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The overwhelming role of ballistic photons in
ultrasonically guided light through tissue
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n a recent paper entitled “Ultrasonic sculpting of virtual

optical waveguides in tissue”, Chamanzar et al.! presented a

method to guide light through scattering media by modifying
the refractive index profile within tissue via ultrasound-generated
pressure gradients. The authors demonstrated the ability to focus
light through 8 mm of a diluted intralipid solution (0.2% intra-
lipid) as well as through 240 um of mouse cortex. The article
claims that while other optical techniques are limited to a depth
of hundreds of microns in tissue, their approach can extend
confined light delivery to depths of several millimeters. Here
we show that the guiding approach described by Chamanzar et al.
overwhelmingly affects ballistic photons, and not scattered
photons, thus the improvement compared to current optical
modalities is marginal at best.

As a striking demonstration of our claim, we show that in
similar conditions to Ref. !, one can obtain a confined light spot
similar to the one described in the paper by simply focusing
light with an external lens. We filled a 1-cm-thick cuvette with a
diluted solution of intralipid with a total dilution of 0.2%, i.e.,
same turbidity conditions described by Chamanzar et al., and
focused light (A = 532 nm) through the sample using an external
lens (f=150 mm). The results presented in Fig. la show a
tightly focal point with a contrast ratio of 5, comparable to that
obtained by Chamanzar et al. If external focusing leads to
similar light confinement as ultrasonic guiding, then the
observed phenomenon is overwhelmingly restricted to ballistic
photons, undisturbed by the turbidity of the medium.

The fundamental question that needs to be investigated is:
under what circumstances is a modification of refractive index
profile, by any means, effective to improve light penetration into
scattering tissue? To address this issue quantitatively, we per-
formed numerical simulations based on Monte-Carlo ray tracing
(TracePro). We numerically constructed a waveguide in which
the refractive index difference between the core and the cladding
is 0.002 similar to the value reported by Chamanzar et al. The
core scattering properties (i.e., the scattering coefficient y, and the
anisotropy parameter g) were varied to generate the different
scattering conditions. Using this simulation, we quantified the
total number of guided rays and identified ballistic vs scattered

rays. Note that a certain number of photons will arrive at the
output of the waveguide within the core region just by the so-
called shower-curtain effect?; these photons do not need cladding,
are not guided, and should be disregarded. To minimize this
effect in our simulation, we used a small radius to length ratio of
the waveguide (i.e., R=0.1 mm, L =10 mm), and we confirmed
numerically that all photons, either ballistic or scattered, are
guided.

The results for g=0.85 (a typical value for tissues such as the
mouse cortex>*) are shown in Fig. 1b. To quantify the depth
penetration advantage for a given amount of required photons,
if we assume that a threshold of 0.6% of the photons is needed to
excite a fluorescent label (black dashed line in the inset), guiding
only ballistic photons can already excite fluorescence at a depth
up to five scattering lengths (red curve); in this scenario, guiding
also scattered photons provides a 20% enhancement in depth
(blue curve). Our simulation was performed using a step-index
rather than the gradient index fiber profile used in Ref. I;
however, for a multimode scenario and a similar NA, the dif-
ference in index profile is not expected to affect scattering
properties but only dispersion®, which is immaterial to this
discussion, and ray-tracing focusing properties, which mostly
rely on ballistic photons.

We then investigated the effect of a larger refractive index
difference than the one reported by Chamanzar et al. In Fig. 1c
we show simulated results of the percentage of scattered photons
guided through five scattering lengths at increasing refractive
index differences. We estimate that by inducing a substantial
refractive index change (0.03, i.e,, more than ten-fold higher
than Ref. 1) the penetration depth can be increased by twofold.
Thus, even under such extreme conditions, the claim that
guiding can increase the penetration depth to several milli-
meters is not justified.

An important additional point: the effectiveness of the method
presented by Chamanzar et al. strongly depends on light being
scattered predominantly in the forward direction, i.e., high values
of g. In our simulation, we used the value of g= 0.85 that is close
to the one reported for the mouse cortex as cited by Chamanzar
et al. as well®>. The high value of g also needs to be taken into
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Fig. 1 Guided scattered and ballistic photons, experimental and simulated results. a A beam focused using an external lens through a 1-cm cuvette filled
with a diluted intralipid solution (0.2 %). A sharp focal point with a contrast ratio of 5 is obtained with merely ballistic photons (scale bar =25 um). b The
percentage of guided photons through a waveguide with dn = 0.002 and a scattering core of g = 0.85. The dashed line in the inset represents a threshold
of 0.6%. ¢ Percentage of guided scattered photons for increasing values of dn.

account when calculating scattering lengths: for instance, the g
value for the mouse cortex was measured to be 0.86% hence, the
number of scattering lengths within 240 um is 5 and not greater
than 7 as reported in Ref. 1. Considering the value of g and the
reduced number of scattering lengths, it is likely that the focal
point presented in Figure 7 of the manuscript could have been
obtained using external focusing. In various biological tissues, the
value of g spans a large range and depends on the applied
wavelength; in many cases, it averages around 0.9%, where the
simulated increase of depth penetration using the ultrasonic
waveguide is expected to be 30%.

In conclusion, light delivery into tissue is not dramatically
enhanced by ultrasonic guiding in practical scenarios. We esti-
mate that the guiding demonstrated by Chamanzar et al. provides
a marginal enhancement over conventional methods, equivalent
to changing the illumination wavelength by approximately
50 nm’. The benefit of the ultrasonic guiding, or any guiding
based on refractive index modifications within tissue, is limited to
samples that scatter light almost solely in the forward direction,
and also under these circumstances the addition of guided scat-
tered photons is expected to be minor in terms of total flux
arriving to the desired location.
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