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We developed a disease registry to collect all incident amyotrophic lateral sclerosis (ALS) cases 
diagnosed during 2016–2018 in Ohio. Due to incomplete case ascertainment and limitations of the 
traditional capture-recapture method, we proposed a new method to estimate the number of cases 
not recruited by the Registry and their spatial distribution. Specifically, we employed three statistical 
methods to identify reference counties with normal case-population relationships to build a Poisson 
regression model for estimating case counts in target counties that potentially have unrecruited cases. 
Then, we conducted spatial smoothing to adjust outliers locally. We validated the estimates with ALS 
mortality data. We estimated that 119 total cases (95% CI [109, 130]) were not recruited, including 
36 females (95% CI [31, 41]) and 83 males (95% CI [74, 99]), and were distributed unevenly across the 
state. For target counties, including estimated unrecruited cases increased the correlation between 
the case count and mortality count from r = 0.8494 to 0.9585 for the total, from 0.7573 to 0.8270 for 
females, and from 0.6862 to 0.9292 for males. The advantage of this method in the spatial perspective 
makes it an alternative to capture-recapture for estimating cases missed by disease registries.

Abbreviations
ALS	� Amyotrophic lateral sclerosis
NCHS	� National Center for Health Statistics
CI	� Confidence interval
HH	� Clusters of high values
LL	� Clusters of low values
HL	� Outliers as a high value surrounded by low values
LH	� Outliers as a low value surrounded by high values
EB	� Empirical Bayesian
VA	� Veterans Affairs

Amyotrophic lateral sclerosis (ALS) is a progressive and fatal neuromuscular disease, with a lifetime risk of about 
1:4001. The global incidence of ALS for all ages is estimated to be 0.78 per 100,000 person-years2. The age- and/
or sex-standardized rates reported in Ireland, the United Kingdom, Italy, North America, and New Zealand have 
been reported to be 1.7–1.813,4. The incidence rates in Asia, South America, and the Caribbean are lower4. Such 
differences offer insights into etiological factors5.
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We developed a population-based ALS Registry for the US state of Ohio to determine the incidence of ALS 
in the state, the distribution and demographics of patients, and associations between ALS and environmental 
toxins/toxicants. We attempted to collect every newly diagnosed (incident) ALS patient in Ohio during a two-year 
index period from October 2016 through September 20186. The completeness of the Registry is fundamental to 
achieving the aforementioned goals7. However, we were unable to trace every ALS case for at least two reasons: 
(1) not all centers/physicians had developed collaborative agreements with the Registry, and (2) patients from 
some parts of Ohio may have gone to other states for medical care.

Under-ascertainment is common in surveillance data collection8, in part because the U.S. lacks a mandatory 
reporting infrastructure for ALS disease5. Nelson et al. estimated that the completeness of ALS cases collected by 
the US national administrative healthcare databases was 76% for the years 2002–20049, and Kaye et al. implied 
that the National ALS Registry of the US may have missed more than 40% of cases10. Witte et al. found that in 
the state of Georgia four data sources combined may have collected 90.7% of cases11. Jordan et al. used the death 
certificate data to estimate that in Baltimore and Philadelphia more than 11% of ALS cases had been missed 
during data collection efforts in those cities12. Preux et al. used three sources in Limousin (France) for the period 
1994–1995 and estimated completeness of 65.7%13. Uenal et al. estimated a missing rate to be 18.9% in the ALS 
registry for Swabia (Germany)14, consistent with the claim of Rosenbohm et al. that for Southern Germany the 
clinical-epidemiological registry had collected 80% cases15.

Considerable effort has been made to estimate the number of unrecruited cases in ALS registries. The dom-
inant method in literature is the capture-recapture process1,9,11,13–18. The basic idea of the capture-recapture 
method is to build statistical models based on the overlap between different sources and use these models to 
estimate the total number of cases, and hence the number of unrecruited cases. A fundamental assumption of 
this method is that the cases from each data source are random samples of all cases. Also, this method seems 
to be most applicable to situations with only a few data sources that are all covering the same base population. 
Another limitation of the method is that it only produces the total number of cases, without the spatial distribu-
tion of those cases.

These assumptions and limitations make the capture-recapture method unsuitable for our needs. First, our 
only data source was to identify individual institutions, which each primarily cover a distinct patient population 
from a given city or region, and thus are not a random sample of all ALS cases in Ohio. We only achieved col-
laborative agreements from a subset of the 20 + institutions in Ohio that may have diagnosed ALS cases. Second, 
our future objectives are to identify disease hotspots and detect the disease-environment associations, for which 
the spatial distribution of unrecruited cases, besides the total number, is fundamental and crucial.

Therefore, we developed a new method for estimating the distribution of unrecruited cases. Different from 
the capture-recapture method, our method is entirely based on local data, not requiring assumptions regard-
ing the sampling of cases. Our method takes the population of each county as the only variable, noting that the 
county-level population data is easy to obtain. Our method directly estimates the number of unrecruited cases 
for each county, which not only can be summed up to get the total number of unrecruited cases for the entire 
state, but also allows us to assess the spatial association between the ALS disease and environmental factors.

Results
Statistically estimate the number of unrecruited ALS cases in Ohio during 2016–2018.  The sta-
tistical estimation gave the expected case count for each targeted county. If the modeled expected case count > the 
number of recruited cases, then the difference is the estimated number of unrecruited cases. The total number of 
unrecruited cases from this phase of estimation is 35 (female) + 81 (male) = 116 (Table 1).

Spatially adjusted number of unrecruited ALS cases in Ohio during 2016–2018.  For both female 
and male cases, the local Moran’s I analysis identified one LH county, i.e., a county with a low incidence rate 
surrounded by counties with high rates. The smoothing process added one unrecruited case to the female case 
count and two to the male case count for that LH county. After these adjustments, the final estimated number of 
unrecruited cases in Ohio is 36 for females, 83 for males, and 119 in total (Table 2).

Table 2 shows that the number of unrecruited male cases is more than two times the number of unrecruited 
female cases. Unrecruited cases account for the majority of all cases in the target counties (78.26%, 69.75%, and 
72.12% for females, males, and total, respectively). They also account for a substantial percentage in all cases 
statewide (21.95%, 34.87%, and 29.60% for females, males, and total, respectively).

Figure 1 shows the spatial distribution of estimated unrecruited cases in Ohio. Figure 2 compares the county-
level incidence rate based on recruited cases (left) to that based on the final compiled estimation results (right), 
thereby demonstrating the effect of the estimation.

Table 1.   Statistically estimated number of unrecruited ALS cases in Ohio during 2016–2018. The output from 
the Poisson regression model contains decimal digits.

Sex Number of recruited cases Number of expected cases
Estimated number of 
unrecruited cases

95% CI of the estimated 
number of unrecruited cases

Female 128 163.08 35.08 [30.34, 39.82]

Male 155 236.20 81.20 [71.88, 96.58]

Total 283 399.28 116.28 [105.85, 126.81]
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Validation of estimation results based on the mortality data.  Table 3 lists Pearson’s correlation 
coefficient (r) values between the county-level incidence case count and the mortality case count.

First of all, for those counties that we assumed had all cases recruited (referred to as non-target counties in 
Table 3), including the reference counties and those counties that have even higher incidence rates based on their 
recruited cases, there is a strong correlation between the case count and mortality count (r = 0.9114, 0.9395, and 

Table 2.   Final estimated cases unrecruited by the Ohio ALS Registry during 2016–2018. “% in the total 
number of cases in the target counties” and “% in the total number of cases in all 88 counties” were calculated 
with the rounded integer number of unrecruited cases divided by the number of expected cases, where the 
number of expected cases equals to the sum of the number of recruited cases and unrecruited cases.

Sex
Number of recruited cases 
in the target counties

Number of recruited cases 
in all 88 counties

Estimated number of 
unrecruited cases Rounded integer

% in the total number of 
cases in the target counties

% in the total number of 
cases in all 88 counites

Female 10 128 35.54 36 78.26 21.95

Male 36 155 82.81 83 69.75 34.87

Total 46 283 118.35 119 72.12 29.60

Figure 1.   Estimated numbers of unrecruited ALS cases in individual Ohio counties.
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0.9666 for females, males, and total, respectively). These high Pearson’s correlation coefficient values provide 
validation of our statistical method of correcting the Registry for unrecruited cases.

In terms of matching the mortality count, the inclusion of the estimated unrecruited cases considerably 
improves the quality of the ALS case base. Between sexes, the improvement of the correlation for males is greater 
than that for females. When calculated with data from all 88 counties, the r of male cases increases from 0.8202 
to 0.9325, while the correlation among females r increases from 0.8644 to 0.9025. When calculated only using 
the data of the target counties, which appeared to have low case ascertainment, the r of male cases increases from 
0.6862 to 0.9292, compared with females’ 0.7573 to 0.8270. The increase of r for the target counties more indica-
tively demonstrates the improvement made by the unrecruited case estimation on the quality of the case base.

The spatial adjustment, while theoretically reasonable, did not considerably alter the results from the statistical 
estimation in the particular case of Ohio. The one female case added by the spatial adjustment slightly improved 
the r (from 0.9022 to 0.9025 for all counties, and from 0.8256 to 0.8270 for the target counties), whereas the two 
male cases added by the spatial adjustment eventually reduced the r to a small extent (from 0.9341 to 0.9325 for 
all counties, and from 0.9320 to 0.9292 for the target counties). When the female and male cases are put together, 
the overall r was slightly decreased by the spatial adjustment (from 0.9668 to 0.9648 for all counties, and from 
0.9621 to 0.9585 for the target counties).

Discussion
The Ohio ALS Registry aimed to construct a comprehensive case database of incident ALS for a given two-year 
time period, which is a fundamental step in the effort to identify hotspots of the disease and detect potential 
environmental risk factors of ALS in Ohio6. However, like many previous studies, we were not able to recruit 
every case, and the capture-recapture method was not suitable for our study design. Thus, we developed an 
alternative method to estimate the number of unrecruited cases and their spatial distribution. The results of our 
validation with the ALS mortality database for the state of Ohio are encouraging.

Our estimation indicates that, statewide, the unrecruited cases account for less than 30% of all cases for our 
two-year period, which is similar to the wide range of results of the previous studies9–15. We also found that the 
percentage of unrecruited male cases is higher than that of female cases (34.87% vs. 21.95%), which follows 

Figure 2.   The incidence rate of ALS in Ohio. (a) Before including the estimated unrecruited cases; (b) after 
including the estimated unrecruited cases.

Table 3.   Pearson’s correlation coefficients (r) between county-level ALS case count and ALS mortality count in 
Ohio.

Sex Non-target counties

All 88 counties 
without estimated 
unrecruited cases

All 88 counties with 
statistically estimated 
unrecruited cases

All 88 counties with 
spatially adjusted 
unrecruited cases

Target counties 
without estimated 
unrecruited cases

Target counties with 
statistically estimated 
unrecruited cases

Target counties with 
spatially adjusted 
unrecruited cases

Female 0.9114 0.8644 0.9022 0.9025 0.7573 0.8256 0.8270

Male 0.9395 0.8202 0.9341 0.9325 0.6862 0.9320 0.9292

Total 0.9666 0.9067 0.9668 0.9648 0.8494 0.9621 0.9585
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the base rates of the disease (with a global incidence rate of 1.9 in males and 1.3 in females)19,20, and is also 
qualitatively consistent with Nelson et al.9. The male predominance of unrecruited cases includes 44 veterans 
diagnosed in the Veterans Affairs (VA) system who were not able to be included in the Registry6. We found the 
number of unrecruited cases varies drastically from county to county in Ohio, and that spatial distribution also 
differs greatly by sexes6. Such spatial variation of unrecruited cases has been rarely reported in the literature but 
is critical to the planned geospatial analyses of environmental risk factors.

The key in the statistical estimation process we developed is the identification of reference counties. We 
employed three methods for this identification and the final selection of reference counties incorporates informa-
tion from all three. While the three methods are based on quite different principles (z-score, straight section in 
a series, and Jenk’s natural breaks), their results well matched each other, which corroborates our methods for 
identifying reference counties in this study.

The literature on spatial smoothing for disease data is abundant. Most of those studies tackle statistical 
instability in observed disease rates, while some others use spatial smoothing to achieve imputation for missing 
data21. Different from most imputation studies, the spatial smoothing applied here targeted only those statisti-
cally abnormal areas. We considered such areas to be where the statistical estimation model, built to represent 
the ‘normal’ situation, would either overestimate or underestimate the incidence rate. Although the spatial 
adjustment in this study eventually had only a small effect on the statistical estimation results, we still included 
the spatial adjustment as the second phase in the entire estimation procedure because we consider it to be theo-
retically reasonable, and practically meaningful, and recommend that it be included in future similar studies.

Due to ALS being a rare disease, our estimation may suffer the “small number problem”, especially in those 
counties with small populations. More research is required to address and mitigate this problem, especially if 
additional confounding factors (e.g., age and other demographic variables) are to be incorporated and more 
precise geographic locations are to be investigated. Within the state of Ohio, confounding by age and sex distribu-
tion is likely minimal. However, these factors are critical to account for in other national or global scale contexts.

This section explains the reason we did not compare our current study with the traditional under-recruitment 
estimation method, capture-recapture. First, our data apparently does not meet the most basic assumption of 
the capture-recapture method: the data from each source are random samples of all patients. Second and more 
important, the capture-recapture method is a nonspatial method, i.e., it can only estimate the total number 
of unrecruited patients, but it cannot tell where those unrecruited patients are in the study area. On the other 
hand, our method can give the spatial distribution of those patients. For this second reason, even if we put the 
results of the total number estimated by the two methods together, we have no way to claim which one is better, 
as we do not know the true value for the total number. Our verification in this study is to evaluate the consist-
ency between spatial distributions of the ALS mortality cases and the result of our estimation, which cannot be 
applied to the capture-recapture result.

The estimation method presented in this paper is novel and can be of use in studies of other regions and dis-
eases that experience similar problems of incomplete case ascertainment. However, this current study has several 
limitations that hopefully can be addressed in future research: 1) While the selection of the reference county 
greatly influences the estimation, in this study, this selection was simply based on the association between ALS 
case counts and population. Given the increasing understanding of ALS etiology and its association with other 
factors, e.g., population density (urbanity and rurality), demographics, socioeconomics, and environment, we 
may be able to improve the selection of reference counties by considering the etiology and more relevant factors. 
2) Inherently, the proposed method may overestimate the number of patients in a cold spot, i.e., an area whose 
disease rate is indeed lower than expected, due to certain local protective factors. Fortunately, such overestima-
tion would not adversely impact research focusing on hotspots and risk factors. 3) While the ALS mortality 
data of Ohio is the best available data for us to verify the results of our method, such data entails considerable 
uncertainty when being used for such a purpose, especially when the verification is through a comparison of 
the spatial distributions of the two. Spatially, the location information in the mortality data is about where the 
person deceased, which is not necessary to be where the person had resided for long and/or where the person 
had been diagnosed. Temporally, there would be fluctuations in incidence and the mortality data may not fully 
reflect the situation of contemporary patients. After all, the use of mortality data is an indirect way of verifica-
tion of patients. As the data collection of our research is still ongoing, hopefully, we should be able to use a more 
direct way to validate our estimation.

In summary, using the Ohio Registry of Amyotrophic Lateral Sclerosis as a case study, this study proposed 
a new method to estimate the number of cases not recruited by a patient Registry and their spatial distribution. 
The basic idea of this method is to borrow the data from the counties with relatively reasonable and reliable case 
counts (reference counties) to estimate the missing cases in other counties, and then locally smooth outliers. 
Here, we used three methods to identify the reference counties, which also could be further developed with more 
environmental information considered. The advantage of this new method in the spatial perspective makes it an 
alternative to capture-recapture for estimating cases missed by disease registries.

Methods
Recruited cases.  The Ohio ALS Registry sought to count every patient newly diagnosed with ALS living 
in Ohio during the two years of October 1, 2016, through September 30, 2018. The clinical base of the registry 
was the Section of ALS and Related Disorders, Cleveland Clinic, Cleveland, OH22. We identified neurologists 
and referral centers that diagnose ALS throughout the state and invited them to participate in the Registry by 
submitting case-report forms, but we were not able to recruit all centers seeing ALS patients in Ohio (Fig. 3). A 
detailed description of the diagnostic standards employed, the case-recruiting process implemented, and case 
information collected has been published by Andrew et al.6. That study was approved by the Dartmouth-Hitch-
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cock Medical Center IRB and by the IRB of institutions that did not defer to the Dartmouth-Hitchcock Medical 
Center IRB.

For each recruited case, we have collected the patient’s age and sex. For the present study, we have aggregated 
the patient’s location information to the county level, according to the patient’s residence at the time of diagnosis. 
We eliminated duplicate records of cases registered at more than one facility.

Population data.  We obtained population data from the Ohio Public Health Information Warehouse23, 
made available by the Ohio Department of Health. The data originated from the Vintage 2019 Bridged-Race 
Postcensal Population Estimates of the National Center for Health Statistics (NCHS)24. From the dataset, we 
extracted the county-level data for 2016 to use in this study.

Mortality data.  The mortality data we used to validate the estimated unrecruited ALS cases were from the 
State of Ohio Bureau of Vital Statistics25. We extracted vital records for the years 2016–2019 with ICD 10 codes 
G122 and G128 listed as the underlying or contributing cause of death. We determined the prior addresses of 
each deceased subject using a commercial marketing database, LexisNexis (Dayton, Ohio), which has residential 
records dating back to the mid-1990s. We used an estimated 4-year median survival time for ALS patients to 
assign the probable county of residence at the time of diagnosis to each deceased case26,27.

Figure 3.   Sites are invited to participate in the Ohio ALS Registry. Participating sites are institutions and 
neurologists that have contributed cases to the Registry; Declining sites are those that have not.
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Analysis design.  Our method for estimating the spatial distribution of unrecruited ALS cases comprises two 
phases: statistical modeling and spatial adjustment. First, we statistically identified counties in Ohio with normal 
case-population relationships, with which we built a Poisson regression model and used it to run estimations for 
each county potentially having unrecruited cases. Second, following the principle of spatial autocorrelation28,29, 
we conducted spatial smoothing to adjust the results from the first phase.

Ideally, we would incorporate information about both age and sex, as they are associated with the ALS 
risk27,30,31. However, ALS is a rare disease and Ohio’s county-level case count in an age-sex decade was often 
too small to support a solid statistical analysis. Therefore, we only incorporated sex as a covariate in this study 
considering that Ohio has relatively homogeneous geospatial distributions of people of different ages within 
the state. The entire procedure, as described in the following subsections, was applied to female and male cases 
separately. As all the analyses in this study were at the county level in Ohio, it means all the data used in this 
study were anonymized and aggregated to each county of Ohio. It was not required to have any administrative 
permissions to access the data directly used in the current study.

Statistical modeling.  Identify reference counties.  We intended to establish a model of the relationship 
between the expected case count and the population in each county of Ohio. We would then apply that model 
to each county that may have unrecruited cases to estimate its expected case count. The difference between the 
expected case count and the number of recruited cases would be the number of unrecruited cases in that county. 
To establish such a model, we needed to identify counties in Ohio whose incidence rates were within a normal 
range. Herein, we refer to such counties as reference counties.

To identify reference counties, we ranked all counties in descending order according to their incidence rates 
calculated with the recruited cases. Conceptually, we assumed that the reference counties should be chosen from 
the middle section of this ranked list, because those counties in the upper section may be in hotspot regions, 
whereas those in the lower section (target counties) may either have unrecruited cases or be in cold-spot regions.

In this study, we used a data exploratory approach to determine reasonable boundaries in the ranked list 
for identifying reference counties. We employed three different methods to achieve that determination. First, 
we considered that the incidence rate of reference counties should fall within a certain range around the mean 
incidence rate of all counties. We quantified that certain range by the number of standard deviations, i.e., the 
z-score in statistics (Table 4).

Second, when we plotted the ranked list (Fig. 4), we observed a relatively straight section in the middle of 
both the male and female rate series. We presumed that the incidence rate of a reference county must lie within 
this section, as the rate values in this section were not extreme and less variable. We then calculated the difference 
and ratio between two consecutive rate values in the ranking sequence (Fig. 4). The boundaries of the straight 
section in the incidence series were then determined through the visual inspection of the flatness and smooth-
ness in the difference series and the ratio series.

Third, we calculated Jenk’s natural breaks32, which divides a series of values into a prespecified number of 
sections in a way that minimizes the intra-section variance and maximizes the inter-section variance. Table 5 
shows the sections defined using this method.

The results of these three methods for identifying the reference counties (z-score, straight section, and Jenk’s 
natural breaks) were relatively consistent. For the female cases, the lower boundary of the straight section (2.7928) 
was the same as the lower boundary of the range defined by |z-score|< 0.25 and the lower boundary of section 2 
defined by Jenk’s natural breaks, whereas the upper boundary of the straight section (4.5895) is only one county 
below the upper boundary shared by the range of |z-score|< 0.5 and section 2 defined by Jenk’s natural breaks 
(5.0802). For the male cases, the lower boundary of the straight section (5.8634) was at the county immediately 
above the mean value (there is no county exactly on the mean value) and the same as the lower boundary of sec-
tion 3 of Jenk’s natural breaks, whereas the upper boundary of the straight section (8.3850) exactly corresponds 
to the upper boundary of |z-score|< 0.5 and the upper boundary of section 3 of Jenk’s natural breaks. We selected 
the final reference counties for males and females based on the results of all three methods, and each set happens 
to include 15 counties (red dots in Fig. 4 and Table 6).

We used ArcGIS 10.7 to calculate Jenk’s natural breaks and Microsoft Excel for all other tabular calculations 
and plotting operations.

Build Poisson regression models.  Since ALS is a rare disease and most reference counties have only one or two 
cases, we chose to use Poisson regression to build the model. The response variable was the case count of each 
county, and the explanatory variable was the natural logarithm of the county’s base population. The use of the 
natural logarithm of the population is to approximate a linear relationship in the modeling, as Poisson regression 
uses a logarithm link function. In this study, the Poisson regression was conducted using the package “glm” in R 
software. The output from the R operations is summarized in Table 7.

Table 4.   ALS incidence rate ranges for determining reference counties in Ohio, as defined by the z-score.

Sex Mean Std. dev

Incidence rate range

|z|< 0.25 |z|< 0.5 |z|< 0.75

Female 3.1345 4.3187 2.7928–4.1869 1.5490–5.0802 0–6.3371

Male 5.2285 6.3039 3.6893–6.4969 2.3656–8.3850 0.5062–9.9020
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Figure 4.   Plots of the ranked ALS incidence and the difference and ratio between two consecutive values. All 
plots are for the counties with non-zero incidence rates in Ohio.

Table 5.   Sections of the ranked ALS incidence rates in Ohio defined by Jenk’s natural breaks. For females, the 
specified number of sections = 4, and for males, the number = 5. N/A = not applicable.

Sex Section 1 Section 2 Section 3 Section 4 Section 5

Female 0–1.7920 2.7928–5.0802 5.8331–10.3416 12.0337–22.4039 N/A

Male 0–0.5062 2.3656–5.0181 5.8634–8.3850 8.9791–14.7384 18.4417–26.5113

Table 6.   The final determining ranges, in terms of the incidence rate, for identifying reference counties.

Sex Range of incidence rate for identifying reference counties Number of identified reference counties

Female 2.7928–4.5895 15

Male 5.8634–8.3850 15
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We used a Monte Carlo process to determine the 95% confidence interval (CI) for the estimates. For the sex-
specific estimation of each county, we used the prediction and the standard error of each county output by the 
“gml” model in R to estimate the empirical normal distribution and then generated 10,000 random values from 
this distribution. The empirical 95% CI was estimated based on the 2.5th and 97.5th percentiles of the 10,000 
results from this process. The sex-specific values were also used to estimate the 95% CI of the total value.

Spatial adjustment.  The statistical estimation described above lifts the case count of a target county to a 
normal range, using assumptions based on the reference county values. However, if a target county with an unex-
pected low case count is in a hotspot or a target county with an unexpected high case count in a cold spot region, 
its actual case count is likely to deviate from the normal range and, thus, its estimated expected case count should 
be adjusted. This adjustment follows the principle of spatial autocorrelation28,29, i.e., nearby locations tend to 
have similar attribute values. The spatial autocorrelation is realistic in our case, as when an environmental fac-
tor causes a local abnormality in ALS risk, it will likely affect all counties in that region, rather than leaving one 
county out. Our spatial adjustment is based on this understanding and is illustrated in Fig. 5.

The spatial adjustment contains two steps. First, we identified local anomalies using the local Moran’s I 
analysis33, implemented with the Local Moran’s I with EB Rate tool in GeoDa34. The tool outputs indications of 
four types of local anomalies: clusters of high values (HH); clusters of low values (LL); outliers as a high value 
surrounded by low values (HL), and outliers as a low value surrounded by high values (LH). The tool reports 
statistical significance at P value = 0.01, 0.02, and 0.05. In this study, we focused on outlier target counties, labeled 
as HL or LH, and significance at P value = 0.05. The Local Moran’s I with EB Rate tool performs an Empirical 
Bayesian (EB) smoothing to the raw rate before calculating Moran’s I, addressing the small number problem due 
to a small case count and/or a small population.

Second, for a target county labeled as an outlier (HL or LH), we ran the locally-weighted-averaging smoothing 
to adjust its value35,36. This process calculates a weighted average of the values of all counties in the neighborhood 
of the target county and replaces the original value of the target county with that average. In this study, we defined 
the neighborhood by contiguity, i.e., if a county shared a boundary with the target county, it was considered a 
neighbor of the target county. The weight of each involved county was its population. The eventual value sent into 

Table 7.   Poisson regression models of county-level relationships between case count and population, built for 
reference counties. df degrees of freedom.

Female
(N = 15)

Male
(N = 15)

ln(female population)

Coefficient 1.0525 0.9524

Std. error 0.1526 0.1208

Z value 6.8950 7.8850

Pr( >|z|) 0.0000 0.0000

Evaluation

Null deviance 42.2857 on 14 df 70.3104 on 14 df

Residual deviance 0.7952 on 13 df 0.4607 on 13 df

AIC 42.233 46.901

Figure 5.   Spatial smoothing for adjusting the statistically estimated case counts in hotspot and cold spot areas.
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the smoothing process was the incidence rate of a county rather than its case count. The adjusted rate of the target 
county was then used to calculate the case count of that county and in turn the number of its unrecruited cases.

Validation.  Since the median survival time from onset to death of ALS cases is usually 2–4 years from the 
first appearance of symptoms26,27,37,38, we used mortality data as validation. We were able to obtain residential 
history data on the cases identified from the Ohio mortality data so that we could identify the location of the 
patient’s home in the year of diagnosis. Assuming the mortality rates of ALS cases in a particular county are fairly 
stable over time, the spatial distribution of the residence at the time of diagnosis of the deceased ALS cases in 
Ohio should closely follow the spatial distribution of the Registry incidence that we observed. The ALS mortal-
ity data allowed us to compare the two spatial distributions to validate our estimation. We calculated Pearson’s 
correlation coefficient between the two, using each county as a unit in the calculation.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author upon reasonable request.
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