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Bronchopulmonary dysplasia (BPD) is a serious pulmonary disease which occurs in

preterm infants. Mortality remains high due to a lack of effective treatment, despite

significant progress in neonatal resuscitation. In BPD, a persistently high level of

canonical WNT/β-catenin pathway activity at the canalicular stage disturbs the pulmonary

maturation at the saccular and alveolar stages. The excessive thickness of the alveolar

wall impairs the normal diffusion of oxygen and carbon dioxide, leading to hypoxia.

Transforming growth factor (TGF-β) up-regulates canonical WNT signaling and inhibits

the peroxysome proliferator activated receptor gamma (PPARγ). This profile is observed

in BPD, especially in animal models. Following a premature birth, hypoxia activates

the canonical WNT/TGF-β axis at the expense of PPARγ. This gives rise to the

differentiation of fibroblasts into myofibroblasts, which can lead to pulmonary fibrosis

that impairs the respiratory function after birth, during childhood and even adulthood.

Potential therapeutic treatment could target the inhibition of the canonical WNT/TGF-

β pathway and the stimulation of PPARγ activity, in particular by the administration of

nebulized PPARγ agonists.

Keywords: bronchopulmonary dysplasia, canonical WNT/β-catenin, TGF-β, PPARγ, fibrosis, myofibroblast,

nebulized thiazolidinediones

INTRODUCTION

Bronchopulmonary dysplasia (BPD) is a particularly serious pulmonary disease occurring in
preterm infants (1). In the USA, 1.6% of all births are premature (<32 weeks of gestation); 1.1%
have a birth weight <1.5 kg, of which 25% will develop a og BPD (2). Thus, there are about 10,000–
15,000 new cases every year. Current therapies are usually ineffective and, despite all necessary
precautions being taken, some are even abandoned due to possible aggravation of the clinical
pattern. In BPD, PPARγ has been shown to be downregulated in several animal models, while the
canonical WNT/β-catenin pathway has been upregulated. In numerous pathologies, these two
pathways are observed to function in an opposite manner (3, 4). PPARγ is upregulated in some
diseases, while the WNT/β-catenin system is downregulated (5). However, the inverse is observed
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in many other diseases (6). The absence of a decrease in
the WNT/β-catenin signaling during the canalicular stage
of pulmonary development, partly related to inflammatory
processes, a hallmark of BPD, will seriously affect normal
development in the subsequent saccular and alveolar stages (7).
This is responsible for the respiratory distress at birth and the
often severe and irreversible sequelae observed in childhood and
adulthood. Several animal studies have reported beneficial effects
induced by nebulized PPARγ agonists but no studies to date
have been performed on human neonates. In the present study,
we review the respective roles in BPD of both the canonical
WNT pathway and PPARγ, which are determined by TGF-
β signaling, and discuss their possible implications for the
therapeutic treatment of BPD.

Overview of BPD
BPD was first described by Northway et al. (1). Most premature
infants suffer from respiratory distress and surfactant deficiency
with pulmonary lesions resulting from the association of
multiple infections and inflammation, and possibly aggravated
by mechanical ventilation and oxygen toxicity. In BPD, all lung
tissues are impaired and airway inflammation, bronchiolitis,
alveolar collapse coexist (8). Surviving premature infants often
present an abnormal respiratory function when they become
adolescents or adults (9, 10). Over the last 20 years, the survival
of preterm infants with BPD has been improved thanks to
perinatal care, including the use of surfactant and new strategies
for mechanical ventilation and oxygenation, and the cure of
ductus arteriosus (11). On the other hand, improved survival
rates have resulted in an increased incidence of long-term
BPD complications. BPD is characterized by an arrest of the
alveolization stage. BDP is secondary to pulmonary aggressions
occurring at a strategic moment of lung morphogenesis,
particularly at the canalicular stage (7, 12–14). The basic
histological description reports a decrease in alveolization and
an activation of fibroblasts that differentiate into myofibroblasts
(12, 15) which express α-smooth muscle actin (α-SMA) in
alveolar septa (16). No therapy consistently enhances lung
maturity postnatally (17–19). Myofibroblasts exhibit platelet-
derived growth factor (PDGF) receptors and express α-SMA and
elastin, which are necessary for alveologenesis (20–26). During
tracheal aspiration in children who subsequently develop normal
lung function, there are almost no mesenchymal stem cells
(MSCs) in the suction fluid (27). In contrast, MSCs are found in
the suction fluid of premature infants with respiratory distress.
TGF-β induces myofibroblastic differentiation of MSCs. About
half of the children in whom MSCs have been isolated will
develop a BPD (28). α-SMA is higher in differentiated MSCs in
children developing BPD than in those who do not develop it.
This reflects a greater amount of differentiated myofibroblasts.
The transdifferentiation of pulmonary lipofibroblasts into
myofibroblasts also represents an important element in the
pathogenesis of BPD (23, 29).

Normal Lung Organogenesis in Humans
Several cascades are implied in lung organogenesis, such as
bone-morphogenic proteins (BMPs), fibroblast growth factors

(FGFs), sonic hedgehog (SHH), and the WNT family (30–33).
Human lung morphogenesis begins after ∼4 weeks of gestation
and continues into postnatal life up to early adulthood. At around
4 weeks of gestation, the lung buds originate as an outgrowth
from the foregut ventral wall where the lobar division appears. In
humans, lung development is traditionally divided into five stages
based on changes in the airway tubular structure and epithelial
cells as follows (34) (Figure 1):

1◦ Embryonic stage (4–7 weeks in utero): lung buds are
formed and the trachea begins branching in lobar and
segmental bronchi.

2◦ Pseudoglandular stage (7–17 weeks): at about 7 weeks, the
airways branch and epithelial cells differentiate into tall
pseudostratified epithelium. At ∼12 weeks, small tubular
structures are surrounded by short columnar cells. About
70% of the total airways are formed at 14 weeks.

3◦ Canalicular stage (17–27 weeks): cuboidal cells are
progressively replaced by a columnar epithelium. All of
the conducting airways and terminal bronchioles are
formed at 18 weeks. At 21 weeks, the differentiation of
pneumocytes appears.

4◦ Saccular stage (27–36 weeks). At this stage, alveolar ducts and
air sacs are present. The number of saccules increases and
secondary ridges begin to form with extensive vasculogenesis
at the level of the terminal saccules.

5◦ Alveolar stage (36 weeks of gestation to 2 years of age): the
secondary septation occurs with amarked increase in number
and size of alveoli and capillaries. There is a rapid increase in
lung volume and alveolar area (35). At 36 weeks, all cells are
uniformly present, and their number increases exponentially
with the gestational age. Lipofibroblasts leading to type II
interstitial cells are present at the septa bases and regulate the
lipid metabolism for the surfactant phospholipid synthesis.

Hypoxia Impairs Lung Development in BPD
Hypoxic episodes occur in BPD preterm infants partly due to
immature respiratory control. Relatively short respiratory pauses
may precipitate O2 desaturation, bradycardia, and pulmonary
hypertension. This can induce retinopathy of prematurity
(ROP), sleep disordered breathing, and neurodevelopmental
delay (36, 37).

The organogenesis of the respiratory system in premature
infants has an adverse effect on pulmonary ventilation and
gas exchange. Indeed, the surfactant deficiency maintains the
pulmonary compliance at a low level and the alveolar wall
thickness limits the diffusion of oxygen and carbon monoxide.
For premature infants, an additional supply of oxygen and
mechanical ventilation is proposed at this stage, especially
as the compliance of the chest wall is low, helping to
lower the functional residual capacity and to increase the
likelihood of respiratory failure. With such prematurity, the
alveolar stage cannot be carried out correctly. Once born,
the premature infant must breathe independently. Thickened
alveolar walls and vascular pulmonary abnormalities impair
effective gas diffusion leading to lung tissue hypoxia, which
impairs lung development (38, 39). Importantly, hypoxia is
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FIGURE 1 | WNT/β-catenin pathway on the embryological pulmonary development in humans. Five stages classically follow one another: embryonic,

pseudo-glandular, canalicular, saccular, and alveolar. WNT/β-catenin signaling reaches a maximum activation at the 17th week (end of the pseudo glandular stage or

beginning of the canalicular stage). In the middle of the canalicular stage (around the 21st week), canonical WNT pathway activity decreases dramatically, a necessary

prerequisite for the correct realization of the alveolar stage. In the event of premature birth, the thick alveolar walls do not allow sufficient gas exchanges, which can

lead to pulmonary hypoxia. Hypoxia activates the canonical WNT/β-catenin, impairs the alveolar stage, and promotes the synthesis of myofibroblasts and subsequent

fibrosis, with abnormalities in the respiratory function.

probably the primum movens which activates the canonical
WNT pathway and inactivates PPARγ (40). During hypoxia,
the respiratory chain increases the ROS production leading
to increase hypoxia-induced factor (HIF)-dependent gene
expression which represents an important regulator of glycolysis
energy metabolism involved in the pathogenesis of lung
fibrosis (41).

Conversely, the oxygen therapy that is sometimes necessary
can induce a hyperoxia which also activates the canonical WNT
signaling and inactivates PPARγ.

Lung Lesions Due to Hyperoxia and
Volutrauma Mechanical Ventilation
The role of hyperoxia in BPD is now well-established (42,
43). In animals, hyperoxia alone can stop the pulmonary
septation at the saccular stage of lung development (44,
45). Neonatal resuscitation of premature infants between 24
and 26 weeks (canalicular stage) with 30% O2 instead of
90% O2 decreases the incidence of BDP at 36 weeks by a
factor of about 2 (46). In a newborn rat model of BPD
induced by intra-amniotic LPS administration and postnatal
hyperoxia, there is an arrest in alveolar and pulmonary vascular
development, which is a hallmark of BPD (47–50). Hyperoxia-
induced neonatal lung injury is associated with activation
of Wnt/β-catenin signaling and inhibition of WNT/β-catenin
signaling attenuates hyperoxia-induced pulmonary hypertension
in neonatal rats (51, 52). Hyperoxia-induced neonatal lung

injury is mediated via TGF-β activation (53, 54). Thus, p-
Smad3 and 7, and TGF-β R2 receptor protein levels increase
after hyperoxia exposure. Hyperoxia leads to pro-inflammatory
factors such as TNF-α and IL-8 and reactive oxygen species
(ROSs). Likewise, high tidal-volume mechanical ventilation
increases the appearance of several pro-inflammatory agents
(IL-1b, IL-6, IL-8) (55). This has led to the use of anti-
oxidant agents in BPD as a preventive therapy (56, 57).
Lungs exposed to hyperoxia show an increase in interstitial

myofibroblasts that produce α-SMA and TGF-β (58–61). In the
neonatal mouse, hyperoxia induces the expression of periostin
in the alveolar wall and particularly in thickened interstitial
areas (62). This is also observed on histological sections of
infants who died from BPD. Moreover, periostin knockout
mice are protected from alveolar complications generated by
hyperoxia and do not show interstitial myofibroblasts. Hyperoxia
induces an increase in Connective Tissue Growth Factor
(CTGF or CCN2) mRNA and CTGF protein in lung epithelial
cells and thickening of the alveolar wall (63). In animals,
mechanical ventilation induces a pulmonary phenotype close
to BPD (64–66). Paracrine effects between lung fibroblasts and
epithelial cells are impaired after exposure to hyperoxia. This
increases the likelihood of lipofibroblast transdifferentiation
into myofibroblasts (54). Thus, both hyperoxia and hypoxia
lead to impaired alveolization, myofibroblast differentiation,
irreversible pulmonary fibrosis, and major alterations in
lung function.
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Oxygen Toxicity
Oxygen toxicity is in great part due to reactive oxygen
species (ROSs) generated by mitochondrial respiratory
chain, inflammation, hypoxia, ischemia, and hyperoxia (67).
Antioxidant capacity is decreased in preterm newborns with
deficiency of antioxidant factors (68, 69). ROSs following
hyperoxia are responsible for injuries in lungs, central nervous
system, retina, and red blood. Severe ROP is due to susceptibility
of the phospholipid-rich retina to ROSs (70). To research the
safest level of O2 saturation in preterm newborns requiring
supplemental oxygenation is important to reduce the incidence
of ROP. For some authors, the setting up oxygen alarms are
below 85% of oxygen saturation and above 93% in newborns
<32 weeks of gestation (71). Other authors have reported a
decrease of incidence of ROP in newborns treated with lower
O2 saturation (70–90%. rather 88–98%) and cognitive outcomes
after 10 years in newborns treated with lower O2 saturation
level (72). Several randomized controlled trials have studied the
question of what are the optimal O2 saturation levels to reduce
outcomes and especially incidence of ROP, chronic lung diseases
and hospitalization duration (73, 74). In other randomized
controlled trials, the same ranges of O2 saturation has been
used in two different groups, i.e., 85–89% in the lower group vs.
91–95% in the higher group (75–77). Based on these randomized
controlled trials, mechanical ventilation may be lifesaving but
can cause lung injury. Supplemental oxygenation protocols must
avoid mechanical ventilation when it is possible (78). In preterm
newborns requiring supplemental oxygenation, the range of
optimal O2 saturation remains elusive, due numerous different
clinical conditions and gestational ages. It is important to avoid
both hypoxia and hyperoxia and is recommended to maintain an
intended optimal O2 saturation of 90–95% (70).

Brief Overview of the Canonical
WNT/β-catenin-TGF-β Pathway and PPARγ
Canonical WNT/β-catenin Pathway (Figure 2)
The canonical WNT pathway plays a key role in embryogenesis,
cell fate, metabolism and epithelial-mesenchymal transition
(EMT) (79–81). In the presence of canonical WNT ligands
(Figures 2, 3), the canonical WNT receptor is linked with
Frizzled (FZD) and LDL receptor-related protein 5/6 (LRP5/6).
FZD linked to Disheveled (DSH) disrupts the destruction
complex [tumor suppressor adenomatous polyposis coli (APC),
AXIN and glycogen synthase kinase-3β (GSK-3β)]. Then, β-
catenin translocates to the nucleus and interacts with the T-cell
/lymphoid enhancer (TCF/LEF) transcription factors to activate
β-catenin target genes (82, 83). With no WNT ligands, β-catenin
is phosphorylated by the destruction complex and degraded in
the proteasome. β-catenin regulates the expression of numerous
target genes such as cyclin D1, MMP7, c-Myc, fibronectin, etc.,
through interactions with TCF and LEF (84).

Transforming Growth Factor (TGF-β)
TGF-βs are three proteins, TGF-β1, TGF-β2, and TGF-β3, and
receptors are the transmembrane proteins Type I (TGFβRI)
and Type II (TGFβRII). TGF-β1 activates the Smad pathway
and non-Smad pathways such as MAPK, Rho, PI3K-AKT and

downregulates PPARγ expression via the SMAD pathway (85)
(Figure 3). In alveolar epithelial cells (AEC), TGF-β1 mediates
epithelial-mesenchymal transition (EMT) and this leads to lung
fibrosis. In idiopathic pulmonary fibrosis, myofibroblasts induce
lung fibrosis (86–88). TGF-β1-induced EMT of AEC type II
results in myofibroblast differentiation in fibrotic lungs (89–93).

PPARγ

PPARγ is a ligand-dependent transcriptional factor belonging
to the nuclear hormone receptor superfamily. PPARγ regulates
glucose and lipid homeostasis, insulin sensitivity, inflammation,
innate immune responses and cell fate (94, 95). PPARγ is
activated by natural agents such as 15d- prostaglandin J2
(15d-PGJ2) and synthetic ligands including thiazolidinediones
(TZDs). TZDs improve glucose tolerance and insulin sensitivity
in type 2 diabetes. PPARγ dedifferentiates myofibroblasts,
increases collagen uptake by lung alveolar macrophages, and
may reverse fibrosis in an animal model (96). PPARγ plays
an important role in normal lung development via epithelial-
mesenchymal signaling (97).

TGF-β1, WNT/β-catenin and PPARγ Interactions
There is a strong link between TGF-β1, canonical WNT/β-
catenin and PPARγ (98, 99). TGF-β1 upregulates the
WNT/β-catenin pathway, and inhibits PPARγ. TGF-β1 induces
differentiation of human lung fibroblasts into myofibroblasts.
Conversely, PPARγ inhibits the TGF-β1/WNT/β-catenin
pathway. PPARγ ligands repress TGF-β1-induced myofibroblast
differentiation via the PI3K/AKT signaling (100) (Figure 3).
TGF-β1 induces fibrosis and represents a key therapeutic target
in fibrotic processes (101, 102).

Canonical WNT/β-catenin Pathway and
Normal Lung Morphogenesis
In humans, the WNT/β-catenin pathway plays a key role in
the patterning of early lung organogenesis, especially during
the canalicular stage (7, 103–107). Regional specialization of
the epithelium and mesenchyme and branching morphogenesis
have been investigated by means of various techniques, such
as reporter gene activity, misexpression, lineage tracing, β-
catenin deletion/stabilization, WNT/ β-catenin in patterning
of the mesenchyme and morphogenesis of proximal structures
(108). During the pseudoglandular stage, most of the canonical
WNT/β-catenin components appear to be already present in the
lung buds. They are involved in the branching and division of
conduction airways. The WNT pathway is not required for the
lung primary branching pattern but is necessary for a correct
branching morphogenesis (103). The canonical WNT/β-catenin
components are mainly expressed in the alveolar and bronchial
epithelium. An appropriate patterning of the developing lung is
dependent on epithelial-mesenchymal cell interactions (32).

In humans, M. Zhang et al. (7) have determined the spatio-
temporal patterns of the main components of the WNT/β-
catenin signaling by means of qRT-PCR and in situ hybridization
at 7, 12, 17, and 21 weeks of gestation. Among them are the
GSK-3β, β-catenin, DVL2, DVL3, APC and AXIN2 components,
WNT2 and WNT7B ligands, FZD4, FZD7, LRP5, and LRP6
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FIGURE 2 | The canonical β-catenin/WNT pathway: “on” and “off” states. The hallmark of the canonical β-catenin/WNT pathway activation is the elevation of the

cytoplasmic β-catenin protein level, the subsequent nuclear translocation of β-catenin and further activation of β-catenin specific gene transcription. The canonical

β-catenin/WNT pathway can be either in “on-state” or in “off-state.” The pathway is in “on-state” in the presence of a WNT ligand that binds both Frizzled (FZD) and

LRP5/6receptors. This leads to activation of the phosphoprotein Disheveled (DSH). DSH recruits the destruction complex (pGSK-3β + AXIN + APC) to the plasma

membrane, where AXIN directly binds the cytoplasmic tail of LRP5/6. APC is the adenomatous polyposis coli and GSK-3β is the glycogen synthase kinase-3β. In

“on-state,” pGSK-3β is inactivated which corresponds to the phosphorylated state (pGSK-3β). Activation of DSH leads to the inhibition of both phosphorylation and

degradation of beta-catenin. Beta-catenin accumulates into the cytosol and then translocates to the nucleus to bind lymphoid-enhancing/T cell (LEF-TCF)

co-transcription factors. This induces the WNT-response gene transcription. In the “off state,” in the absence of WNT ligand or in the presence of the active form of

GSK-3β (i.e., the unphosphorylated form of GSK-3β), cytosolic β-catenin is phosphorylated by the active form of GSK-3β. Beta-catenin undergoes the destruction

process into the proteasome. (A): at the pseudo-glandular stage of the pulmonary development, the canonical WNT/β-catenin pathway is in “on-state.” (B): at the

saccular and alveolar states, and in normal infants, the canonical WNT/β-catenin pathway is in “off-state.” The pulmonary development is normal. (C): at the saccular

and alveolar states, in preterm infants with BPD, the canonical WNT/β-catenin pathway is in “on-state” and the pulmonary development is dramatically impaired.

receptors, and TCF4 and LEF1 transcription factors. Importantly,
most of them are detected at 7 weeks, reach their maximum
value at 17 weeks (onset of the canalicular stage) and dramatically
decrease at 21 weeks (middle of the canalicular stage) (Figure 1).
This is corroborated by other studies that show firstly, in the
normal lung, the presence of β-catenin in the majority of
epithelial and mesenchymal cell nuclei at 18 weeks of gestation
with a decrease at the 21st week of gestation (14) and, secondly,
a second-trimester β-catenin spike with attenuation of nuclear β-
catenin at the alveolar stage of lung development (109). Other
studies have shown a peak of the WNT signal in epithelial and
mesenchymal cells toward the onset of the canalicular stage with
a sharp decline toward the middle of the canalicular stage, and a
low level during the saccular and alveolar stages (110). In human
lung at 15 weeks (pseudo-glandular stage) and after exposure to
CHIR 99021, a selective GSK-3β inhibitor (111), an increased
expression of β-catenin transcription factors (TCF4, LEF1) and
target genes (Cyclin D1, MMP7) have been observed. In human
lung tissues in vitro, WNT3A induces an increase inmRNA levels
of the WNT target gene Cyclin D1 (112). There is therefore a

regulation of the WNT canonical system both temporally and
spatially, which helps explain the pathophysiology of BPD.

PPARγ and Physiological Lung
Development
PPARγ has been shown to play a pivotal role in normal
lung development and homeostasis by stimulating alveolar
interstitial lipofibroblast maturation (113–115). Lipofibroblasts
induce alveolar epithelial-mesenchymal paracrine interactions
through the stimulation of surfactant phospholipid and by
favoring endogenous antioxidants (113, 116, 117). PPARγ

is critical for normal lung organogenesis and homeostasis
of lung epithelium and mesenchyme. PPARγ is involved in
normal lung development via EMT (97). PPARγ induces
lipofibroblast differentiation which exerts a cytoprotective effect
against oxidant injury (113, 116, 118). PPARγ stimulates trans-
differentiation of myofibroblasts into lipofibroblasts, which
helps normal alveolarization (119). PPARγ also favors the
lipofibroblastic phenotype, which leads to the alveolar type II cell.
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FIGURE 3 | Influence of TGF-β1 on the balance between the canonical WNT/β-catenin signaling and PPARγ. In the presence of the WNT ligands, the WNT receptor

binds both LRP5/6 and FZD receptors to initiate LRP phosphorylation and DSH-mediated Frizzled internalization. This leads to the dissociation of the GSK-3

β/AXIN/APC destruction complex. Phosphorylation of β-catenin is inhibited and β-catenin accumulates in the cytosol and then translocates to the nucleus to bind

TCF-LEF transcription factors. This leads to the WNT-response gene transcription (PDK, MCT-1, cMyc, and Cyclin D1). PPARγ inhibits the β-catenin/TCF-LEF-induced

activation of WNT target genes. TGF-β also enhances WNT signaling through the inhibition of DKK1. DKK1 is activated by PPARγ. TGF-β1 binds type 2 TGF-βR2

receptor (TGF-βR2), which recruits type 1 TGF-βR1 receptor (TGF-βR1). This results in the formation of a heterotetramer that phosphorylates Smad. The Smad

complex then translocates to the nucleus and regulates the transcription of target genes (CTGF, COL1A). A non-Smad pathway also occurs through PI3K-AKT. PTEN

inhibits PI3K-AKT and PPARγ inhibits AKT. APC, adenomatous polyposis coli; CTGF, Connective tissue growth factor; DKK1, Dickkopf-1; DSH, Disheveled; FZD,

Frizzled; GSK-3β, glycogen synthase kinase-3β; LRP5/6, low-density lipoprotein receptor-related protein 5/6; MCT-1, monocarboxylate lactate transporter-1; PPARγ,

peroxisome proliferator-activated receptor gamma; PI3K, phosphatidylinositol 3-kinase and AKT, AKT/Protein Kinase B; PTEN, Phosphatase and tensin homolog;

PDK, pyruvate; dehydrogenase kinase; TCF/LEF, T-cell factor/lymphoid enhancer factor; TGF, Transforming Growth Factor.

The Canonical WNT/β-catenin Signaling in
BPD (Figure 1)
BPD results from pulmonary airway aggregates during the
saccular stage (27–36W), after the peak of WNT/β-catenin
activity which occurs in the normal lung at 17W, i.e., at the onset
of the canalicular stage (7). In BPD, nuclear β-catenin in lung
tissues is quantitatively close to that observed in week 17–18 of
the normal lung (which corresponds to the peak of β-catenin in
the normal fetus (7, 14). TheWNT/β-catenin pathway remains in
the “on-state” in the lung of premature infants in the saccular and
alveolar stages, and in the postnatal period. Instead of dropping
drastically at 21 weeks (i.e., in the middle of the canalicular
stage), WNT/β-catenin signaling remains high, which leads to
major alterations in pulmonary development, with significant
abnormalities being observed at the alveolar stage. Thismakes the

WNT/β-catenin pathway a potential therapeutic target for BPD
(7, 14, 110, 120).

In BPD infants, the resting metabolic expenditure is elevated

with growth failure and expression of some genes of oxidative
phosphorylation is decreased (121). Overactivation of theWnt/β-

catenin pathway induces aerobic glycolysis where a part of
the glucose supply is fermented into lactate with activation of
pyruvate dehydrogenase kinase1 (PDK-1), lactic dehydrogenase
(LDH-A) and monocarboxylate lactate transporter (MCT-1).
This results in pyruvate being diverted toward lactate (6, 122). In
the cytosol, pyruvate is converted into lactate through activation
of lactic dehydrogenase (LDH-A). In cancers, this phenomenon
is referred to as aerobic glycolysis or Warburg effect (123).
PDK1 phosphorylates the pyruvate dehydrogenase complex
which is inhibited and prevents the conversion of pyruvate into
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acetyl-CoA in mitochondria. This leads to decreases acetyl-CoA
entering the tricarboxylic acid cycle. In addition, the WNT/β-
catenin pathway induces the transcription of the genes Cyclin
D1 and cMyc (124) (Figure 3). cMyc activates LDH-A (125) and
increases the hypoxia-inducible factor-1α which controls PDK-
1 (126). Conversely, PPARγ activation selectively decreases PDK
mRNA (127). To date, complex cellular metabolism through
canonical WNT/β-catenin and PPARγ pathways is not fully
detailed in BPD.

GSK-3β in PBD
GSK-3β (inactive state corresponding to the WNT on-state)
is involved in the differentiation of mesenchymal stem cells
(MSCs) into myofibroblasts (128). GSK-3β is down-regulated
in mesenchymal myofibroblastic cells obtained by means of
tracheal aspiration in infants with BPD (120). GSK-3β kinase
activity can be inhibited by several factors such as WNTs, TGF-
β, BMPs, serotonin, endothelin, cardiotrophin, and connective
tissue growth factor (CTGF) (129). In addition, CTGF activates
the TGF-β receptor. During lung development, hyper-expression
of both TGF-β (130) and CTGF leads to a pulmonary phenotype
similar to that of BPD (63). During the neonatal period,
hyper-expression of CTGF induces thickening of alveolar septa
and differentiation of MSCs into myofibroblasts, decreases the
formation of secondary septa (63), and increases the risk of
pulmonary hypertension (131). Both TGF-β and CTGF are likely
to activate each other (132–134) (Figure 3). In mice lung, hyper-
expression of CTGF induces phosphorylation of Ser9 GSK-3β
and the translocation of β-catenin to the nucleus of type II
alveolar cells (131).

PPARγ and PBD
Stretch on alveolar type II cells induces the expression of
parathyroid-hormone-related protein (PTHrP) which binds to
the PTHrP receptor. PTHrP is expressed in lipofibroblasts and
upregulates PPARγ via protein kinase activation. PPARγ induces
lung transdifferentiation of myofibroblasts into lipofibroblasts.
Moreover, lipofibroblasts stimulate the proliferation and
differentiation of alveolar type II cells, thus contributing to
alveolarization (113). Lipofibroblasts synthesize leptin, which
leads to stimulation of the synthesis of de novo surfactant
phospholipid. The decrease in PTHrP in alveolar type II
cells, after exposure to hyperoxia, volutrauma, inflammation
and infections, downregulates the alveolar lipofibroblast
PPARγ expression (118, 119, 135) and induces lipofibroblast-
myofibroblast transdifferentiation (97, 113, 136). PPARγ

prevents these deleterious effects (97), reducing inflammation
processes by inhibiting NF-κB and rosiglitazone (RGZ) by
decreasing lung infiltration by neutrophils (137). PPARγ

induces angiogenesis after direct stimulation of endothelial cells
through angiogenic growth factors and cytokines that stimulate
endothelial cells that participate in the maintenance of alveolar
structures (138, 139). Moreover, the pulmonary vasculature
is dramatically impaired in human premature infants dying
from BPD. Thus, VEGF and VEGF receptors are diminished
in their lungs (59). Disruption of the VEGF signaling stops
the alveolar and pulmonary vascular development (140). This

strongly suggests that PPARγ plays an important role in the
microvascular development in the lungs (115, 141).

PPARγ Agonists and BPD
Numerous studies have shown that PPARγ agonists can play a
positive role in animal models of BPD. Angiogenesis is enhanced
by VEGF which improves both alveolar and pulmonary vascular
development in neonatal rats (142, 143). VEGF plays a major
role in the microvascular development of the lungs (138). In
rat exposed to intra-amniotic LPS and postnatal hyperoxia,
the angiogenic growth factor is decreased, a situation that is
alleviated by RGZ (144). Hyperoxia induces a decrease in VEGF
and the platelet endothelial cell adhesion molecule (PECAM-
1or CD31) and an increase in fibronectin. This is blocked after
pioglitazone (PGZ) nebulization. PGZ nebulization also blocks
modifications in lung interleukins (IL-6 and IL-1β), chemokine
ligand 2 (CCL-2), pro-inflammatory cytokine MIF, the BcL2/Bax
protein ratio and lung morphometry (radial alveolar count).
RGZ restores alveolar and pulmonary vascular development
and lessens pulmonary hypertension (145). In a similar rat
model, RGZ has also been found to restore VEGF and its
receptor VEGF R-2 in the lungs (144). This protective effect
of RGZ may be induced via VEGF enhancing the angiogenic
activity. In an animal model, the systemic administration
of RGZ, either antenatally or postnatally, enhances lung
maturation and can prevent hyperoxia-induced acute neonatal
lung injury. This strongly suggests that PPARγ agonists could
potentially play an important role in preventing and/or treating
BPD (53, 115, 146, 147).

In rat pup lung, RGZ increases the expression of the
PTHrP receptor and surfactant protein-B (115). The inhibitory
effects of intra-amniotic LPS and postnatal hyperoxia on
alveolarization are alleviated by RGZ, which induces a protective
effect on it via an increased PPARγ expression in the
alveolar lipofibroblasts. RGZ significantly enhances lung vascular
maturation during normal lung morphogenesis in rat pups
(115). In rat, after exposure to hyperoxia, the level of PPARγ

protein decreases but increases after PGZ nebulization (145).
PPARγ ligands inhibit fibroblast activation through TGF-β1.
RGZ and ciglitazone (CGZ) inhibit profibrotic changes in TGF-
β1-stimulated serum-deprived A549 cells (from the human
AEC cell line), independently of the inhibition of the Smad
pathway. Their inhibitory effects on changes in collagen I and E-
cadherin (epithelial cell marker) appear to be PPARγ-dependent.
PPARγ agonists inhibit pulmonary myofibroblast differentiation
by TGF-β and collagen synthesis (148). In newborn rat, nebulized
PGZ significantly improves hyperoxia-induced abnormalities
via TGF-β pathway activation. PGZ-nebulization blocks Smad3
and 7, and TGF-β II receptor protein levels increased after
hyperoxia exposure.

In newborn rat, the nebulized PPARγ agonists RGZ and PGZ
increase the expression of alveolar epithelial (apolipoproteins
SPB-SPC, surfactant phospholipid) and mesenchymal (adipose
differentiation-related protein) markers of lung maturation and
decrease markers of lung injury (BcL2, Bax), and markers of
TGF-β activation (145). Human fibroblasts treated with PPARγ

agonists blocked the TGF-β signaling. SMAD3 or SMAD4
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knockdown suppresses the effects of TGF-β on PPARγ mRNA
and protein expression (149). In cultured human lung fibroblasts,
the increases in α-SMA expression and the fibrillary collagen
content induced by TGF-β are prevented by RGZ, TGZ and CGZ
(148, 150). TGF-β1 induces EMT, and epithelial cells acquire a
phenotype of mesenchymal cells (89, 151, 152). RGZ and CGZ
inhibit several TGF-β1-induced changes in EMT markers as well
as lung fibrosis (153).

Canonical WNT-TGF-β-PPARγ Axis in
Diseases Other Than BPD
Targeting the canonical WNT/β-catenin-TGF-β-PPARγ axis
by upregulating PPARγ and downregulating the canonical
WNT/TGF-β pathways might be of interest with respect
to improving the development of the alveolar stage of
BPD at birth and minimizing pulmonary fibrosis later
during childhood and adulthood. Numerous studies have
demonstrated the potential role of PPARγ agonists and
the inhibition of canonical WNT/TGF-β pathways in
many pathologies leading to pulmonary fibrosis outside
of BPD.

PPARγ Agonists
PPARγ agonists are considered part of a potential future
strategy that would target PPARγ activity or expression as
a therapy for controlling fibrosis (154). In human lung,
PPARγ agonists inhibit profibrotic phenotype fibroblasts and
pulmonary fibrosis induced by bleomycin (150). In rat, PGZ
improves bleomycin-induced acute lung injury and fibrosis
(155). In a bleomycin-induced model of lung fibrosis, PPARγ

agonists induce an anti-fibrotic activity (96, 148, 150) and RGZ
attenuates fibrotic effects in rats (156). In mouse, bleomycin-
induced lung injury, RGZ and 15-deoxy-112,14-prostaglandin
J2 significantly reduce lung abnormalities (157). In scleroderma,
the skin fibrotic phenotype of fibroblasts is alleviated by RGZ
(158). Bleomycin-induced scleroderma is abrogated by RGZ
and this blocks profibrotic effects (159). RGZ induces an
antifibrotic effect in scleroderma lung fibroblasts (160). In
systemic sclerosis, PPARγ activation induces protection against
an excessive fibrosis and may represent a therapeutic target
(161). The PPARγ agonist PGZ inhibits fibrosis in rat liver
after a choline-deficient L-amino acid defined diet (162, 163).
PPARγ ligands exert notable antifibrotic effects in human
lung fibroblasts (164). RGZ inhibits differentiation, migration,
and proliferation in cultured human lung fibroblasts (165).
In a murine model of neutrophilic asthma, RGZ diminishes
airway inflammation by inhibiting T cell proliferation (166).
PPARγ is expressed in airways and inhibits features of
airway remodeling in a mouse asthma model (167). TZDs
increase the WNT inhibitor Dickkopf-1 in adipocytes (168).
In fetal rat lung exposed to LPS, RGZ exerts protective
effects against inflammation through PTHrP-driven epithelial-
mesenchymal interactions (169). RGZ increases angiogenesis
and may represent a new potential therapy for improving
lung development in extremely premature infants. In rat pups,
nebulized PPARγ agonists RGZ and PGZ augment neonatal lung
maturation and injury repair by increasing the expression of

markers of alveolar epithelial and mesenchymal maturation via
stimulation of alveolar interstitial lipofibroblast maturation and
by providing protection against hyperoxia-induced lung injury
(145). In lung epithelial cells in chronic obstructive pulmonary
disease, down-regulated PPARγ increases the likelihood of a
proinflammatory phenotype (170).

Inhibition of TGF-β and Canonical WNT/β-catenin
In mesangial cells, TGF-β upregulates the type I collagen and
this is blocked by PPARγ activation (171). In hypertrophic
scar fibroblasts, induction of CTGF and extracellular matrix
by TGF-β1 is inhibited by PPARγ (172). Fibrosis may be
attenuated by blocking TGF-β1 by means of PPARγ agonists
(173). PPARγ abrogates Smad-dependent collagen stimulation
by targeting the p300 transcriptional coactivator (174). In
murine lung fibroblasts, TGF-β1 controls PPARγ expression,
transcription and activity through Smad3 signaling (175).
Several drugs targeting the TGF-β pathway have been used
in phase III clinical trials in oncology and against fibrosis
and radiation lesions (176). In human hepatic stellate cells,
the TGF-β1/Smad3-pathway is prevented by PPARγ (177). In
systemic sclerosis, abnormal TGF-β expression is involved in
fibrosis. Small-molecule inhibitors of TGF-β-receptor activity
are effective in animal models of fibrosis. Imatinib mesylate
and related tyrosine kinase inhibitors block TGF-β signaling
and abrogate fibrotic processes (178). In systemic sclerosis,
the aberrant PPARγ function is involved in fibrosis in skin
and lungs. The antifibrotic effects seem to be related to
the inhibition of TGF-β/Smad signal transduction (99). In
fibroblasts, TGF-β downregulates PPARγ in systemic sclerosis
(102). The TGF-β1 gene is repressed by PPARγ through the
PTEN-mediated p70 ribosomal S6 kinase-1 inhibition (179).
TGF-β suppresses PPARγ expression via SMAD binding (149)
(Figure 3). The canonical WNT/β-catenin pathway represents
a potential therapeutic target for fibrosis (180). In systemic
sclerosis, the canonical WNT/β-catenin pathway is upregulated
and induces a Smad-dependent fibrotic effect in mesenchymal
cells (98). Inhibition of the β-catenin pathway improves renal
interstitial fibrosis (181). Activation of the canonical Wnt/β-
catenin signaling inhibits the GSK3-β and induces dermal
fibrosis (182).

Hypoxia, PPARγ, and PPARγ Agonists
In very premature infants, the alveolar stage is very abnormal
and the thickening of the alveolar walls makes gaseous exchanges
difficult, leading to hypoxia and hypercapnia. However,
chronic hypoxia itself impairs lung development (38, 39).
In the newborn lung animal model, hypoxia enhances the
TGF-β pathway and inhibits alveolar development, resulting
in pulmonary arterial abnormalities. PPARγ can be reduced
by increasing TGF-β (85, 183). Hypoxia inhibits PPARγ

(40, 184), but increases TGF-β signaling, which is attenuated
by RGZ. Importantly, RGZ attenuates hypoxia-induced
inhibition of lung development (40). In newborn mouse
lung, chronic hypoxia diminishes the levels of PPARγ mRNA
expression and PPARγ protein. After hypoxia exposure the
oral administration of RGZ restores PPAR-γ mRNA and
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protein levels (40). RGZ diminishes hypoxia-induced inhibition
of alveolar development and prevents hypoxia-induced
impairment of the respiratory function. PPARγ is decreased
by hypoxia, a decrease that is prevented by inhibition of the
TGF-β pathway.

Deleterious Effects of PPARγ Agonists
TZDs can have adverse effects. The clinical administration of
PGZ and RGZ has revealed several adverse effects, including
weight gain, bone fractures, fluid retention and congestive heart
failure (185–187). In the USA, TGZ was removed from the
market in 2000 due to liver failure in diabetic patients (188).
RGZ has been withdrawn due to hepatotoxicity which has not
been observed with RGZ and PGZ (189). RGZ is associated with
an increased risk of strokes, myocardial infarction, heart failure
and even death (190, 191). However, it has been shown that
there is no increase in cardiovascular incidents with RGZ therapy
(192, 193). As for PGZ, it has been associated with bladder
cancer, bone fracture and heart failure (194). Few selective
PPARγ modulators have been synthesized and these have been
tested for safety and therapeutic efficacy. Thus, the PPARγ ligand
SR1664 has been found to improve insulin sensitivity and does
not induce adverse effects with regard to fluid retention or
bone formation (195). SR1664 binds PPARγ with high affinity
and blocks the PPARγ-Cdk5-mediated phosphorylation. Great
efforts are done to improve the safety of the first-generation of
PPARγ agonists. It appears important to understand the complex
PPARγ regulation by integrating the role of coactivators and
corepressors and the role of posttranslational mechanisms. It
would seem important to develop new tissue-specific PPARγ

agonists. In the case of BPD, lung-specific nebulized PPARγ

agonists could enhance the therapeutic benefits and reduce the
deleterious effects.

CONCLUSION

Significant prematurity predisposes to general hypoxia,
particularly in the pulmonary tissue. Both hypoxia and
hyperoxia promote upregulation of the canonical WNT/β-
catenin system and TGF-β and downregulation of PPARγ. This
stops lung maturation and gives rise to the transdifferentiation
of lipofibroblasts into myofibroblasts, which may lead to
pulmonary fibrosis and severe pulmonary sequelae. Since
hypoxia and hyperoxia have similar consequences for the
TGF-β/WNT/β-catenin/PPARγ pathways, this requires a fine
tuning of oxygen use in very premature infants. Numerous
studies have shown PPARγ agonists have a beneficial effect on
lung maturation and may provide a potentially safe lung therapy
(53, 54, 115, 146, 147, 157, 196, 197). Nebulized PPARγ agonists
may represent a potential strategy for improving postnatal lung
maturation, both by inhibition of the TGF-β/WNT/β-catenin
pathway and by preventing neonatal hyperoxia-induced lung
injury in premature BPD infants, thereby reducing morbidity
and mortality.
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