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Abstract

Background: Noble gases may provide novel treatments for neurological injuries such as ischaemic and traumatic brain

injury. Few studies have evaluated the complete series of noble gases under identical conditions in the same model.

Methods: We used an in vitro model of hypoxiaeischaemia to evaluate the neuroprotective properties of the series of

noble gases, helium, neon, argon, krypton, and xenon. Organotypic hippocampal brain slices from mice were subjected

to oxygen-glucose deprivation, and injury was quantified using propidium iodide fluorescence.

Results: Both xenon and argon were equally effective neuroprotectants, with 0.5 atm of xenon or argon reducing injury

by 96% (P<0.0001), whereas helium, neon, and krypton were devoid of any protective effect. Neuroprotection by xenon,

but not argon, was reversed by elevated glycine.

Conclusions: Xenon and argon are equally effective as neuroprotectants against hypoxiaeischaemia in vitro, with both

gases preventing injury development. Although xenon’s neuroprotective effect may be mediated by inhibition of the N-

methyl-D-aspartate receptor at the glycine site, argon acts via a different mechanism. These findings may have important

implications for their clinical use as neuroprotectants.

Keywords: acute brain injury; carbon monoxide poisoning; hypoxiceischaemic encephalopathy; out-of-hospital cardiac

arrest; neuroprotection; noble gases; stroke
Editor’s key points

� Noble gases have shown neuroprotective effects in

experimental models of cerebral ischaemia.

� An in vitro model of cerebral ischaemia was used to

compare the neuroprotective efficacy of the full series

of noble gases.
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� Whereas xenon and argon were similarly neuro-

protective, helium, neon, and krypton were without a

protective effect.

� Reversal of neuroprotection byxenon, but not by argon, by

elevated glycine suggests distinct protectivemechanisms.

� Further translational studies to evaluate these two noble

gases asneuroprotectants arewarranted by these findings.
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Neurological injuries resulting from hypoxiaeischaemia are

leading causes of morbidity and mortality worldwide.1e3

Hypoxiceischaemic brain injury has a variety of aetiologies

including stroke, cardiac arrest, neonatal hypoxiceischaemic

encephalopathy (HIE), drowning and exposure to asphyxiant

gases and carbon monoxide. Many who survive a

hypoxiceischaemic brain injury have persisting disability,

with long-term care and rehabilitation costs.4 Treatment op-

tions are limited to thrombolytic drugs and clot removal for

ischaemic stroke, and therapeutic cooling (or hypothermia) for

cardiac arrest and neonatal HIE. Currently, there are no clini-

cally proven treatments specifically targeted at preventing or

limiting neuronal death resulting from ischaemia.

There is a need to develop neuroprotective treatments for

hypoxiceischaemicbrain injury.Currentlythere is interest inthe

noble gases as novel treatments for ischaemic and traumatic

brain injury.5e9 Attention has focused on xenon, which has

already undergone clinical trials for HIE10e12 and out-of-hospital

cardiacarrest,13,14but there isalso interest in theuseofargonand

helium, which have been evaluated in in vitro and in vivo mod-

els.15e20 Neuroprotection by particular noble gases has been re-

ported under different conditions.7,21e25 Few studies, however,

have evaluated neuroprotection by krypton or neon,26,27 and

investigation of the whole series of noble gases in

hypoxiceischaemic brain injury under the same conditions has

been limited to dissociated cell cultures.27 We report the neuro-

protective efficacy of helium, neon, argon, krypton, and xenon

under identical conditions using organotypic hippocampal

brain-slice cultures subjected to oxygen-glucose deprivation

(OGD), an experimental model of cerebral ischaemia. We tested

the hypothesis that the N-methyl-D-aspartate (NMDA) receptor

glycine site is involved in noble gas neuroprotection against

hypoxiceischaemic brain injury in vitro.
Methods

Unless otherwise stated, chemicals were obtained from

Sigma-Aldrich Ltd (Gillingham, Dorset, UK). All gases were

obtained from BOC Ltd (Guildford, Surrey, UK); pure noble

gases were N5.0 grade (99.999%).
Hippocampal organotypic slices

Experiments were performed in compliance with the Animal

Welfare and Ethical Review Body of Imperial College London

and the Animals (Scientific Procedures) Act of 1986. Animals

(pups and their dams) were housed in individually ventilated

cages in a pathogen-free facility in a 12:12 h lightedark cycle

(7:00 AMe7:00 PM light) at 22�Cwith ad libitum access to food and

water. Animals were checked at least once daily. Organotypic

hippocampal slice cultureswere prepared as described24,26,28,29

from male and female 7-day-old C57BL/6 mouse pups (Harlan

Ltd, Bicester, Oxfordshire, UK). Briefly, after euthanasia, brains

were removed and placed in ice-cold ‘preparation’ medium

that contained Gey’s balanced salt solution, 33 mM D-glucose

(Fisher Scientific, Loughborough, Leicestershire, UK) and 1%

antibioticeantimycotic suspension. The hippocampi were

removed, and 400 mm thick transverse slices were prepared

using a McIllwain tissue chopper. Slices were transferred into

ice-cold preparation medium, gently separated and then

placed on tissue culture inserts (Millicell-CM; Millipore Cor-

poration, Carrigtwohill, Co. Cork, Ireland) that were inserted

into a six-well tissue culture plate. The wells contained

‘growth’ medium consisting of 50% (v:v) Minimal Essential
Medium Eagle, 25% Hank’s balanced salt solution, 25% inacti-

vated horse serum, 2 mM L-glutamine, 32 mM D-glucose, and

1% antibioticeantimycotic suspension. Slices were incubated

at 37�C in a 95%air:5%CO2humidified atmosphere. The growth

medium was changed every 3 days. Experiments were carried

out after 14 days in culture. Cell culture inserts containing four

to seven slices were randomly assigned to sham, OGD control,

or OGD noble gas treatment groups.
Oxygen-glucose deprivation and hyperbaric gas
chamber

The growth medium was changed to serum-free ‘experi-

mental’ medium consisting of 75% Minimal Essential Medium

Eagle, 25%Hank’s balanced salt solution, 2mM L-glutamine, 33

mM D-glucose, 1% antibioticeantimycotic suspension, and 4.5

mM propidium iodide (PI). One hour after transfer to experi-

mental media, slices were imaged to assess viability before

OGD. Typically, slices exhibited very little PI fluorescence, an

indicator of healthy slices. A small number of slices were

excluded from further analysis because they failed to meet

objective viability criteria at this time point (t¼0); either there

were regions of dense staining, or there were more than 20

pixels at intensity levels above 80, or tissue fragments were

visible, indicating compromised viability, presumably as a

result of mechanical damage during slice preparation. Imme-

diately after initial imaging, experimental medium was

exchanged for ‘OGD medium’, 120 mM NaCl, 5 mM KCl, 1.25

mM NaH2PO4, 2 mM MgSO4, 2 mM CaCl2, 25 mM NaHCO3, 10

mM sucrose, 20 mM HEPES, pH 7.25 or ‘sham medium,’ which

had the same composition, except that sucrose was replaced

with 10mM D-glucose. OGDmediumwas deoxygenated before

use by bubbling for 45 min at 50 ml min�1 with 95% N2:5% CO2,

in a Dreschel bottle using a fine-sintered glass bubbler and

filter-sterilised using a 0.2 mmfilter. Shammediumwas treated

in the same way except it was bubbled with 20% O2:75% N2:5%

CO2. After solution exchange, culture dishes were transferred

to a small chamber (Fig. 1a) that contained a high-speed fan for

rapid gas mixing. The chamber was housed in an incubator at

37�C. The chamber (gas volume 0.925 L) was flushed with

humidified gas (95% N2:5% CO2 or 20% O2:75% N2:5% CO2) for 5

min at 5 L min�1 ensuring better than 99.99% gas replacement.

After flushing, the chamber was sealed for a set period of 30

min, constituting the duration of OGD (or sham treatment).

After the period of OGD, slices were removed from the

chamber and medium was replaced with experimental me-

dium (in experiments with added glycine [100 mM], this was

added for the first time at this stage). Slices were returned to

the chamber which was flushed with 20% O2:75% N2:5% CO2 as

before and sealed. In the helium experiments at 1.0 atm the

chamber was flushed with 20% O2:75% He:5% CO2. In experi-

ments with xenon, krypton, argon, and neon, after flushing

with 20% O2:75% N2:5% CO2 an additional 0.5 atm of noble gas

was added after sealing the chamber, with helium used as

control for the effects of pressure. Treatment with noble gases

was started 10 min after OGD. For all gas mixtures (except

during OGD), the partial pressures of oxygen and carbon di-

oxide were fixed at 0.2 and 0.05 atm, respectively. During OGD,

the partial pressures were 0.95 atm nitrogen and 0.05 atm

carbon dioxide. The chamber fan was left on for 5 min to

achieve mixing of gases. After 24 h in the chamber, slices were

imaged using a fluorescent microscope (see section ‘Quanti-

fying cell injury’). The experimental timeline is shown in

Fig. 1b.



Fig 1. (a) Diagram of the chamber used for oxygen-glucose deprivation (OGD) and gas treatment. Organotypic hippocampal slice cultures in

six-well cell-culture dishes were placed in the chamber. A small fan (shown in black) ensured mixing of the gases. (b) Schematic showing

the experimental timeline. (c) Typical propidium iodide fluorescence images at of slices (i) sham, (ii) OGD, and (iii) maximal injury. Scale

bars¼500 mm. (d) Intensity histogram of slices from sham (black) and OGD (red) groups. (e) Quantification of injury in sham (white bar),

OGD (brown bar), and maximal injury (dark red bar) slices at 24 h after injury or sham procedure. Slices were exposed to control gas (75%

N2:20% O2:5% CO2) with 0.5 atm helium for 24 h after OGD or sham procedure. The intensity histograms are the mean of 10 (sham) and 25

(OGD) slices. Pixel numbers have been normalised to the median of the OGD slices. Bars are median values, error bars are the 95% con-

fidence interval. n¼191, sham; n¼326, OGD, n¼125 max injury. ****P<0.0001, KruskaleWallis test with Dunn’s correction for multiple

comparisons.
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Quantifying cell injury

PI only enters cells with compromised cellular membranes

and becomes fluorescent after binding to nucleic acids,

allowing quantification of cell injury.30e32 The PI assay does

not distinguish between different cell types or grey and

white matter, as would be possible with histopathology, but

PI has the advantage in that real-time quantification of injury

can take place in the same slices at different time points (in

this case, the viability assessment at t¼0 h before injury and

at t¼24 h after OGD or sham procedure). An epifluorescence

microscope (Nikon Eclipse 80; Kingston upon Thames, Sur-

rey, UK), with a low-power (2�) objective was used to quan-

tify PI fluorescence. A digital video camera and software

(Micropublisher 3.3 RTV camera and QCapture Pro software;

Qimaging Inc, Surrey, BC, Canada) were used to capture the

images. Image intensity analysis of the red channel was

performed using ImageJ software,33 with the distribution of

intensities plotted as a histogram over 256 intensity levels.

Uninjured sham slices under control conditions, incubated
in the chamber for 24 h at 37�C with 20% O2:75% N2:5% CO2,

showed little PI fluorescence (Fig. 1c[i]) compared with OGD

injured slices (Fig. 1c[ii]) that exhibited bright PI fluores-

cence. In order to determine the relative magnitude of the

OGD injury we determined maximal cell death by incubating

some slices in 70% ethanol overnight at 4�C (Fig. 1c[iii]). To

quantify the injury we integrated the number of pixels above

a threshold of 100, which provides a robust quantitative

measurement of cell injury (Fig. 1d).24 Absolute pixel values

were normalised to the median value of the control OGD

slices (Fig. 1e).
Statistical analysis

Data were tested for normality using the ShapiroeWilk test

and found to be non-normal. Results are shown as median

values with error bars representing 95% confidence intervals.

We assessed significance using the KruskaleWallis test with

Dunn’s correction formultiple comparisons. A P-value of <0.05
was taken to indicate a significant difference between groups.
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Statistical tests were performed using GraphPad Prism v 7.04

(GraphPad Inc., La Jolla, CA, USA).
Results

Oxygen-glucose deprivation results in sub-maximal
injury

To determine the relative intensity of our OGD injury we

compared uninjured sham slices with slices subjected to OGD

andslicessubjectedtomaximal injury.Comparedwithuninjured

shams, slices subjected toOGDexhibitedabright PIfluorescence,

which was sub-maximal (Fig. 1c and d). Injury in the OGD slices

was greater than sham and less thanmaximal injury (Fig. 1e).
Helium has no effect on hypoxiceischaemic injury

Wedetermined the effect of 1.0 atm helium (75%He:20%O2:5%

CO2) on sham and OGD slices (Fig. 2). There was no significant

difference between sham slices with or without helium. Injury

was low in sham slices, with median values 4.9% and 8.3% of

the median value of the control OGD in the absence and

presence of helium, respectively. After OGD, injury developed

significantly (p < 0.0001) at 24 h compared with shams, in both

the absence and presence of helium. However, there was no

significant difference between OGD slices treated with helium

and control OGD slices treated with 75% N2:20% O2:5% CO2.
Xenon and argon prevent hypoxiceischaemic injury,
whereas krypton and neon have no effect

As helium was without effect, we investigated the effect of 0.5

atm of the noble gases xenon, krypton, argon, and neon on

OGD injury (Fig. 3). As these experiments usedmild hyperbaric

conditions, we used 0.5 atm helium in the control OGD to

control for any effects of pressure. Sham slices exhibited very
Fig 2. Helium at atmospheric pressure has no effect after injury

or sham procedure. Slices were exposed to either control gas

(75% N2:20% O2:5% CO2) or helium (75% He:20% O2:5% CO2) for 24

h after OGD or sham procedure. Pixel numbers have been nor-

malised to the median of the control OGD slices. Bars are me-

dian values, error bars are the 95% confidence interval. n¼31,

sham; n¼35, sham helium; n¼54, OGD; n¼46, helium OGD.

****p<0.0001 compared with OGD, KruskaleWallis test with

Dunn’s correction for multiple comparisons. Ns, not significant;

OGD, oxygen-glucose deprivation.
little injury (Fig. 3a[i]) compared with control OGD (Fig. 3a[ii]),

whereas treatment with xenon (Fig. 3a[iii]) or argon (Fig. 3a[iv])

after OGD reduced injury. Xenon and argon were equally

effective at reducing OGD injury, both reducing injury signifi-

cantly (p < 0.0001) by 96% (Fig. 3b). The OGD slices treated with

xenon and argon were not significantly different to each other

or to the uninjured sham group (Fig. 3b). Thus both of these

noble gases can prevent injury development in this in vitro

model. We found that krypton and neon were without signif-

icant effect on OGD injury (Fig. 3b).
Glycine reverses the protective effect of xenon, but not
of argon, against hypoxiceischaemic injury

In order to determine the role of the NMDA receptor in the

protective effect of xenon and argon, we investigated the ef-

fect of glycine on neuroprotection by these noble gases. The

addition of 100 mM glycine had no significant effect on control

OGD injury with helium (Fig. 4). The protective effect of argon

was unaffected by addition of glycine, with a 91% reduction

with glycine compared with 96% reduction without glycine. In

contrast, addition of glycine completely reversed the
Fig 3. Xenon and argon prevent after OGD injury whereas other

noble gases have no protective effect. (a) Typical propidium io-

dide fluorescence images of slices (i) sham, (ii) OGD þ 0.5 atm

helium, (iii) OGD þ 0.5 atm xenon, (iv) OGD þ 0.5 atm argon.

Scale bars are 500 mm. (b) Quantification of injury at 24 h, in

sham (white bar), OGD þ 0.5 atm xenon (red bar), OGD þ 0.5 atm

argon (blue bar), OGD þ 0.5 atm neon (green bar), OGD þ 0.5 atm

krypton (purple bar), OGD control (brown bar). OGD control and

sham slices were exposed to 0.5 atm helium. All slices were also

exposed to 1.0 atm control gas (75% N2:20% O2:5% CO2) with total

partial pressure 1.5 atm. Pixel numbers have been normalised to

the median of the OGD þ 0.5 atm helium slices. Bars are median

values, error bars are the 95% confidence interval. n¼191, sham;

n¼95, OGD þ xenon; n¼52, OGD þ argon; n¼89, OGD þ neon;

n¼108, OGD þ krypton; n¼326, OGD control. ****P<0.0001
compared with OGD, KruskaleWallis test with Dunn’s correc-

tion for multiple comparisons. Ns, not significant; OGD, oxygen-

glucose deprivation.
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protective effect of xenon, with a 96% reduction in injury

without and a 0.4% reduction in injury with added glycine.

This is consistent with xenon neuroprotection being mediated

by the NMDA receptor glycine binding site. These findings

indicate that xenon and argon provide neuroprotection

against hypoxiceischaemic injury by different mechanisms.
Discussion

Oxygen-glucose deprivation model

Organotypic hippocampal slice cultures (OHSCs) were sub-

jected to OGD, with injury quantified by PI fluorescence. This

preparation retains a variety of cell types (e.g. different types

of neurones and glia) with cellular organisation and synaptic

connectivity similar to in vivo,34,35 and is widely used as an

intermediate between dissociated cell cultures and whole-

animal models.20,24,26,28,36e40 We chose 30 min as the dura-

tion of OGD because we previously showed that this produced

a reliable and robust injury.24 OGD results in a diffuse global

injury, and the injury produced by 30 min OGD was sub-

maximal. The OHSC model we used has advantages and lim-

itations. An in vitro model allows us to control the slice envi-

ronment. Organotypic brain slice cultures exposed to OGD are

a widely used model of cerebral hypoxiaeischaemia,41e43 and

in vitro OGD causes disruption of cellular function that is

similar to hypoxiaeischaemia in vivo.44e46 We measured cell
Fig 4. Neuroprotection by xenon but not argon is reversed by

elevated glycine. The addition of 100 mM glycine has no signifi-

cant effect on the control OGD injury, but reverses the protec-

tive effect of 0.5 atm xenon. Quantification of injury at 24 h in

sham (white bar), OGD þ 0.5 atm xenon (red bar), OGD þ 0.5 atm

xenon þ glycine (red hatched bar), OGD þ 0.5 atm argon (blue

bar), OGD þ 0.5 atm argon þ glycine (blue hatched bar), OGD

control (brown bar), OGD control þ glycine (brown hatched bar).

OGD control and sham slices were exposed to 0.5 atm helium.

All slices were also exposed to 1.0 atm control gas (75% N2:20%

O2:5% CO2) with total partial pressure 1.5 atm. Pixel numbers

have been normalised to the median of the OGD control slices.

Bars are median values, error bars are the 95% confidence in-

terval. n¼191, sham; n¼95, OGD þ xenon; n¼91, OGD þ xenon þ
glycine; n¼52, OGD þ argon; n¼48, OGD þ argon þ glycine;

n¼326, OGD control; n¼69, OGD control þ glycine. ****P<0.0001
compared with OGD, KruskaleWallis test with Dunn’s correc-

tion for multiple comparisons. Ns, not significant; OGD, oxygen-

glucose deprivation; gly, glycine.
death and neuroprotection in the hippocampal slice as a

whole in order to avoid subjectivity associated with precisely

defining the boundaries of CA1, CA3, and dentate gyrus. In

humans with ischaemic brain injury, hippocampal sub-

regions exhibit differential sensitivity, with CA1 being partic-

ularly vulnerable.47 In our study, we observed qualitatively

that the CA1 region appeared more sensitive to ischaemic

injury, in agreement with clinical data and previous in vitro

studies,24,48 and this likely reflects the density of NMDA re-

ceptors. Nevertheless, xenon and argon appeared to reduce

injury to a similar degree in different hippocampal areas as

observed for other neuroprotective drugs.24,26,42,43,49
Lack of effect of helium

There are few studies of helium as a neuroprotectant, and

these have produced contradictory results. Helium was found

to be neuroprotective in a rat model of ischaemic brain injury;

however, this was shown not to be a pharmacological effect

but because of hypothermia resulting from breathing helium

at room temperature (because of the high thermal conduc-

tivity of helium).5,21,50 In an in vitro OGD model in isolated cell

cultures, a detrimental effect of helium was reported.27 We

previously showed that mild hyperbaric helium (0.5 atm par-

tial pressure at 1.5 atm) had no effect on OGD injury in hip-

pocampal slices.24 In the current study, we investigated the

effects of 0.75 atm helium under normobaric conditions (1

atm) and found that normobaric helium had no effect on un-

injured sham slices or on OGD slices after 24 h of treatment.

Our treatment is given inside a temperature-controlled incu-

bator at 37�C; hence, we can exclude the effect of hypothermia

as found in the in vivo studies. In our OHSC model at 37�C,
helium is devoid of any observable effect against OGD.
Xenon and argon are equally effective as
neuroprotectants, whereas other noble gases are
without effect

In contrast to helium, both xenon and argon resulted in sig-

nificant neuroprotection. Both gases prevented injury devel-

opment; OGD slices treated with 0.5 atm xenon or 0.5 atm

argon were not significantly different to uninjured sham sli-

ces. Interestingly, we found that xenon and argon were

equally effective in the OGD model, in contrast to an in vitro

model of traumatic brain injury where argon was less effective

than xenon.26 The reasons why argon appears to be as effec-

tive as xenon in this ischaemic injury model are not clear, but

this suggests that different secondary injurymechanismsmay

be involved in ischaemic and traumatic brain injury. The

comparable efficacy of xenon and argon we observe in vitro

does not necessarily mean that similar long-term functional

improvements will be observed for these gases in vivo. The

relative efficacy of xenon and argon on clinically relevant long-

term functional outcomes after hypoxiaeischaemia in vivo

remains to be determined. Krypton and neon were without

any protective effect, consistent with findings on isolated cell

cultures subjected to OGD and OHSCs that had experienced a

traumatic insult.26,27
Neuroprotection by xenon, but not argon, involves
NMDA receptor inhibition at the glycine site

Xenon inhibits the NMDA receptor by competing for the

binding of the co-agonist glycine, and xenon inhibition can be
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prevented by elevating glycine concentrations.51,52 In the

current study we found that addition of glycine had no effect

on the control OGD injury. The simplest explanation for this

observation is that the concentration of endogenous glycine is

just below saturating on the concentrationeeffect curve.

However, the neuroprotective effect of xenon was completely

reversed by the addition of glycine, consistent with inhibition

of the NMDA receptor glycine site mediating xenon’s protec-

tive effect. In contrast, addition of glycine had no effect on

neuroprotection by argon, indicating that argon acts via a

different mechanism. The reversal of neuroprotection by

xenon but not argon with added glycine is consistent with

what we observed in an in vitro model of traumatic brain

injury.26 Xenon acts at other targets, such as the two pore-

domain potassium channel TREK-1 and the ATP-sensitive

potassium (K-ATP) channel, but has no effect on N-type cal-

cium channels53e55; however, our findings indicate that inhi-

bition of the NMDA receptor glycine site is likely to play a

major role in the neuroprotective effect of xenon.24,26,51,52,56,57

The targets mediating the neuroprotective effect of argon are

less clear; we have shown that argon does not inhibit NMDA

receptors or activate TREK-1 channels.26 Nevertheless, other

in vitro and in vivo studies with argon have identified activation

of signalling pathways involving MEK-ERK 1/2 and PI3K/AKT,

with up-regulation of heme-oxygenase-1.17,58,59 A recent study

has also identified Nrf2 and the mammalian target of rapa-

mycin (mTOR) signalling pathway as targets for argon.60

Although these studies clearly identify changes in these sig-

nalling pathways after argon treatment, it is not clear whether

argon is acting on the upstream targets of these pathways.
Clinical relevance of our findings

There is currently much interest in the clinical use of noble

gases as neuroprotectants in ischaemic brain injuries. Xenon

is licenced for use as a general anaesthetic and has already

undergone clinical trials in neonatal HIE, ischaemic brain

damage after cardiac arrest, coronary artery bypass graft

surgery, and orthopaedic surgery in the elderly.10,11,13,14,61e63

The most recent study in ischaemic brain injury in cardiac

arrest patients found reduced early white-matter damage in

the xenon-treated group,14 and a larger multi-centre study is

underway. Relative to the other inert gases, xenon is more

expensive and is used in closed or semi-closed circuits to

conserve gas. There has been interest in evaluating other less

expensive noble gases as neuroprotectants that could be given

in open circuits. Helium and oxygen mixtures have been used

medically for respiratory conditions such as asthma and

chronic obstructive pulmonary disease (COPD) in adults and

bronchiolitis and croup in children, but systematic reviews

conclude that the currently available evidence does not sup-

port its use in these conditions.64e67 Our finding that helium

has no effect on hypoxiceischaemic injury in vitro is consistent

with a lack of pharmacological effect of helium at normobaric

pressures. The finding that helium has neuroprotective prop-

erties in animal models of hypoxiaeischaemia via the physical

mechanism of inducing cooling5,21 is an interesting observa-

tion, but more straightforward and controllable techniques for

therapeutic cooling are available. Our finding that argon is

neuroprotective agrees with a large body of in vitro and in vivo

evidence.7,18,68 Interestingly, in this OGD model we found 0.5

atm argon to be as effective as 0.5 atm xenon, in contrast to our

earlier work with an in vitro model of traumatic brain injury

where argon was less effective than xenon. Argon has been
shown not to affect cerebral circulation in humans,69 and

there are proposals to evaluate argon as a neuroprotectant in

patients.6 One obstacle, perhaps, to its clinical use is an un-

ambiguous identification of its mode of action but, on the

other hand, it is the most abundant of the noble gases and the

cheapest to produce. On a positive note, the fact that argon

and xenon do not act by the same mechanism means that

combinations of these gases may have a synergistic effect, or

that argon and xenon are effective treatments for different

forms of ischaemic neurological injury. The observation that

in a mouse model of traumatic brain injury, xenon is able to

prevent development of very late-onset traumatic brain

injury-relatedmemory deficits with reduced white matter loss

in the corpus callosum is of great interest,9 but it remains to be

seen if this will translate into similar findings in humans.

In conclusion our findings that argon and xenon are equally

effective neuroprotective in hypoxiceischaemic injury but act

via different mechanisms will prompt further translational

studies to evaluate these two noble gases as neuroprotectants,

either singly or in combinations.
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