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Abstract: Hsp70, a 70 kDa molecular chaperone, plays a crucial role in maintaining protein
homeostasis. It interacts with the DnaJ family of co-chaperones to modulate the functions of
client proteins involved in various cellular processes, including transmembrane transport,
extracellular vesicle trafficking, complex formation, and proteasomal degradation. Its
presence in multiple cellular organelles enables it to mediate stress responses, apoptosis,
and inflammation, highlighting its significance in disease progression. Initially recognized
for its essential roles in protein folding, disaggregation, and degradation, later studies have
demonstrated its involvement in several human diseases. Notably, Hsp70 is upregulated in
multiple cancers, where it promotes tumor proliferation and serves as a tumor immunogen.
Additionally, epichaperome networks stabilize protein–protein interactions in large and
long-lived assemblies, contributing to both cancer progression and neurodegeneration.
However, extracellular Hsp70 (eHsp70) in the tumor microenvironment can activate im-
mune cells, such as natural killer (NK) cells, suggesting its potential in immunotherapeutic
interventions, including CAR T-cell therapy. Given its multifaceted roles in cellular physiol-
ogy and pathology, Hsp70 holds immense potential as both a biomarker and a therapeutic
target across multiple human diseases. This review highlights the structural and functional
importance of Hsp70, explores its role in disease pathogenesis, and discusses its potential
in diagnostic and therapeutic applications.
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1. Introduction
Stress is a universal phenomenon experienced by all organisms, manifesting in both

acute and chronic forms. It impacts cellular physiology and disrupts protein homeostasis.
Prolonged exposure to stresses results in various pathological conditions, contributing
to a diverse range of diseases due to its detrimental effects on tissue injury and repair,
including stroke, cancer, neurodegeneration, cardiac disorders, and atherosclerosis [1]. In
response to stress, cells activate the synthesis of specific genes known as stress-responsive
genes. The induction of these genes requires heat shock transcriptional factors (HSFs),
which bind to the heat shock promoter elements and trigger the expression of stress
proteins, commonly referred to as molecular chaperones or “heat shock proteins” (Hsps) [2].

Cells 2025, 14, 509 https://doi.org/10.3390/cells14070509

https://doi.org/10.3390/cells14070509
https://doi.org/10.3390/cells14070509
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cells
https://www.mdpi.com
https://orcid.org/0000-0002-2232-0350
https://orcid.org/0000-0001-8021-1024
https://orcid.org/0000-0002-6817-7668
https://orcid.org/0000-0001-7117-1008
https://doi.org/10.3390/cells14070509
https://www.mdpi.com/article/10.3390/cells14070509?type=check_update&version=1


Cells 2025, 14, 509 2 of 27

Molecular chaperones play a crucial role in preventing protein misfolding, unfolding, and
aggregation, thereby maintaining protein homeostasis until the stress is alleviated.

The functions of molecular chaperones depend on their co-chaperones. The co-
chaperone interaction requires ATP and ions to form an active conformation, which facil-
itates the binding of client proteins. The 70 kDa heat shock protein (Hsp70) is the most
abundant molecular chaperone among Hsps, with the highest intracellular concentration.
Hsp70 exists in two main forms: the constitutive form, Hsc70, and the inducible form,
Hsp72. It plays a crucial role in various cellular processes, including the folding and
assembly of non-native proteins [3], the refolding of misfolded and aggregated proteins [4],
the membrane translocation of organellar and secretary proteins [5], and the regulation of
signaling proteins within a multiprotein Hsp90/Hsp70-based chaperone machinery [6].
Hsp70’s ability to interact with the hydrophobic segments of proteins in an ATP-dependent
manner underlies these activities. Notably, the Hsp70 family exhibits significant polymor-
phism among human molecular chaperones [7]. Hsp70 isoforms are involved in immunity,
inflammation, and stress response, and are inherited alongside MHC class I and class II
genes as part of ancestral haplotypes [8,9]. Numerous studies have reported deleterious mu-
tations of various chaperones contributing to the etiology of several diseases. For instance,
Hsp70 polymorphisms have been linked to the inflammatory or autoimmune pathogenesis
of conditions such as sepsis [10], Crohn’s disease [11], Alzheimer’s disease [12], pancre-
atitis [13], and acute graft-versus-host disease [14]. These findings underscore Hsp70’s
functional diversity and its potential therapeutic implication in various human diseases.

2. Hsp70 Structure and Divergence
Hsp70 family members are highly conserved molecular chaperones present across all

organisms. In E. coli, there are three members of the Hsp70 (DnaK); in S. cerevisiae, there
are 14 members; and in humans, there are 13 members, including Hsp110, which shares
structural and functional similarities with nucleotide exchange factors (NEFs) [15]. Hsp70
homologs are localized in various cellular compartments, including the cytosol, nucleus,
ER, and mitochondria. Hsp70 isoforms, encoded by a multigene family, comprise 11 distinct
genes in humans, eight of which have been present on five different chromosomes. These
genes are located at dispersed loci, three within the MHC class III region on chromosome
6 [16], two on chromosome 1 [17], and one each on chromosomes 5 [18], 9 [19], 11 [20],
and 14 [21]. Additionally, the inducible Hsp70 isoform is encoded by a gene located on
chromosome 21 [19].

Hsp70 family proteins exhibit conserved domains with variable amino acid sequences.
Hsp70 consists of an N-terminal domain, which includes a 45 kDa nucleotide-binding
domain (NBD), followed by a substrate-binding domain (SBD) composed of 10 kDa he-
lical lid domain (SBDα), a 15 kDa β-domain (SBDβ), and a disordered C-terminal short
amino acids sequence with conserved charged motifs (EEVD) that interact with specific
co-factors [22,23] (Figure 1A,B). In eukaryotes, the peptide-binding domain of Hsp70 com-
prises two structural units: an eight-stranded antiparallel β-sandwich with a hydrophobic
groove on its upper surface and a helical α-domain positioned on top [24]. The β-sheets
are interconnected by loops, forming a hydrophobic binding pocket (~5 × 7 Å), in which
the leucine residue of bound peptides is buried [25].
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Figure 1. This figure illustrates the structure and function of Hsp70 chaperones. (A) Schematic rep-
resentation of the human Hsp70 gene organization and protein structure, highlighting key domains 
and interacting molecules (adapted from the NCBI protein database). (B) Gene organization of 
DnaK in E. coli and the structural depiction of full-length DnaK with a bound J-domain and associ-
ated interacting partners (adapted from the NCBI protein database). (C) Illustration of protein fold-
ing facilitated by the Hsp70 chaperone system, emphasizing co-chaperone interactions and the ATP-
dependent folding cycle. 

The ATPase domain of Hsp70 consists of two large globular subdomains, I and II, 
separated by a cleft and further divided into four sub-domains: IA, IB, IIA, and IIB [3]. 
Nucleotides bind at the base of this cleft, coordinated by one Mg+2 and two K+ ions, inter-
acting with all four subdomains [26]. These interactions stabilize the ADP-bound confor-
mation of the NBD. Nucleotide exchange factors (NEFs) are well-established co-chaper-
ones that regulate the ATP-ADP cycling of Hsp70. In humans, Hsp70s utilize at least 50 
different J- proteins and eight different NEFs. The ATP-bound conformation of Hsp70 has 
a low affinity for substrates, leading to their dissociation [27]. ATP hydrolysis converts 
Hsp70 from a “fast binding, fast release” state to a “slow binding, slow release” state, 
stabilizing substrate interactions, and acting as a rate-limiting step [28]. The binding of a 
J-domain protein (JDP/Hsp40) induces ATP hydrolysis, shifting Hsp70 into its ADP-
bound state, thereby allowing its recycling for subsequent reactions (Figure 1C). 

Peptide library screening for substrates of DnaK and the ER-residing Hsp70, BIP, re-
vealed that these substrates predominantly contain hydrophobic residues within the sub-
strate-binding cavity and positively charged residues outside it [29,30]. Bag-1, a heteroge-
neous family of multidomain proteins, plays a crucial in stimulating nucleotide exchange 
in mammalian homologs of Hsc70 and Hsp70 [31]. It interacts with Hsc70, which destabi-
lizes the ADP-bound state, facilitating subsequent ATP hydrolysis cycles [31]. The sub-
strates for Hsp70 vary widely in sequence and structure, ranging from completely un-
folded nascent polypeptides emerging at ribosomes and translocation pores [32] to nega-
tive regulatory proteins, such as clathrin [33], transcription factors like HSF, and steroid 
hormone receptors [34]; kinases, including Raf and CIF2-kinase [35]; and p53 and DNA 
replication proteins, including λP, RepE, and RepA [36]. This extensive functional versa-
tility underscores the critical role of Hsp70 in protein folding, stabilization, and cellular 
stress responses, making it a central player in maintaining cellular integrity under both 
physiological and stress conditions. 

  

Figure 1. This figure illustrates the structure and function of Hsp70 chaperones. (A) Schematic
representation of the human Hsp70 gene organization and protein structure, highlighting key domains
and interacting molecules (adapted from the NCBI protein database). (B) Gene organization of DnaK
in E. coli and the structural depiction of full-length DnaK with a bound J-domain and associated
interacting partners (adapted from the NCBI protein database). (C) Illustration of protein folding
facilitated by the Hsp70 chaperone system, emphasizing co-chaperone interactions and the ATP-
dependent folding cycle.

The ATPase domain of Hsp70 consists of two large globular subdomains, I and II,
separated by a cleft and further divided into four sub-domains: IA, IB, IIA, and IIB [3].
Nucleotides bind at the base of this cleft, coordinated by one Mg+2 and two K+ ions,
interacting with all four subdomains [26]. These interactions stabilize the ADP-bound
conformation of the NBD. Nucleotide exchange factors (NEFs) are well-established co-
chaperones that regulate the ATP-ADP cycling of Hsp70. In humans, Hsp70s utilize at least
50 different J- proteins and eight different NEFs. The ATP-bound conformation of Hsp70
has a low affinity for substrates, leading to their dissociation [27]. ATP hydrolysis converts
Hsp70 from a “fast binding, fast release” state to a “slow binding, slow release” state,
stabilizing substrate interactions, and acting as a rate-limiting step [28]. The binding of a
J-domain protein (JDP/Hsp40) induces ATP hydrolysis, shifting Hsp70 into its ADP-bound
state, thereby allowing its recycling for subsequent reactions (Figure 1C).

Peptide library screening for substrates of DnaK and the ER-residing Hsp70, BIP,
revealed that these substrates predominantly contain hydrophobic residues within the
substrate-binding cavity and positively charged residues outside it [29,30]. Bag-1, a het-
erogeneous family of multidomain proteins, plays a crucial in stimulating nucleotide
exchange in mammalian homologs of Hsc70 and Hsp70 [31]. It interacts with Hsc70, which
destabilizes the ADP-bound state, facilitating subsequent ATP hydrolysis cycles [31]. The
substrates for Hsp70 vary widely in sequence and structure, ranging from completely
unfolded nascent polypeptides emerging at ribosomes and translocation pores [32] to nega-
tive regulatory proteins, such as clathrin [33], transcription factors like HSF, and steroid
hormone receptors [34]; kinases, including Raf and CIF2-kinase [35]; and p53 and DNA
replication proteins, including λP, RepE, and RepA [36]. This extensive functional versa-
tility underscores the critical role of Hsp70 in protein folding, stabilization, and cellular
stress responses, making it a central player in maintaining cellular integrity under both
physiological and stress conditions.
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2.1. Nuclear Localization and Functions of Hsp70

The heat shock response is characterized by both the induction of Hsps and their
translocation to cellular organelles and the nucleus [37–39]. The Hsp70 is predominantly
localized in the cytoplasm under normal conditions; however, it accumulates in the nucleus
upon stress, including heat, hypoxia, hepatic inflammation, cardiac ischemia, and ROS [40].
Small molecules less than 40 kDa can passively diffuse into the nucleus, whereas proteins
above 40 kDa cannot pass through the nuclear pore complex (NPC) alone [41]. To pass
through the nuclear pore complex (NPC), they require carrier proteins collectively referred
to as nuclear transport receptors (NTRs), such as importins-β [42]. Hikeshi, a specific type
of NTR, facilitates the nuclear import of Hsp70 [43]. Furthermore, mutations in the Hikeshi
gene, such as p.Val54Leu and p.Cys4Ser, have been shown to inhibit Hsp70’s nuclear
import under heat stress in fibroblast cells, underscoring its vital role in this process [44].
Additionally, the nuclear transport of Hsp70 is facilitated by a nuclear localization sequence
(NLS), a short motif of 4–15 amino acids enriched in the basic residues such as lysine and
arginine, often flanked by helix-breaking residues like proline and glycine [45]. Site-directed
mutagenesis has identified three possible NLSs in human Hsp72: NLS1 (amino acids 245 to
264; KRKHKKDISENKRAVRRLR), NLS2 (amino acids 568–574, KKKYLDK), and NLS3
(amino acids 595–598; HKRK) [39,46]. Mutational studies involving alanine substitution of
lysine and arginine to preserve secondary structure revealed that deletion of amino acids
245–250 (KRKHKK) reduced nuclear accumulation but did not completely abolish it [47].
A functional nuclear export signal (NES) has been identified in the C-terminal domain
of S. cerevisiae Ssb1p, a homolog of human Hsc70, however, the corresponding region is
absent in human Hsc70, leaving the molecular mechanism for its nuclear export unexplored.
Notably, a novel variant of human Hsp70, Hsc54, contains a functional leucine-rich NES
(394 LDVTPLSL401) but lacks the NLRS (473–492), a 20-amino acid sequence crucial for
nuclear retention of Hsc70. This difference facilitates the cytoplasm export of Hsc54,
whereas the NLS is essential for the prolonged retention of Hsc70 in the nucleus [48]. Hu
et al. found that Hsp70 associates with nuclear speckles in a manner dependent on Hsp70
promoter sequences. Further investigation is required to confirm the association of nascent
transcript with nuclear speckles [49].

Recent studies highlighted that post-translational modifications (PTMs), including
phosphorylation and O-linked N-acetylglucosamine (O-GlcNAc) modification, play crucial
roles in nucleocytoplasmic forms of Hsp70 lectin activity and facilitating NLS-independent
nuclear transport [50]. Another study suggests that N-acetyl-D-glucosamine (GlcNAc)-
specific lectins derived from adult rat liver cells may act as shuttling molecules aiding in
nucleocytoplasmic transport of Hsp70 [51,52]. While the molecular chaperone function of
Hsp70 is well studied, its nuclear functions remain less understood. In humans, Hsp70
has been demonstrated to play a role in erythroid differentiation by binding to GATA-1,
preventing its degradation by caspases, and thereby supporting erythroid maturation [53].
Furthermore, nuclear Hsp70 suppresses lipopolysaccharide-induced inflammation in den-
dritic cells by promoting the degradation of the p65 subunit of Nf-kb [54]. Additionally,
its interaction with VHR phosphatase attenuates neuronal cell death caused by glutamate
excitotoxicity [55]. Another variant, GRP78, has been implicated as a transcriptional mod-
ulator in cancer [56]. In human lung cancer, nuclear localization of GRP78 leads to the
sequestration of inhibitor of DNA binding 2 (ID2), a transcriptional factor that regulates
EGFR protein expression [57]. Further research is needed to explore the diverse nuclear
functions of Hsp70 and its association with the ribosomal protein complex, which could
have therapeutic applications in various diseases.
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2.2. Hsp70 Assist Protein Folding and Regulate Hyperthermia

The Hsp70 family of proteins assists in protein folding through its ATP-binding capa-
bility, enabling regulation via cycles of co-chaperone binding and release until the substrate
achieves its native conformation [58]. In yeast and S. cerevisiae, cytosolic Hsp70 homologs
specifically bind to nascent proteins, whereas small proteins often fold independently
after synthesis and release [32,59]. Hsp70 proteins, in conjugation with co-chaperones
such as DnaJ homologs and Hsp100 homologs, facilitate protein folding and promote
post-translational modifications of nascent proteins [3]. During translation, the exposure of
hydrophobic side chains in nascent proteins increases the risk of aggregation, especially in
the crowded cytosolic environment [60]. Moreover, Hsp70s can actively modulate protein
structure through their secondary amid peptide bond cis-trans isomerase (APIases) activ-
ity, which selectively accelerates the cis-trans isomerization of non-prolyl peptide bonds,
thereby promoting proper folding [61].

In eukaryotes, cellular organelle-specific Hsp70 homologs perform essential func-
tions. The ER luminal Hsp70, Bip/Kar2P in yeast [62], and mitochondrial matrix Hsp70
(mtHsp70) [63] assist in the translocation of preproteins through cis-trans conformational
changes driven by trapping and pulling mechanisms. The stress-inducible Hsp70, along
with its cognate form Hsc70 and the distantly related Hsp110 family members, exhibit
RNA-binding properties [64]. Hsp70 functions as an RNA-chaperone, facilitating RNA
folding and exposing critical motifs essential for regulatory events during translation
and/or decay. Furthermore, Hsp70 family chaperones, along with their co-chaperones,
interact with a diverse array of signaling molecules, including nuclear hormone recep-
tors [65], tyrosine and serine/threonine kinases [35], and regulators of the cell cycle and
apoptosis [66]. HspA5, an isoform of Hsp70, mainly localizes to the ER, where it regulates
protein folding during ER-associated stress [67], but cellular stimuli such as ER stress and
ER-associated degradation can trigger its localization to the mitochondria and cytosol [68].
In humans, HspA5 is upregulated in prefrontal cortex neurons of ALS patients, and its
increased cytoplasmic expression appears to mitigate TDP-43-induced toxicity in Drosophila,
identifying HspA5 as a potential target in TDP43-associated diseases [69].

3. Hsp70: A Key Regulator in Human Diseases
Hsp70 functions have been extensively studied in various pathological conditions and

are implicated in several diseases, including inflammatory disorders, neurodegenerative
diseases such as Alzheimer’s disease, cardiovascular disease, diabetes, bone disorders,
and multiple cancers [70]. In humans, Hsp70 consists of multiple isoforms that exhibit
differential expression in response to stress stimuli. However, the specific role of indi-
vidual isoforms, such as HspA1A, HspA1B, HspA1L, HspA2, and HspA5, in various
disease conditions, remains largely uncertain. Recent studies have identified specialized
heterocomplex chaperone assemblies, known as epichaperomes-dynamic scaffolding plat-
forms that regulate protein–protein interaction networks. By stabilizing these interactions,
epichaperomes influence cellular stress responses and contribute to the persistence of patho-
logical states in diseases such as cancer and Alzheimer’s disease [71]. Post-translational
modifications (PTMs) of molecular chaperones create a microenvironment conducive to
epichaperome formation, further promoting disease progression [72]. While several studies
have focused on Hsp90 and Hsp70 epichaperome assemblies, the precise role of Hsp70
and its co-chaperones in many diseases remains unclear. The current review highlights the
diverse functions of Hsp70 in human diseases and its impact on disease pathology.
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3.1. Hsp70 in Various Cancer

Hsp70 expression is induced in many cancers, where it promotes tumorigenesis and
is associated with poor survival [73]. Various Hsp70 isoforms play critical roles in cancer
progression and survival. In cancer, elevated expression of Hsp70 can lead to its transloca-
tion into extracellular vesicles released by tumor cells, triggering pro- or anti-tumorigenic
responses [74]. However, prolonged exposure to eHsp70 can desensitize cancer cells
to immune responses, facilitating long-term survival and promoting tumor growth [75].
Consequently, Hsp70 has also been hypothesized as a potential adjuvant in cancer im-
munotherapy. For instance, in vitro knockdown of Hsp70 in gastric cancer cells has been
shown to inhibit cell proliferation, induce cell cycle arrest, and increase apoptosis [76].
Elevated serum Hsp70 levels have been observed in patients with acute lymphocytic
leukemia (ALL) [77], colorectal cancer [78], gastric cancer [79], pancreatic cancer [80], and
breast cancer [81]. Elevated expression of Hsp70 suppresses apoptosis by inhibiting key
regulators such as apoptosis signal-regulating kinase 1 (ASK1) [82], C-jun terminal kinases
(JNK) [83], Bcl-2 associated X apoptosis regulator (BAX) [84], apoptosis protease activating
factor 1 (APAF-1) [85], and apoptosis-inducing factor (AIF) [86]. Furthermore, in various
cancers, Hsp70 inactivates p53, thereby promoting tumor progression [87]. In contrast,
lung cancer patients exhibit significantly reduced plasma Hsp70 levels compared to healthy
controls [88]. In non-small cell lung cancer (NSCLC) cells, Hsp70 regulates autophagy by
negatively modulating AMPK signaling. The combined inhibition of Hsp70 and autophagy
has been shown to synergistically reduce tumor cell metabolic activity, growth, and viability
in NSCLC cells [89].

Elevated Hsp70 levels are strongly associated with cancer metastasis, such as lymph
node metastasis in breast cancer [90]. In MCF-7 breast cancer cells, Hsp70 levels are
upregulated, providing protection against hyperthermia and promoting proliferation by
shortening the G0/G1 and S phases of the cell cycle [91]. Hsp70 also prevents anoikis, a
form of cell death that occurs when cells detach from the extracellular matrix (ECM). Hsp70
stabilizes survival pathways in detached cancer cells, and enables their survival in the
bloodstream or lymphatic system, facilitating distant metastasis [92]. Conversely, Hsp70
can stabilize key cell adhesion protein complexes like E-cadherin-catenin, thereby inhibiting
cancer cell migration. However, downregulation of Hsp70 leads to the destabilization of the
E-calmodulin-linked protein complex, resulting in enhanced tumor cell migration [93]. In
human liver cancer (Huh-7 cells), Hsp70-peptide complexes (Hsp70-PC) promote EMT by
activating pathways such as p38 MAPK, thereby enhancing the metastatic potential of can-
cer cells [94]. Additionally, Hsp70 attenuates TGF-β-mediated EMT signaling by interfering
with the phosphorylation of proteins such as Smad2, Smad3, and Smad4 (Figure 2) [95].
The co-chaperone CHIP also contributes to EMT inhibition by facilitating the degradation
of EMT-promoting proteins [96].

HspA9, an isoform of Hsp70, also known as Mortalin, is primarily localized in mito-
chondria and plays essential roles in both mitochondrial and extra-mitochondrial functions.
Mortalin has been implicated in various cancers, including gastric, liver, and breast can-
cers [97–99]. It binds to p53 and sequesters it in the cytoplasm [100], and activates the
expression of genes responsible for tumor suppression [101]. The interaction of HspA9 and
p53 leads to the inactivation of p53’s tumor suppressor activity [102]. This phenomenon has
been observed in vitro in multiple cancer cell lines, including NIH/3T3, A-172, U-2 OS, and
HeLa, where its interaction with HspA9 prevents nuclear translocation, thereby inhibiting
its transcriptional activity and promoting its degradation via the proteasome [103]. In
contrast, this interaction has not been observed in normal cells such as MEF and TIG-3
cells [102]. As a result, HspA9 enables cancer cells to evade apoptosis by disrupting p53’s
tumor-suppressor functions, thereby enhancing cell survival. In pancreatic ductal adeno-
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carcinoma (PDAC) cells, inhibition of Hsp70 induces mitochondrial swelling, leading to
mitochondrial apoptosis. In vivo, Hsp70 inhibition promotes AMPK-mediated autophagy
flux, thus inhibiting PDAC growth [104].
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Another isoform, HspA8 (Hcc70/Hsp73/Hsp71;73 kDa;646 aa), is located in the cyto-
plasm, nucleus, extracellular exosomes, and at the cell membrane, primarily functioning in
the cytoplasm. HspA8 is a crucial molecular regulator of chaperone-mediated autophagy,
acting as a detector of substrates processed by this specialized autophagy pathway [105]. It
contributes to cancer cell proliferation by assisting in the folding of Cyclin D1 and support-
ing the formation of the Cyclin D1/CDK4 holoenzyme complex, which triggers cancer cell
proliferation [106]. Histone chaperone networks, including Hsc70 and chromatin assembly
factor 1(CAF1), have been shown to guide H3.1 positioning and function [107]. For this
function, p53 appears to down-regulate nuclear phosphatidic acid (PA) levels, likely via
its transcriptional activity, and exclude EZH2 from the H3.1 interactome [108]. HspA8 is
highly overexpressed in endometrial carcinoma tissues. The depletion of HspA8 siRNA
in RL-95-2 and HEC-1B cells suppresses cell proliferation by reducing the G0/G1 phase
percentage and increasing the S-phase percentage [109]. These findings indicate that target-
ing HspA8 inhibition or disrupting its interactions with other proteins could help suppress
tumor growth.

Hsp70 has been shown to elicit cytotoxic T lymphocyte (CTL) responses against
peptides bound to it in various cancers. In vivo immunization with clones derived from a
primary tumor did not induce Hsp70 activation [110]. However, when the tumor cells were
transfected with a gene encoding the Hsp70 hybrid complex, they became susceptible to T
cell-mediated lysis. This suggests that inducible Hsp70, following heat stress, enhances
immunogenicity and provides signals to antigen-presenting cells for priming CD8+ T
cells [111,112]. These findings confirm that inducible Hsp70 becomes more immunogenic
after stress and that heat shocked cells stimulate both the innate and adaptive immune
response [110]. Depending on its interacting proteins, Hsp70 may exhibit either pro-
tumorigenic or anti-tumorigenic effects, highlighting its complex role in cancer progression
and metastasis. Elevated serum levels of Hsp70 in various cancer patients suggest its
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potential as a biomarker for disease progression, warranting further investigation across
multiple cancer types.

3.2. Hsp70 in Oxidative Stress and Inflammation

Oxidative stress can lead to the oxidation of proteins, lipids, and DNA, potentially
resulting in cytotoxicity and ultimately cell death. Cysteine (Cys) residues are particularly
susceptible to oxidative modifications, facilitating redox signal transduction within various
cellular pathways [113,114]. Members of the Hsp70 family are closely related to redox
homeostasis and contain at least one Cys residue, which undergoes PTMs (especially cys
modification) induced by oxidative stress. This oxidative stress-induced expression of
Hsp70 impacts redox homeostasis [115,116]. Under conditions of increased oxidative stress,
HSFs and the redox-sensitive transcription factor nuclear factor erythroid 2-related factors
2 (Nrf2) are activated through KEAP1 in response to electrophile (Figure 3) [117]. PTMs,
particularly those modifying Cys residues, regulate the Hsp70 function by altering its
interactions with client substrates and co-chaperones. Human HspA1A contains five Cys
residues: Cys17, Cys267, and Cys306, located in NBD, and Cys574 and Cys603, in the SBDα

domain. These residues undergo reversible cysteine modifications, including glutathionyla-
tion [118]. Glutathionylation of Cys574 and Cys603, located in the C-terminal α-helical lid
of the SBD, inhibits the substrate-binding site, thereby promoting intrinsic ATPase activity
and competing with the binding of external substrates, including Hsf1 [118]. Studies have
shown that the induced expression of Hsp70 upregulates Akt-eNOS activity, leading to an
increase in NO, which indirectly suppresses mitochondrial ROS (mtROS) by quenching
superoxide [119]. Furthermore, overexpression of Hsp70 (HspA1A) provides protection
against the Pneumolysin (PLY)-induced mtROS and cell death in human pulmonary mi-
crovascular endothelial cells [120], highlighting Hsp70 as a promising therapeutic target in
streptococcus-induced pneumonia.

The immunoreactivity of Hsp70 varies depending on its localization. iHsp70 exhibits
anti-inflammatory properties, while eHsp70 can induce both anti-inflammatory and pro-
inflammatory responses [30]. The induction of Hsp70 prevents interleukin-6 (IL-6) and
nitric oxide (NO) production in serum, as well as apoptosis and tissue damage in the
intestinal tract in vivo. This finding suggests that Hsp70 protects cells against TNF-induced
lethality following heat shock [121].

Hsp70 suppresses the expression of NO synthase, which is directly linked to NF-κB
activity. The binding of Hsp70 to Rel family proteins, such as p65, downregulates the
NF-κB/Rel complex during the acute phase of inflammation [122]. Hsp70 stabilizes I-
κB and/or prevents nuclear translocation and subsequent iNOS promoter activity [123],
thereby reducing pro-inflammatory gene expression. These findings suggest that Hsp70
may confer a novel mechanism of NF-κB regulation in cells affected by high temperature
or other factors.

Paradoxically, eHsp70 can exert a wide range of functions, either triggering pro-
inflammatory cascade signaling or, in cases of immune system over-activation, suppressing
it [124]. It is secreted by neurons, epithelial cells, embryonic cells, B lymphocytes, dendritic
cells, mature erythrocytes, and tumor cells [125,126]. Cytoplasmic Hsp70 interacts with
shuttle proteins to reach the plasma membrane [127] and is secreted via a non-classical
secretion pathway involving lysosomal lipid rafts prior to exocytosis [128,129]. Under
cellular stress, Hsp70 and its constitutive form, Hsc70, bind to phosphatidylserine regions
of the cell membrane, rapidly inserting into the lipid bilayer. Once embedded, they are
packaged into exosomes and released, leading to the activation of immune cells such
as macrophages [127]. As a cytokine, eHsp70 induces the release of pro-inflammatory
cytokines, including TNF-α, IL-6, and IL-1β from monocytes [124,130]. The release of
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Hsp70 from dying cells acts as a danger signal, whereas its secretion from living cells
reflects a successful stress response [131]. The interaction of Hsp70 with membranes acts
as a platform for its release into the extracellular environment, activating the immune
response, particularly macrophages [132], and thereby serving as a danger signal.
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3.3. Hsp70 in Neurodegenerative Diseases

Hsp70 is expressed in various types of neurons and plays a crucial role in protecting
them from damage under pathological conditions such as traumatic nerve injury, stress,
excitotoxicity, stroke, and oxidative stress [133,134]. A progressive decline in proteostasis
mechanisms, including impaired proteasomal activity and reduced efficacy of molecu-
lar chaperones, exacerbates protein aggregation, contributing to neurodegeneration [135].
Hsp70 is crucial in sequestering β-amyloid and other misfolded proteins, thereby mitigating
their toxic effects [136]. For instance, in Alzheimer’s disease (AD), an age-related cognitive
disorder, the induction of Hsp70 has been observed in affected neurons and neighboring
astrocytes. The amyloid precursor protein (APP), an integral plasma membrane protein
processed in the ER, depends on the ER-resident Hsp70 homolog Grp78 for refolding
and neuronal survival [136,137]. Additionally, Hsp70 inhibits α-synuclein fibrillization in
an ATP-dependent manner, acting as a “holdase” to stabilize intermediates and prevent
pathological aggregation. Notably, α-synuclein interacts with the SBD of Hsp70 through a
canonical interaction, while recent evidence suggests additional yet poorly characterized,
noncanonical binding sites on Hsp70 [138]. In AD, the formation of protein aggregates
exacerbates synaptic abnormalities and memory impairment, particularly with aging. A
critical factor contributing to this process is the shift from the chaperome to epichaperomes,
which disrupts protein–protein interactions, leading to synaptic dysfunction and cognitive
decline, as observed in PS19 mice. Notably, inhibition of Hsp90-Hsp70 epichaperome com-
plex using small-molecule inhibitors such as PU-H71 and PU-AD has been shown to restore
synaptic integrity and cognitive performance [139]. These interactions represent promising
therapeutic targets for modulating protein aggregation in neurodegenerative diseases. Sim-
ilarly, in Parkinson’s disease (PD)—a progressive neurodegenerative disorder characterized
by the loss of midbrain dopaminergic neuron (mDA)—interventions such as dietary restric-
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tion and 2-deoxyglucose administration have been shown to upregulate Hsp70 and Grp78,
providing significant neuroprotection in PD models (Figure 4) [140]. Genetic stressors such
as STAT3 and NF-κB enhance the phosphorylation of tyrosine hydroxylase (TH), thereby
stabilizing the Hsp90–chaperome network. Inhibition of this stabilized Hsp90–chaperome
network using PU-H71 compounds has been shown to promote axonal growth in in vivo
PD models [141]. Overall, targeting the Hsp90-Hsp70 chaperone complex with inhibitors
like PU-H71 and PU-AD presents a promising therapeutic strategy for both AD and PD.
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It depicts the involvement of Grp78 (ER) and Mortalin (mitochondria) in neurodegeneration, em-
phasizing their interactions in mitigating protein toxicity and alleviating the detrimental effects of
stress-associated conditions in aging and neurodegenerative diseases.

Hsp70 also plays a vital role in managing protein aggregates in polyglutamine (polyQ)
expansion disorders, such as Huntington’s disease (HD), Kennedy’s spinal and bulbar
muscular atrophy, spinocerebellar ataxias, and Machado–Joseph disease [142,143] Elevated
levels of Hsp70 and Hsc70 effectively inhibit polyQ protein aggregation and delay disease
progression [144]. In vivo, the administration of exogenous Hsp70 (eHsp70) has been
shown to mitigate nerve injury in a model of sciatic nerve transection in rats [145]. The
eHsp70 stabilizes PINK1, preventing its degradation and enhancing anti-inflammatory
effects in dorsal root ganglion (DRG), thereby promoting DRG neuronal survival and axon
regeneration [146]. However, the underlying mechanism remains incompletely understood.
Additionally, Hsp40, a co-chaperone of Hsp70, counteracts prion protein aggregation,
which is implicated in Creutzfeldt–Jakob disease [147]. Native prion proteins, typically
adopting an α-helical conformation, contribute to essential cellular functions such as
signaling, copper metabolism, redox regulation, and neuronal protection [148]. However,
their misfolding into β-sheet-rich conformations renders them protease-resistant, leading
to excessive aggregation and neurotoxicity [149]. Grp78 facilitates the degradation of these
misfolded prion proteins through the proteasomal pathway, underscoring its critical role in
maintaining proteostasis [150].

3.4. Hsp70 in Cardiovascular Diseases and Atherosclerosis

Hsp70 plays a crucial role in maintaining cardiac integrity under stress conditions [151].
Its induction can prevent cardiac muscle damage caused by both ischemia and reperfu-
sion [152]. An analysis of 222 cardiovascular disease patients revealed a positive correlation
between Hsp70 level and heart failure (HF). Elevated Hsp70 levels activate CD14/Toll-like
receptor-4 and induce the expression of inflammatory cytokines, which in turn promote
Hsp synthesis [153]. The source of circulating Hsp70 in congestive heart failure (CHF)
remains controversial; potential origins include white blood cells via CD14 receptor acti-
vation [154], the myocardium itself [155], or the endothelium [156]. Notably, Hsp70 levels
progressively increase with advancing stages of HF (p < 0.0001), and its concentration is
significantly elevated in stage B HF patients compared to stage A. This suggests that the
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enhanced levels of Hsp70 serve as an innate protective mechanism, aiding in the restoration
of physiological conditions [153]. Although, NT-proBNP (N-terminal pro-B-type natriuretic
peptide) is widely used as a diagnostic and prognostic biomarker in chronic heart fail-
ure [157], receiver-operating curve (ROC) analysis in stage B HF patients has demonstrated
that Hsp70 is more sensitive than NT-proBNP. This finding underscores the potential of
Hsp70 as an early biomarker for heart failure progression [153].

Hsp70 can be induced by ischemia, nutrient deprivation, irradiation, infections, and
inflammation. Studies in mice have demonstrated that eHsp70 plays a protective role in
response to hypertension [158]. This highlights Hsp70’s involvement in the entire patho-
physiological progression of HF, as well as its potential role in organ transplantation,
where pretreatment with Hsp70 enhances organ survival [159]. Furthermore, transfection
of the Hsp70 into rat hearts has been shown to protect the ischemic myocardium [160].
For instance, the combination of non-steroidal anti-inflammatory drugs (NSAIDs), such
as sodium salicylate, with mild heat shock, activates HSF without inducing the Hsp72
response. However, exposure to severe heat shock (42 ◦C) significantly elevates myocardial
Hsp72 levels, improving post-ischemic recovery, as well as contraction and relaxation
rates [161]. In pediatric patients undergoing surgery for congenital heart defect (CHD), is-
chemic stress does not significantly affect Hsp70-1 mRNA expression, likely due to the high
basal levels of Hsp70 protein [162]. In atherosclerotic plaques, various cell types, including
macrophages and dendritic cells (DCs), overexpress Hsp70. The induced Hsp70 in DCs may
activate T cells expressing CD1d, which stimulates lipid antigen-presenting cells to secrete
inflammatory cytokines within atherosclerotic lesions [163]. This indicates that Hsp70
overexpression by DCs might contribute to the early stages of atherogenesis. Elevated
Hsp70 levels in plasma may also serve as a biomarker for HF and atrial fibrillation [151].
Conversely, Geranyl-geranyl-acetone (GGA) has been shown to induce Hsp70 and Hsp72
mRNA expression in ischemia–reperfusion in rat liver [164]. While iHsp70 inhibition has
been shown to reduce myocyte fibrosis, blocking Ec-Hsp70 with anti-Hsp70 antibodies
has been shown to mitigate hypertension-induced cardiac hypertrophy and fibrosis [158].
These findings highlight the dual role of HSPs in cardiac pathology, emphasizing the need
for targeted therapeutic strategies based on disease context.

3.5. Hsp70 in Aging and Apoptosis

Aging and apoptosis are closely associated with tissue deterioration. Aging is charac-
terized by an increased rate of protein modification, which exacerbates folding homeostasis.
Consequently, the impairment of chaperone functions results in protein misfolding and
aggregation. However, the activity of the major cytoplasmic proteolytic apparatus, the pro-
teasome, also declines with aging and is further compromised by glycation [165]. In vivo
studies on aging rats have shown no significant increase in heat-induced Hsp70 levels
with heating, but a large increase with exercise [166]. These data suggest that the blunted
HSP response to heating with aging is not due to an inability to produce inducible Hsp70,
but rather that aged rats have a robust response to exertional hyperthermia. Additionally,
Hsp70 induction is impaired in fibroblasts and hepatocytes, while skeletal muscles in aged
rats displayed increased Hsp70 levels, which affect its nuclear export [167]. This impair-
ment in post-transcriptional processing and nuclear export leads to reduced functional
Hsp70 levels, ultimately resulting in cell death [168]. Aged organisms exhibit failure to
induce Hsp72 and other Hsps in response to stresses, which correlates with the increase in
morbidity and mortality under severe stress conditions [169]. This hypothesis is supported
by primary human fibroblast cells (IMR90), which failed to induce Hsp72 after pretreat-
ment with mild heat shock. When subjected to severe heat shock, these cells activate JNK,
resulting in apoptosis [170]. In contrast, young cells induce Hsp72, suppress JNK, and
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subsequently prevent cell death. In elderly mice, induction of Hsp70 by inhibiting the
integrated stress response (ISR) improved testosterone synthesis [171]. Notably, Hsp70 is
associated with low sperm quality and plays an anti-apoptotic role in somatic cells. For
instance, inhibition of Hsp70 by YM-1, an allosteric Hsp70 inhibitor, could maintain sperm
quality and function during cryopreservation at 17 ◦C [172].

Conversely, the general decline in immune response among elderly individuals may
impair the anti-chaperone immune response, as evidenced by the reduced levels of anti-
Hsp70 antibodies observed in cases of dilated cardiomyopathy [173]. Despite numerous
reports highlighting the protective effects of Hsps, the mechanisms by which they may
negatively influence apoptosis remain unclear. A unifying feature of these observations is
the inhibition of caspase proteolytic maturation and/or activity, preventing the cleavage of
their target substrates [174,175]. For instance, stress-inducible Hsp70 prevents Bid cleavage
and activation in response to TNF-α, acting independently of its chaperoning ability [176].
This activity suppresses the activation of the MAP kinase–JNK pathway, thereby inhibiting
the mitochondrial release of cytochrome c, Smac [177], and apoptosis-inducing factors
(AIF) [178] (Figures 2 and 3). Both Hsp70 and Hsc70 directly prevent the translocation of
AIF from the mitochondria [179]. Recent studies suggest that Hsp70, along with Hsp40
(Hdj-1) or HsdJ (Hdj-2), plays a role in blocking NO-induced apoptosis by preventing Bax
translocation to mitochondria [180]. The chaperoning activity of Hsp70 is essential for
suppressing caspase activation at a point downstream of cytochrome c release but upstream
of caspase-3 activation [181]. Hsp70 can inhibit the formation of a functional apoptosome
by directly interacting with Apaf-1, preventing the recruitment and activation of initiator
caspases such as pro-caspase-9 [86]. This inhibition may occur either by preventing Apaf-1
oligomerization or by maintaining the oligomer in a confirmation that is incompatible with
pro-caspase-9 recruitment, hence blocking the exposure of the Apaf-1 CARD domain [85].
Intrinsic apoptosis is triggered by stress stimuli and cellular damage, and can be suppressed
by enhanced Hsp70 expression. Hsp70 achieves this by inhibiting apoptotic pathways such
as JNK and p38MAPK through complex formation with CHIP, leading to the degradation
of ASK1 [82].

Extrinsic apoptosis, initiated by extracellular signals such as TNF-α or TRAIL, is inhib-
ited by Hsp70 interactions with TRAIL receptors (TRAIL-R1 and TRAIL-R2), preventing the
formation of death-inducing signaling complex (DISC), a critical protein complex required
to initiate the apoptotic process [182]. Furthermore, Hsp70 reduces the activity of caspase-8,
an enzyme essential for cleaving Bid, a protein critical for amplifying death signals [176].
In cancer cells, Hsp70 is also localized in lysosomes, where it stabilizes the lysosomal
membrane and prevents lysis, thereby protecting these cells from lysosomal-mediated
apoptosis [96]. However, other studies contradict the idea that Hsp70 expression univer-
sally protects cells from apoptosis. Some findings suggest that Hsp70 increases cellular
susceptibility to death-inducing effects when TNF is combined with cycloheximide and
Fas/TCR/CD3 ligation [183]. The possible mechanisms by which Hsps may inhibit TNF-
induced apoptosis include the suppression of phospholipase A2 activation [184], inhibition
of reactive oxygen species, and an increase in glutathione levels, intracellular calcium levels,
and phosphatase activity [183].

Ceramide, a lipid mediator involved in apoptosis induction, enhances heat shock-
induced apoptosis by suppressing the anti-apoptotic effects of Hsp70 through post-
transcriptional regulation in HL-60 cells [185]. Similarly, the enhanced expression of
Hsp70 and its co-chaperone Hsp40 reduces aggregate formation and apoptosis in cultured
neuronal cell models of SBMA [186]. Additionally, cytosolic Hsp70 has been observed to
translocate to the cell surface in mouse lymphoma EL-4 cells [187]. It is speculated that
this extracellular pool of Hsp70 is adsorbed by live cells, thereby protecting them from
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apoptosis. The surface-expressed Hsp70 facilitates caspase-independent apoptosis in tumor
cells by binding to and enabling the uptake of granzyme B, a family of serine proteases
associated with perforin in activated T-lymphocytes and natural killer cells [188]. Moreover,
Hsp70 inhibits apoptotic processes by blocking the JNK signaling pathway, preventing Bax
activation, and inhibiting cytochrome C release, an essential step in apoptosis initiation.
Additionally, Hsp70 interferes with key apoptotic proteins such as Apaf-1 and AIF, pre-
venting their interaction with target proteins and ultimately blocking cell death [189]. In
recent studies, the role of Hsp70 has been implicated in the mitochondrial apoptotic path-
way. For instance, in intervertebral disc degeneration (IVDD), Hsp70 induction prevented
compression-induced apoptosis of nucleus pulposus (NP) cells by inhibiting mitochondrial
fission through the promotion of SIRT3 expression [190]. These findings underscore the
complex role of Hsp70 in aging and apoptosis, suggesting its potential as a therapeutic
target in various diseases.

4. Chemical Inhibitors and Modulators of Hsp70
Hsp70 activity is regulated by its NBD, SBD, and ATPase activity, all of which serve

as potential targets for modulation. The functions of Hsp70 depend on the binding and
hydrolysis of the ATP and ADP cycle, making it less susceptible to many inhibitors due
to its dynamic conformational transitions. Hsp70 interacts with several client proteins
involved in critical cellular functions such as chromatin regulation, kinetochore formation,
mitochondrial protein processing, and MAPK signaling specificity. Furthermore, chaper-
ones are highly modified by a range of PTMs that include phosphorylation, methylation,
acetylation, and ubiquitination [191,192]. Recently, histone regulator (HIR) proteins have
been identified as novel clients of Hsp70. An Hsp70 inhibitor, JG-98, leads to HIR degrada-
tion, suggesting that HSP70 is crucial for HIR stability. Similarly, Pim1/Lonp-1 (involved
in mitochondrial proteostasis), Mtw1/Mis12 (essential for chromosome segregation), and
Ste11 (associated with pheromone and osmotic stress response) have been identified as
novel client proteins of Hsp70 [193]. Several pharmacological modulators can influence
the interaction of Hsp70 with its client proteins and co-chaperones. There are six specific
sites that are localized for inhibitors—four binding sites in the NBD and two in the SBD.
The affinity of compounds may vary among different isoforms of Hsp70. For instance,
Novolactone binds covalently to Glu residue, E444 in site 4 of HspA1A/B, which is highly
conserved in all canonical Hsp70s except HspA9 [194]. Similarly, YK5 binds HspA1A/B
and HspA8; however, its exact binding site has yet to be confirmed.

Some Hsp70 inhibitors block the Hsp70–JDP interaction. For instance, Mal3-101 pre-
vents JDP-dependent Hsp70 ATPase activity without affecting its fundamental properties.
Another compound, 115-7c, can activate the Hsp70–JDP interaction within the same pocket
at site 6, and has been shown to modulate ATPase and protein-folding activities in a yeast
model of polyglutamate disease [195]. The design of novel compounds often involves mim-
icking the conformation of known ligands or leveraging the structure of the peptide-binding
domain of target proteins. Cholesterol glucoside has been shown to upregulate Hsp70
synthesis in human fibroblasts and exhibits anti-ulcer activity when administered orally in
rats by activating HSF [196–198]. Another set of compounds, identified as antibacterial or
antimicrobial peptides—such as drosocin, pyrrhocoricin, and apidaecin—comprises short
proline-rich sequences (18–20 amino acids) derived from insects. These peptides specif-
ically target bacterial proteins, with studies identifying DnaK, the bacterial homolog of
Hsp70, as a primary target, making it a promising focus for drug design [199]. Modulating
the expression of Hsp70 family proteins presents a promising approach for developing
immunomodulatory therapies. Novel therapeutic compounds, including chaperone and
co-chaperone inducers [200–202], have undergone clinical testing to restore immune func-
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tion and address chaperone-related immune dysfunction. While numerous Hsp70 chemical
inhibitors have been tested in vitro, many exhibit low binding affinity and are classified as
Class I inhibitors. Thus, many Hsp70 chemical probes plays a dual role, either promoting
or inhibiting chaperone functions by regulating Hsp70 co-chaperone and client protein
assembly. Known Hsp70 inhibitors are discussed in the Table 1. More research is needed to
determine its specificity to specific isoforms of Hsp70.

Table 1. Hsp70 activity modulators and their functions in various human diseases.

Hsp70 Modulators Targets Characteristics References

AEG3482 JNK activity inhibition Facilitates Hsf1-dependent expression of
Hsp70 and Hsp25 [203]

Apoptozole Hsc70 and Hsp70 Inhibits ATPase activity by binding to its
ATPase domain [204]

AP-4-139B Hsp70 Inhibits ATPase activity of Hsp70 [104,205]

DMT003096 Inhibits Tag-stimulation of Hsp70 Inhibits breast cancer proliferation [206]

Displurigen HspA8 and Hsc70 Inhibits ATPase activity [207]

Eupalinolide A Hsp70 Induces Hsp70 expression via inhibiting HSF1
and Hsp90 [208]

Hsp70/SIRT2-In-1 Hsp70 and SIRT2 Inhibits ATPase activity [209]

2-Hexyl-4-pentynoic acid
(Compound V) Hsp70 Induces Hsp70-1a mRNA expression via

HDAC inhibition [210]

IDF-11774 Hsp70 Binds to allosteric pocket in its NDB of Hsp70 [211]

JG-98 Disrupts the Hsp70-Bag3 interaction Exhibits anti-proliferative activity in cancers
and tumor-associated macrophages [212]

JG-231 Disrupts the Hsp70-Bag3 interaction Inhibits tumor proliferation and
induces apoptosis [213]

JG-48 Binds NBD of Hsc70 stabilizing client
protein interaction Inhibits Bag-1 binding to Hsc70 [214]

KNK437 Inhibits the induction of Hsp70
mRNA levels Inhibits stress-inducible expression of Hsp [215]

MKT-077 (FJ776) Binds to an allosteric site of NBD in
Hsc70

Affects the stability of client protein and
induces apoptosis [212]

MAL3-101 Inhibits Hsp70–Hsp40 interaction Inhibits ATPase activity by blocking
Hsp40 interaction [216]

Myricetin Inhibits binding of DnaJ to DnaK Allosterically influences the
DnaK–DnaJ interaction [217]

Novalactone Inhibits Hp70 through a covalent
interaction with Glu444 Disrupts interdomain interaction [218]

116-9e DNAJA1 inhibitor Inhibits Tag-mediated activation of Hsp70 [219]

Pifithrin-µ,
2-Phenylethynesulfonamide (PES)

Inhibits Hsp70 via interacting with the
ATPase binding domain Inhibits cell proliferation in cancer (NSCLS) [220]

Pet-16 Binds to an allosteric site of SBD
of Hsp70 Induces apoptosis in multiple myeloma [221]

S1g-10 Suppresses Hsp70/Bim PPI complex Disrupts the Hsp70-Bim PPI complex,
prevents tumorigenesis [222]

VER-155008 HspA8, HspA5, and HspA1A Inhibits the ATPase activity of Hsp70 and
binds in the ATPase pocket [223,224]

YK5 Cytosolic Hsp70 and Hsc70 through
allosteric site 1 Allosteric site 1 of Hsp70 [225,226]

YL-109 C-terminus of Hsp
70-interacting protein Induces CHIP transcription via AhR signaling [196]

YM-08 Hsp70/Sirt2 inhibitor Inhibits the ATPase activity of Hsp70 [209]

YM-1 Block formation of ATP-bound form Activates binding of Hsp70 to
unfolded substrates [227]
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5. Conclusions and Future Prospective
Hsp70s are complex molecular assemblies that play a crucial role in protein home-

ostasis. While the functions of Hsp70 have been extensively studied, certain aspects of
its structure–function relationship remain to be fully elucidated. This review explores
Hsp70-related genes and proteins, highlighting their critical role in cellular protection
against stress and their implication in various human diseases. The Hsp70 gene exhibits
diverse expression patterns, existing in both constitutive and inducible forms under normal
and stress conditions, and pathologies (Table 2). Notably, Hsp70 proteins display distinct
localization, being found in the cytoplasm, nucleus, mitochondria, and ER, and can even
be associated with transmembrane domains. Apart from intracellular functions, Hsp70
proteins are actively released into the extracellular space, where they serve as “danger
signals” by interacting with Toll-like receptors (TLR2 and TLR4) on macrophages, glial
cells, and dendritic cells. This extracellular signaling contributes to neuroprotection by
inducing the expression of pro-inflammatory cytokines and inducible nitric oxide synthase
(iNOS) in response to cerebral injury. The eHsp70 is detectable in blood and CSF, while
iHsp70 in blood cells can also be measured, making it a potential clinical biomarker. How-
ever, concerns remain regarding the correlation between Hsp70 expression in blood and
periphery tissues in both disease and healthy individuals. Many studies have used the
generalized term “Hsp70” rather than distinguishing between its inducible form, Hsp72,
and constitutive form, Hsc70, in clinical samples. Accurately identifying specific Hsp70
isoforms in clinical samples is crucial for developing targeted therapies and drug designs.
Furthermore, the differential regulation of various Hsp70 isoforms in cancer remains poorly
understood, with limited evidence available on their specific roles. Correctly identifying
Hsp70 isoforms across different cancer types, could enhance diagnostic precision and facili-
tate the development of more effective therapeutic strategies. Modulating Hsp70 chaperone
activity using various pharmacological agents with high neuroprotective potential, such as
tamoxifen, melatonin, glutamine, and HSF-1, as well as compounds that enhance Hsp70
expression by targeting the thio-disulfide system (TDS)—including selenium compounds,
glutaredoxin, glutoxin, and Angiolin—is of particular interest. These Hsp70 modulators
have demonstrated neuroprotective effects in animal models, highlighting their potential
for drug development in the treatment of acute cerebrovascular disorders [228].

Epichaperomes, long-lived chaperone assemblies identified in cancer cells and primary
tumor specimens [71], dysregulate PPI networks to provide a survival advantage to cancer
cells and tumor-supporting cells in the microenvironment. However, the mechanisms
underlying epichaprome formation are not yet fully elucidated, though PTMs may play
a crucial role in stabilizing specific chaperone conformations that facilitate epichaperome
incorporation. These assemblies have been studied in various cancers, as well as AD and
PD. Inda et al. found that these assemblies are formed following the induction of human
Tau in postmortem AD brain samples [139]. Thus, disrupting epichaperomes has been
shown to restore protein network activity to its original functional state. A few chemical
probes, such as PU-H71, Pu-HZ151, and PU-AD, have been evaluated in in vivo disease
models with promising results. However, specificity and dosage remain major concerns.
Further, investigation into the mechanisms underlying epichaperome formation and the
identification of PTMs in various cancers, AD, and PD may provide deeper insights into
the development of more specific probes or disruptors for these diseases.
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Table 2. Hsp70 involvement in various human diseases and their potential applications.

Molecular
Chaperone Human Diseases Hsp70 Functions Biomarker Molecular Targets References

Hsp70/DnaK
family proteins

Diabetes and
metabolic diseases

eHsp70 levels impact
insulin sensitivity,

hyperinsulinemia, and
hyperglycemia

Serum IgA level and
anti-Hsp70 IgA TLR, TNF-α pathway [229]

Infectious diseases
Improve cellular

immune response,
viral replication

CFUs in spleen and
blood samples

Reduced Hsp70
expression mitigates

inflammatory cytokines
[230]

Cardiovascular diseases
and atherosclerosis

Enhance Hsp70
expression in
heart failure

Serum Hsp70 levels Blocking ERK1/ERK2,
TGF-β pathway [153,158,231]

Oxidative stress
and Inflammation PTMs of Cys residue Mitochondrial ROS and

redox homeostasis
Blocking Nrf2, JNK, and

NF-κb signaling [113,114,117,118,121,132]

Cancer

Inhibits apoptosis,
promotes tumorigenesis,

activates autophagy,
induces immunogenicity

Enhanced serum
Hsp70 levels

Blocking MAPK
signaling, and TGF-β [74,88,89,95]

Neurodegeneration,
disorders such as AD,

PD, and HD

Prevents aggregation of
Aβ, α-synuclein

fibrillization, Poly Q,
and PINK degradation

Increased Hsp70 levels
in serum, blood, and CSF

Inhibiting APP, tau
miRNAs, and
α-synuclein

[134,136,138,232]

Aging and apoptosis

Induces Hsp70 and Bid
cleavage, suppresses
MAPK-JNK pathway,

and apoptosis

Serum and tissues,
cytoplasmic Hsp70

levels

JNK and p38 MAPK, and
TNF-α signaling [82,83,86,181,184,188,190]

Additionally, exosomal secreted Hsp70 has been detected in peripheral blood and
urine samples of patients with various cancers, including lung, breast, and ovarian cancer,
highlighting its potential as a novel biomarker for cancer detection and prognosis. However,
real-time detection of exosomal Hsp70 remains challenging due to technical limitations and
the low accuracy of current detection methods. Overcoming these obstacles is crucial for
advancing Hsp70-based tumor therapies. To develop effective Hsp70-targeted treatments,
it is essential to identify specific regions of the protein capable of eliciting robust anti-tumor
responses by activating both innate and adaptive immunity. Further research in this area
could pave the way for novel therapeutic strategies for human diseases.
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CLL Chronic lymphocytic leukemia
CTL Cytotoxic T lymphocyte
DISC Death-inducing signaling complex
DGR Dorsal root ganglion
ER Endoplasmic reticulum
EMC Extracellular matrix
eHSP Extracellular Hsp70
HF Heart failure
HSP70 Heat shock protein 70
HSFs Heat shock transcriptional factors
HD Huntington’s disease
Hsps Heat shock proteins
iHsp70 Intracellular Hsp70
iNOS Inducible nitric oxide synthase
IVDD Intervertebral disc degeneration
JNK c-Jun N-terminal kinases
MMP-9 Matrix metalloproteinase-9
mtHSP70 Mitochondrial Hsp70
NEF Nucleotide exchange factors
NBD Nucleotide-binding domain
NP Nucleus pulposus
NSCLC Non-small cell lung cancer
NSAIDs Non-steroidal anti-inflammatory agents
PD Parkinson’s disease
PKC Protein kinase C
PTM Post-translational modifications
ROS Reactive oxygen species
SBD substrate-binding domain
TLR Toll-like receptors
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