear chain
monounsaturated hydrocarbons were previously identified in several orchid species with a high
content of these compounds in flowers [30]. Although these compounds seem not to act are as
specific contributors to the aroma of the plant, they might be crucial in modulating plant-herbivore
interaction [32]. In fact, several studies demonstrated that this class of compounds is endowed with
an interesting, although limited, activity in pollinator deception in Orchidaceae [21,31]. Furthermore,
multifactorial mechanisms involved in protection actions from environmental factors such as water
loss, thermal- or UV-related stress, seem to be related to the occurrence of hydrocarbons [30,32].

Another class of substances that might be involved in plant-insect interaction is reported to
be benzenoids [33,34]. A. pyramidalis, a specialized species and mainly dependent on butterflies
for pollination [35–38], shows a strong presence of 2-phenylethanol (12.11% of the total volatiles)
in its flower’s scent compared to the other orchis species (see Table 1). It should be stressed that
benzenoids play a critical role in pollinator attraction strategy of A. pyramidalis, as well as those
of two other terrestrial orchids, Nigritella nigra (today accepted as Gymnadenia nigra) (L) Reichb. f.
(2-phenylethanol) [15,39] and Gymnadenia conopsea (L) Br.R., (benzyl acetate) [15]. Given the volatile
extract’s composition, which included ROS-scavenging compounds, the antioxidant activity for each
extract has been evaluated by DPPH method. All samples demonstrated a good antioxidant activity
that is probably related to the presence of benzyl alcohol (A. pyramidalis 1.13%, O. holosericea 2.59%)
and phenylacetaldehyde (A. coriophora subsp. fragrans 0.70%, A. pyramidalis 3.82%, O. holosericea 2.07%
and S. vomeracea 3.91%) as previously reported for essential oils from Laurus nobilis and Fagopyrum
species [40,41], to the presence of thymol (A. coriophora subsp. fragrans 0.36%, A. pyramidalis 0.30%,
O. holosericea 0.66% and S. vomeracea 0.28%) and α-copaene (A. coriophora subsp. fragrans 0.26%,
A. pyramidalis 0.45% and O. holosericea 0.56%) as reported for essential oil from Cinnamodendron dinisii
and Siparuna guianensis [42,43]. However, even if benzenoids have been observed to be predominant
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in specialist butterfly-pollinated flower scents, these compounds have been also found in generalist
plants, suggesting that they might be emitted by both specialists and generalists [44]. It should be
stressed that differences in floral scents, visual attraction and reward systems are decisive for chemical
communication in pollination strategies of sympatric orchids to guarantee pollination efficiency
and fidelity.

In detail, Ophrys flowers act as “false female” mimicking her visual, tactile and olfactory stimuli,
so male pollinators attempt to copulate with the orchid labellum removing and delivering pollen, a
process termed pseudocopulation. It should be noticed that the complex blend of different odours
mimicking female pheromones mainly consists of long-chain alkanes and alkenes derivatives and
that the relative alkanes and alkenes abundance makes each floral scent unique resulting in different
pollinator species attraction [22,30].

As regards S. vomeracea, its flowers form a small tube, which pollinators use basically as
nest-replacement or refugee during rainy weather, although the pollination strategy of this orchid relies
not only in the floral shape but also in the olfactory attractors to assure sufficient degree of pollinator
fidelity; in fact both visual and olfactory signals are of critical importance in pollinator choice. Again,
according to the literature [45] alkanes and alkenes have been found to be very important volatile
components in this orchid species scent as reported in Table 1. In fact, a solitary bee such as Megachile
rotundata has been found to mark its nest with an olfactory trace consisting of a mixture of alkanes and
alkenes similar to that present in the Serapias and Ophrys scents [30].

Another class of substances that might be involved in plant-insect interaction is reported to be
benzenoids [33,34]. A. pyramidalis, a specialized species and mainly dependent on butterflies for
pollination [35–38], shows a strong presence of 2-phenylethanol in its flower’s scent as reported (see
Table 1). It should be stressed that benzenoids play a critical role in pollinator attraction strategy
of A. pyramidalis, as well as those of two other terrestrial orchids, Nigritella nigra (today accepted
as Gymnadenia nigra) (L) Reichb. f. (2-phenylethanol) [15,39] and Gymnadenia conopsea (L) Br.R.,
(benzyl acetate) [15].

However, even if benzenoids, in this case mainly 2-phenylethanol, have been observed to be
predominant in specialist butterfly-pollinated flower scents, these compounds have been also found in
generalist plants, suggesting that they might be emitted by both specialists and generalists [44].

Among the species investigated A. coriophora subsp. fragrans can be occasionally pollinated by
Lepidoptera (even if they are not the main pollinators), as shown in Table 2 [46].

Table 2. Relationship between each sympatric Italian orchid and its pollinators, according to GIROS [46].

Species Lepidotpera Diptera Hymenoptera Coleoptera

Anacamptis coriophora subsp. Fragans Nymphalidae
Zygaenidae

Tachinidae
Bombyliidae

Apidae
Halictidae
Vespidae

Oedemeridae

Anacamptis pyramidal

Arctiidae
Crambidae
Hesperidae
Lycaenidae

Nymphalidae
Noctuidae

Bombyliidae
Conopidae
Empididae

Apidae Oedemeridae

Ophrys holosericea - - Apidae
Formicidae Rutelidae

Serapias vomeracea - -

Apidae
Crabronidae
Eumenidae
Halictidae

Megachilidae

Scarabaeidae
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Unlike A. pyramidalis, in A. coriophora subsp. fragrans alkanes and alkenes are the main constituents
of the scent. The results reported in the present paper are different from those reported in the
scarce literature available data [47–49]. In this investigation, we analyzed pre-pollinated flowers
of A. coriophora subsp. fragrans chemotype europaeus, while both inflorescences and mature seeds
of A. coriophora subsp. fragrans chemotype africanus [47], or inflorescences of A. coriophora subsp.
coriophora [48], respectively, were used by other Authors.

In conclusion keeping in mind that these four orchids colonize the same environment, bloom in the
same time and share also some pollinators, the data reported in the present paper strongly suggest that
each species may attain a peculiar combination of olfactory, tactile and/or visual floral signs suitable to
explain different interactive communication systems between plants and pollinators. Furthermore,
it is reasonable to assess that each orchid species is able to gain especially through different signals
a sufficient level of pollinator fidelity and thus maintain its genetic identity even in a population of
admixed orchid species

4. Materials and Methods

4.1. Plant Material

Inflorescences of the four orchid species were collected in May 2016 in Pompeiana (Imperia,
Italy, 438,547 N 78,909 E) according to the regional law and with the legal permission of Regional
Authorities (Region Liguria, Prot. n. PG/2016/104503). Plants were identified according to Chase and
colleagues [48]. A type specimen for each species is deposited in the living collection of CREA-OF
(Sanremo, Italy) with the accession numbers ANcf01, ANpy01, OPho01, and SEvo01 for A. coriophora
subsp. fragrans, A. pyramidalis, O. holosericea and S. vomeracea, respectively. The flowers were cut and
immediately placed in a pyrex bottle containing 100 mL of methylene chloride as a preservative agent
and stored at −20 ◦C.

4.2. Isolation of Volatile Fraction

Flowers of A. coriophora subsp. fragrans (4.6 dried g), A. pyramidalis (9.3 dried g), O. holosericea
(0.5 dried g) and S. vomeracea (3.3 dried g), to which ethyl decanoate was added as internal standard,
were steam distilled together with methylene chloride in a Clevenger-type apparatus for 1 h. The
distillate, saturated with NaCl, was extracted with freshly distilled diethyl ether (3 × 100 mL), dried
over anhydrous Na2SO4 concentrated at first with a rotary evaporator and finally using a gentle stream
of N2 and then analyzed by GC/FID and GC/MS.

4.3. Fractionation and Alkylthiolation of Alkenes

A portion of the essential oil from each sample was placed onto a glass column (7 × 30 mm) of
silica gel 60, 230–400 mesh (Merck, Milano, Italy), preconditioned with pentane [29]. The non-polar
fraction was eluted with 2 mL of pentane and used for the determination of double bond position in
alkenes by alkylthiolation according to reported method [50].

4.4. GC/FID Analysis

The analyses were carried out using a Hewlett Packard model 5890 GC, equipped with
Elite-5MS (5% phenyl methyl polysiloxane, Supelco, Sigma Aldrich, Milano, Italy) capillary column of
(30 m × 0.32 mm i.d.) and film 0.32 µm thick. The carrier gas was He at a flow of 1 mL/min. One µL
aliquots of each essential oil were manually injected in “split” mode (30:1). The oven temperature
program included an initial isotherm of 40 ◦C for 5 min, followed by a temperature ramp to 260 ◦C at
4 ◦C/min, and a final isotherm at this temperature for 10 min. Injector and detector temperatures were
set at 250 and 280 ◦C, respectively.
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4.5. GC/MS Analysis

The analyses were carried out using a GC Model 6890 N, coupled to a benchtop MS Agilent
5973 Network, equipped with the same capillary column and following the same chromatographic
conditions used for the GC/FID analyses. The carrier gas was He at a constant flow of 1.0 mL/min.
The essential oils were diluted prior to analysis (1mg/10mL in n-hexane), and 1.0 µl of the diluted
solution was manually injected into the GC system with a split ratio of 30:1. The ion source temperature
was set at 200 ◦C, while the transfer line was at 300 ◦C. The acquisition range was 40–500 amu in
electron-impact (EI) positive ionization mode using an ionization voltage of 70 eV.

4.6. Identification and Quantification of the Essential Oil Components

The identification of the essential oil volatile components was performed by their retention indices
(RI) and their mass spectra, and by comparison with a NIST 98 and Wiley 5 MS libraries, as well as
with literature data [26]. Retention indices were calculated by an Elite-5MS capillary column using a
series of n-alkanes (C8-C23) under the same GC conditions as for samples [51]. The relative amount of
each individual component of the essential oil was expressed as percent peak area relative to the total
peak area from GC/FID analyses of the whole extract.

4.7. DPPH Assay

The ROS-scavenging activity of the essential oils was evaluated by the DPPH (2,2-diphenyl-2
picrylhydrazyl hydrate) method according to the previously described method with slight
modifications [52–54]. At first, the essential oils were solubilized in dimethyl sulfoxide and then diluted
in methanol at final concentrations of 1.5 and 0.75 mg/mL. 270 µL of DPPH (0.028% w/v in methanol)
was mixed with 30 µL of each sample. Reaction mixtures were incubated in the dark for 20 min at
room temperature before measuring the absorbance at 517 nm using a microplate reader (Synergy HT,
BioTek, Swindon, United Kingdom). Ascorbic acid (1.25 mg/mL) was used as a positive control, while
the reaction mixture without any sample was used as a negative control. ROS scavenging activity
percentage was calculated as follows:

% activity = (A − B)/A × 100 (1)

where A is the absorbance of the negative control and B is the absorbance of the tested sample. Analyses
were performed in three replicates.

4.8. Statistical Analysis

Results of DPPH assay are reported as mean ± standard deviation for the values with a normal
distribution (or interquartile range and median for the values that did not adhere to the Gaussian
distribution). For the data with normal distribution, an analysis of variance (ANOVA) was performed,
considering the compound and its concentration as fixed factors, while the inhibition percentage as the
dependent variable. The significance criterion was set to p < 0.05.
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