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Previous studies have identified altered brain changes in chronic pain patients, however,

it remains unclear whether these changes are reversible. We summarized the neural

and molecular changes in patients with chronic pain and employed a meta-analysis

approach to quantify the changes. We included 75 studies and 11 of these 75 studies

were included in the activation likelihood estimation (ALE) analysis. In the 62 functional

magnetic resonance imaging (fMRI) studies, the primary somatosensory and motor

cortex (SI and MI), thalamus, insula, and anterior cingulate cortex (ACC) showed

significantly decreased activity after the treatments compared to baseline. In the 13

positron emission tomography (PET) studies, the SI, MI, thalamus, and insula showed

significantly increased glucose uptake, blood flow, and opioid-receptor binding potentials

after the treatments compared to baseline. A meta-analysis of fMRI studies in patients

with chronic pain, during pain-related tasks, showed a significant deactivation likelihood

cluster in the left medial posterior thalamus. Further studies are warranted to understand

brain reorganization in patients with chronic pain compared to the normal state, in terms

of its relationship with symptom reduction and baseline conditions.

Keywords: chronic pain, functional neuroimaging, activation likelihood estimation, meta-analysis, systematic

review

INTRODUCTION

Pain is a highly complex and individual experience (https://www.iasp-pain.org/), which elicits
behavioral, chemical, and neuronal responses throughout the body. Under normal conditions,
acute and unfamiliar pain captures our attention, and the peripheral, autonomic, and central
nervous system actively respond to painful stimuli and environments (Eccleston, 1994; Basbaum
et al., 2009). As the detection and modulation of pain is critical for survival, individuals have
developed a pain modulation system in the body by adjusting noxious input signals and cognitive
modulation of the subjective pain experience, the so-called descending pain modulatory system
(Tracey and Mantyh, 2007). Unfortunately, pain could last for significantly longer and become
chronic in some patients, even though the injury and painful stimulation might disappear as
patients receive conventional and effective treatments.
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In chronic pain conditions, defined as any pain persisting
or recurring for longer than 3 months or more (Treede et al.,
2015), abnormal structural, functional, and chemical changes
in the periphery (e.g., sensitized peripheral receptors and nerve
endings, elevated cytokine levels) (Fu et al., 2001; Wallace
et al., 2001; Haroutounian et al., 2014), spinal cord (Pockett,
1995; Thomas Cheng, 2010), and brain (Apkarian et al., 2005;
Smallwood et al., 2013) are related to our ability to cope with
pain. A reduced threshold and excessive responsiveness to pain
in the nociceptive pathway is known as central sensitization,
which is a type of brain reorganization caused by neural plasticity,
which leads to increased pain sensitivity (i.e., hyperalgesia) in
chronic pain patients (Latremoliere and Woolf, 2009; Woolf,
2011). A significant number of studies have identified brain
regions involved in the processing of acute and chronic pain,
using functional neuroimaging techniques. They found an
important role of the descending pain modulatory system,
emotional circuitry, and learning, as well as anatomical and
functional discrepancies in pain experience between healthy
individuals and patients with chronic pain (Apkarian et al., 2005;
Tracey and Mantyh, 2007; Henry et al., 2011; Bushnell et al.,
2013). To summarize the body of evidence on the functional
changes in patients with chronic pain, as compared to healthy
participants, previous studies performed a meta-analysis using
coordinate-based methods [e.g., activation likelihood estimation
(ALE)]. For instance, Friebel et al. found that experimental
painful stimulation administered to healthy participants evoked
a significantly greater activation in the anterior/posterior insula,
Rolandic operculum, supplementary motor area (SMA), and
mid-cingulate cortex (MCC), and lesser activation in the
caudal-anterior insula, anterior cingulate cortex (ACC), and
supramarginal gyrus than chronic neuropathic pain conditions
(Friebel et al., 2011). On the other hand, Lanz et al. found
significant activation in the primary somatosensory cortex
(SI), anterior/posterior insula, ACC, prefrontal cortex (PFC),
thalamus, and cerebellum in healthy participants, compared to
patients with neuropathic pain, and significant activation in the
secondary somatosensory cortex (SII), SMA, and cerebellum
in patients with neuropathic pain compared with healthy
participants (Lanz et al., 2011). A more recent meta-analysis
included 3,815 coordinates from functional magnetic resonance
imaging (fMRI) studies applying painful cutaneous stimulation
in healthy and chronic pain patients, revealing similar activation
likelihood maps for healthy participants and patients with
chronic pain, such as the SI, SII, thalamus, insula, cingulate
cortex, PFC, basal ganglia, cerebellum, and brainstem (Tanasescu
et al., 2016). The discrepant results of previous meta-analysis
studies can be explained as a consequence of the heterogeneous
samples and methodologies adopted across studies. Previous
findings suggest that chronic pain affects the brain activity or
patterns of activity in pain processing regions [which were
originally referred to as the pain matrix (Talbot et al., 1991;
Melzack, 2001; Duerden and Albanese, 2013)]. As chronic pain
is not simply a feeling of pain for longer duration, its impact
on the brain is not limited to the pain network. Instead, chronic
pain is rather a complex experience which can alter many other
functional networks such as corticolimbic (Baliki et al., 2012;

Mansour et al., 2013), salience (Qiu et al., 2015), somatosensory-
motor, and default mode networks (Baliki et al., 2008a, 2014;
Becerra et al., 2014), as well as cross-network connectivity
between the networks (Hemington et al., 2016; Cottam et al.,
2018).

Baliki and Apkarian suggested four distinct phases of
development of chronic pain: pre-injury, injury, transition, and
maintenance phase, arguing that chronic pain is a neurological
disease (Baliki and Apkarian, 2015). They also proposed that
someone who has a cortical risk factor (e.g., lowered threshold for
conscious experience of pain in response to nociceptive inputs,
anatomical properties of the corticolimbic circuitry) might have
a greater propensity to developing chronic pain from acute pain
(Baliki et al., 2012; Mansour et al., 2013; Baliki and Apkarian,
2015; Vachon-Presseau et al., 2016b). From this point of view,
we can assume that untreated changes in the brain may result in
a persistent pain cycle, and that the modulation of structural and
functional changes in the brainmay be a key to successful chronic
pain management. Growing evidence points toward the clinical
effectiveness of interventions targeting brain activity in patients,
such as brain stimulation, hypnosis, and meditation (Jensen M.
P. et al., 2014).

A few studies have shown that the effective treatment of
chronic pain reverses functional and structural brain changes in
patients with chronic pain. Gwilym et al. found that decreased
gray matter volume in the thalamus returned to a level similar
to that in healthy volunteers after hip surgery in patients with
hip osteoarthritis (OA) (Gwilym et al., 2010). Ceko et al. found
that functional connectivity and white matter in the insula were
normalized after treatment (spine surgery or zygapophysial joint
block), and that the degree of altered functional connectivity in
the insula and dorsolateral PFC was significantly correlated with
pain reduction in patients with chronic low back pain (Ceko et al.,
2015). In addition to the functional and anatomical changes,
the effects of pain treatment on the metabolic processes in
chronic pain populations have been demonstrated using Positron
Emission Tomography (PET). For example, PET studies have
demonstrated the effects and mechanisms of neurostimulation
techniques in neuropathic pain patients. Yoon et al. found that
transcranial direct current stimulation (tDCS) on the primary
motor cortex (MI) in neuropathic pain patients significantly
reduced subjective pain scores. They showed that glucose
metabolism was significantly decreased in the dorsolateral PFC,
orbitofrontal cortex (OFC), and posterior cingulate cortex
(PCC), and increased in the SI, insula, and ACC in the tDCS
group than in the sham stimulation group (Yoon et al., 2014).
Kishima et al. also found that spinal cord stimulation significantly
reduced subjective pain ratings and increased cerebral blood
flow in the thalamus, MI, ACC, and dorsolateral PFC after the
treatment compared to baseline (Kishima et al., 2010). These
findings provide evidence for clinical use of neurostimulation
treatments in chronic pain patients and insights about their
actions in the brain.

It has been discussed that substantial functional, structural,
and molecular changes in the brain regions and networks are
associated withmany chronic pain conditions, and our brainmay
reorganize itself after treatment, as it did when it experienced
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chronic pain. However, it is still unclear which regions are
adaptable and which are not, or which regions are showing
consistent changes across various chronic pain conditions while
other regions show heterogeneous changes which cannot be
detectable by meta-analytic approach. To answer this question,
we reviewed previous functional neuroimaging studies that
examined functional and molecular activities altered by pain
relief interventions, as a whole-brain meta-analysis was carried
out on a subset of the included fMRI studies that studied pain-
related tasks in patient populations with chronic pain. As we
assumed that imaging conditions (resting-state fMRI, task-based
fMRI, PET) and tasks (pain-related, motor, cognitive, etc.) were
highly heterogeneous, we limited the meta-analysis to fMRI
results measured during painful tasks (painful stimulation task or
pain-related motor task) with whole-brain coordinate-level data
(peak x, y, z coordinates, and anatomical template).

Our research question according to the Population,
Intervention, Comparator and Outcome (PICO) protocol
(Higgins et al., 2019) then is: in which brain regions functional
and molecular brain activities in chronic pain patients, measured
by functional neuroimaging techniques such as fMRI and PET,
would show consistent and significant change, either increased
or decreased by treatment of chronic pain. We assumed that
changes of affected functional and metabolic activities are driven
by reduced pain intensity and unpleasantness in chronic pain
patients, since most functional neuroimaging studies have
reported significant improvements in pain and successful pain
relief should be warranted for further investigation of the neural
mechanisms of interventions for chronic pain. On the other
hand, improvements of reward systems and cognitive networks
might vary across different types of diseases and interventions
as higher cognitive functions are unlikely to be changed
by pain relief. Based on the assumption, we hypothesized
that the treatment of chronic pain can alter functional and
metabolic activities in the brain regions, especially the hub of
the pain-related networks, and such changes are more consistent
within the regions associated with the affective and sensory-
discriminative components of pain (SI, MI, thalamus, ACC, and
insula) than other regions involved in cognitive control and
reward processing (limbic and frontal cortices).

MATERIALS AND METHODS

Literature Search and Article Selection
A systematic review was conducted, following the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) guidelines (Moher et al., 2009). Both fMRI and
PET studies in chronic pain patients were searched in the
PubMed and fMRI data repository NeuroSynth (neurosynth.org)
on 2nd February 2020. We searched PubMed using chronic
pain-related keywords [chronic pain, neuropathic, chronic back
pain, fibromyalgia (FM), migraine, irritable bowel syndrome
(IBS), and inflammatory bowel disease], neuroimaging-related
keywords (fMRI, PET, and brain activation), and treatment-
related keywords (treatment, intervention, medication, drug,
acupuncture, etc.). Keywords for the NeuroSynth repository
search included chronic pain diseases and their relevant terms

such as chronic pain, neuropathic pain, chronic back pain,
chronic low back pain, FM, migraine, IBS, inflammatory bowel
disease, etc., and we did not restrict the search to certain diseases.
References of the searched articles were reviewed manually.

Abstracts were reviewed by two reviewers (I. S. L and
D. W. K) for inclusion. We predefined eligibility criteria
following the PICO protocol (Higgins et al., 2019). Articles
were considered eligible if they 1) included chronic pain
patients (clearly describing that patients are suffering from
‘chronic pain’ or suffering from pain disease for more than
3 months), 2) administered any type of interventions (e.g.,
pharmacological drug, cognitive therapy, neural stimulation), 3)
included functional neuroimaging measurements (e.g., resting-
state or task-related fMRI, PET), and 4) investigated patients’
brain activity at least twice, before and after the treatment
(henceforth referred to as PRE and POST, respectively). As we
were interested in the effects of pain treatments on functional
and metabolic brain activities, we excluded studies that 1) did
not precisely describe the duration of pain or diagnosis criteria,
2) included chronic pain patients during a period of remission,
3) combined neuroimaging results of patients with chronic pain
and other diseases, and 4) administered a treatment once inside
the scanner to observe the neural responses to the treatment. We
restricted our search to publications in English.

Data Extraction
For the systematic review, we extracted the authors’ name,
year of publication, patient’s information (disease, symptom
duration, number, and age of patients), treatment, imaging
condition (stimulus modality and task), and analysis method
[whole-brain voxel-wise analysis, region of interest (ROI)
analysis, multiple comparison correction methods, etc.]. Since
the aim of this systematic review was to summarize functional
changes in brain activities caused by effective treatment, we
summarized treatment-induced significant changes in patients’
brain functional activities and clinical outcomes, as well as
reports of adverse events.

For themeta-analysis, we extracted the number of participants
whose neuroimaging data were analyzed, activation (increased
after the treatments in patients with chronic pain; POST >

PRE) and deactivation (decreased after the treatments in patients
with chronic pain; PRE > POST) coordinates, along with their
associated standard anatomical template.

Activation Likelihood Estimation Analysis
Whole-Brain Activation Likelihood Estimation

(Pain-Related Tasks Only)
A subset of fMRI studies for the systematic review was also
included in the meta-analysis using ALE analysis. In addition
to the preceding inclusion criteria for the systematic review,
we included all fMRI studies if peak coordinates (x, y, and z)
from whole-brain volume analyses and anatomical templates
for both the PRE and POST contrasts were given. Due to
the high heterogeneity of tasks in task-based fMRI studies,
and methodological limitations of resting-state fMRI studies,
only those fMRI studies that adopted pain-related tasks were
considered for the meta-analysis. Pain-related tasks were defined
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as any stimulations or tasks related to painful somatic sensation
in patients; for example, even tactile stimuli could be included
if allodynia was induced in chronic pain patients. Resting-state
fMRI studies and task fMRI studies that applied pain-related
emotional tasks (e.g., fear) or non-pain-related tasks (e.g., not
painful tactile stimulation) were excluded from the ALE meta-
analysis. The given coordinates from the included fMRI studies
were used to calculate statistical maps estimating the likelihood
of activation for each voxel above chance levels.

We used GingerALE (Version 3.0.2, http://brainmap.org)
and performed an ALE analysis on coordinates in Montreal
Neurological Institute (MNI) space (Eickhoff et al., 2012).
An ALE analysis is a widely used methodology for the
coordinate-based meta-analysis of neuroimaging data, in which
the probability that a voxel contains at least one activation focus
is calculated for each voxel by pooling the coordinates of foci
reported in a series of neuroimaging studies, and convoluting a
3D Gaussian kernel by sample size to all reported foci.

All coordinates were transformed into the MNI space using
the conversion tool (Talairach to MNI) implemented in the
GingerALE software. Next, the included coordinates were sorted
according to whether they showed either increased or decreased
activation. We conducted two meta-analyses for the increased
and decreased activation foci post-treatment, as compared to the
pre-treatment, separately. Statistical ALEmaps were corrected by
cluster-based thresholding for a Family-wise error (FWE) rate
corrected P < 0.05 at the cluster level using uncorrected P <

0.001 at the voxel-level as a cluster-forming threshold. To set the
null distribution, 1,000 permutation tests were performed. Due to
the small number of included studies, foci, and patients, we did
not perform sub-group analyses.

Sensitivity Analysis
We performed multiple sensitivity analyses to assess the
generality of the ALE analysis results. First, we repeated the ALE
analysis following the removal of studies with sample size <10
to address the bias introduced by small-study effects. Additional
sensitivity analyses were conducted using the leave-one-out
method as multiple ALE analyses were repeatedly performed by
excluding a different study each time.

RESULTS

Systematic Review
Figure 1 represents the PRISMA flow diagram of the article
search (Figure 1). A total of 1,606 publications were identified
through PubMed and Neurosynth, and an additional six
publications were identified by manual screening. After 34
duplicates were removed, 1,497 articles were excluded. We
included 75 studies in the qualitative review, and 11 of these
were included in the quantitative meta-analysis. Among the 75
included studies, 13 were PET studies, 37 were task-based fMRI
studies, 21 were resting-state fMRI studies, and four studies
reported both resting-state activities and task-related activities.
The studies were divided according to the imaging conditions,
and their details are summarized in Supplementary Tables 1–4.

Clinical Outcomes and Adverse Events
We summarized only the statistically significant clinical
improvements in Supplementary Tables 1–4. Most of the
studies reported significant improvements in pain response
(spontaneous clinical pain, pain ratings to experimental painful
stimulation, pain threshold/tolerance, pain attack time/day,
tender point count, etc.) or pain-related emotional states
(unpleasantness, fear, interference, etc.). In addition, symptoms
unrelated to pain (e.g., defecation frequency and wrist function),
depression, anxiety, quality of life, sleep quality, and medication
use were evaluated using questionnaires and diaries. One study
did not report any clinical outcome (Smallwood et al., 2016),
and there were no significant differences in clinical outcomes
between the PRE and POST visits in two studies (Petzke et al.,
2013; Micalos et al., 2014). We also summarized whether they
monitored and reported adverse events caused by the treatments
for chronic pain. Among 75 studies, we found that 12 studies
monitored and reported treatment-related adverse events (Walitt
et al., 2007; Gustin et al., 2010; Tillisch et al., 2012; Petzke et al.,
2013; Boyer et al., 2014; Li et al., 2015; Zhao et al., 2015, 2018;
Zhang et al., 2016; Pinto-Sanchez et al., 2017; Privitera et al.,
2017; Tetreault et al., 2018), and 7 studies monitored but did not
report adverse events in the articles (Harris et al., 2013; Taylor
et al., 2013; Jensen K. B. et al., 2014; Flodin et al., 2015; Sanders
et al., 2015; Geha et al., 2016; Rogachov et al., 2019).

Brain Changes by Treatment of Chronic
Pain (fMRI Studies)
The fMRI studies included in the present systematic review have
been summarized in Supplementary Tables 1–3. Chronic pain
conditions included FM (n = 15), neuropathic pain (post-stroke
central pain, post-herpetic neuralgia, CRPS, cervical spondylosis
neck pain, carpal tunnel syndrome, and amputation/phantom
limb pain; n = 10), chronic low back pain (n = 9),
headache/migraine (n = 8), chronic OA (knee or hand), IBS (n
= 7), chronic musculoskeletal pain, somatoform pain disorder,
Crohn’s disease, inflammatory bowel disease, erythromelalgia,
and failed back surgery syndrome (n= 1).

The interventions employed in the studies included
pharmacological treatments (sphenopalatine ganglion
blockade, pregabalin, duloxetine, ketamine, lidocaine patch,
etc.; n = 23), acupuncture or electro-acupuncture (n = 18),
behavioral/cognitive/education/exercise therapy (n = 12),
neurostimulation [tDCS, transcranial magnetic stimulation
(TMS), and spinal cord stimulation; n = 5], surgery or invasive
intervention (n= 3), drug withdrawal, and moxibustion (n= 2).

For the task-based fMRI studies, 27 studies employed pain-
related tasks such as spontaneous pain rating, receiving painful
stimulation, and hand squeezing, while another 10 studies used
non-pain-related tasks such as visual tasks and non-painful tactile
stimulation during fMRI scanning. The most common analysis
methods were ROI-based analyses (n = 20) and correlation
analyses (mostly ROI-based correlation analysis between brain
activity and clinical outcomes; n = 22). Only a few studies
applied a functional connectivity analysis (Napadow et al., 2007;
Hashmi et al., 2012), principal component analysis, spectral
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FIGURE 1 | Flow diagram of literature search.

power analysis (Hashmi et al., 2012), and covariate analysis (Geha
et al., 2007; Baliki et al., 2008b; Parks et al., 2011). For the analysis
of resting-state fMRI, a functional connectivity analysis (n =

16) and independent component analysis (ICA; n = 14) were
the most popular approaches, and amplitude of low frequency
fluctuations (ALFF) or fractional ALFF (Shpaner et al., 2014; Li
et al., 2017), multi-voxel pattern analysis/machine learning (Chen
et al., 2018; Rogachov et al., 2019) (n= 2), graph (Tetreault et al.,
2018), and regional homogeneity analysis (Chen et al., 2018) (n
= 1) were also used. For the ICA, the default mode network was
the most frequently targeted functional network (Napadow et al.,
2012; Li et al., 2014; Shpaner et al., 2014; Yoshino et al., 2018;
Rogachov et al., 2019; Zou et al., 2019) (n = 5); the salience,
basal ganglia, fronto-parietal, sensorimotor, central-executive,
and dorsal attention networks were also targeted.

The summarized results of the PRE vs. POST contrasts of
fMRI studies in the pain processing regions are shown in Table 1.
The SI (7 of 9 studies), MI (4 of 5 studies), and thalamus (5 of
6 studies) showed significantly decreased activity after treatment
compared to the pre-treatment baseline. The ACC (increased n
= 3, decreased n = 6) and insula (increased n = 5, decreased n
= 8) showed a trend of decrease. On the other hand, the trend
of increase or decrease was not clear for the SII (increased n= 2,
decreased n = 2), PCC (increased n = 3, decreased n = 3), PFC

(increased n = 3, decreased n = 5), and OFC (increased n = 2,
decreased n= 1).

Brain Changes by Treatment of Chronic
Pain (PET Studies)
A summary of the PET studies used in the present systematic
review is presented in Supplementary Table 4. Patients with
FM (Walitt et al., 2007; Harris et al., 2009; Boyer et al., 2014;
Sawaddiruk et al., 2019), IBS (Berman et al., 2002; Mayer et al.,
2002; Lieberman et al., 2004; Lackner et al., 2006) (n = 4),
neuropathic pain (Maarrawi et al., 2007; Kishima et al., 2010;
Yoon et al., 2014) (n = 3), headache (Magis et al., 2011),
and chronic tennis elbow (Linnman et al., 2016) (n = 1)
were included in the PET imaging studies. To treat chronic
pain patients, neurostimulation (occipital nerve, spinal cord,
tDCS/TMS, etc.; n = 5), pharmacological treatment (alosetron,
pregabalin, Coenzyme Q10; n = 3), cognitive/exercise therapy
(n = 2), acupuncture, individualized combination therapy, and
placebo regimen (n = 1) were administered to patients with
chronic pain. Using PET imaging technology, patients’ glucose
uptake, blood flow (n = 5), and opioid (n = 2) and neurokinin 1
receptor binding (n= 1) in the brain tissue were measured before
and after the treatments. Positron emission tomography imaging
scans were conducted during the rest (n = 8), visceral distention
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TABLE 1 | Summary of changes in functional activities (pre-treatment vs. post-treatment) in the fMRI studies.

References (task) Chronic pain Treatment (duration) SI THAL MI INS ACC PCC PFC OFC SII/

OPER

Jensen et al. (2012)

(pain)

FM CBT (12w) ↑ ↑ ↑

Kim et al. (2013) (pain) FM Pregabaline ↓ ↓ ↓

Koeppe et al. (2004)

(pain)

FM Tropisetron/prilocaine ↓ ↓ ↓

Petzke et al. (2013)

(pain)

FM Milnacipran ↑ ↑ ↑ ↑ ↑

Taylor et al. (2013) (pain) FM Cranial electrical stimulation

(8w)

↓ ↑ ↓ ↓ ↑

Harte et al. (2016)

(visual)

FM Pregabalin

(17 days)

↓

Harris et al. (2013) (pain) FM Pregabalin (2w)

Baliki et al. (2008b)

(pain)

LBP lidocaine patch

(2w)

↓ ↓ ↓ ↓

Smallwood et al. (2016)

(pain)

LBP Acceptance-commitment

therapy/health education program

(4w)

↓ ↓ ↓

Seminowicz et al. (2011)

(MSIT)

LBP Spine surgery or zygapophysial

joint injections

↓

Timmers et al. (2019)

(visual)

LBP Exposure therapy ↓ ↓ ↓

Sanders et al. (2015)

(pain)

Hand OA Naproxen

(1w)

↓ ↓ ↓ ↓ ↓

Shpaner et al. (2014)

(REST)

Musculoskeletal

pain

CBT

(11w)

↑

Chen et al. (2015) (ACU) Knee OA ACU (4w) ↑

Gustin et al. (2010) (pain) Neuropathic

pain (CRPS)

NMDA-REC antagonist, morphine

(7–8w)

↓ ↓

Geha et al. (2007) (pain) Neuropathic pain

(post-herpetic

neuralgia)

Lidocaine

(2w)

↓ ↓ ↓ ↑ ↓ ↓

Napadow et al. (2007)

(ACU)

Neuropathic pain

(CTS)

ACU

(5w)

↑ ↑ ↑ ↑

Grazzi et al. (2010) (pain) Migraine with

medication

overuse

Drug withdrawal

(6m)

↓ ↓ ↓

Li et al. (2017) (REST) Migraine without

aura

ACU

(4w)

↑
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(n= 4), and treatment interventions (occipital neurostimulation
and acupuncture; n= 1, respectively). Whole-brain analysis (n=
12), ROI-based analysis (n = 8), and correlation analysis (n = 4)
were the most popular analysis methods for PET imaging studies.

A summary of PRE vs. POST results of PET studies, in which
either the whole-brain or regions (volumes) of interest analysis
was used, in the pain processing regions is presented in Table 2.
The SI, MI, thalamus, and insula showed significantly increased
tissue glucose uptake, blood flow, and µ-opioid receptor binding
potentials after the treatments, compared to the pre-treatment
baseline, while PCC showed significantly decreased glucose
uptake and blood flow. Two PET studies showed that the blood
flow was increased in the insula, and decreased in the ACC, in
response to painful stimulation after the treatment compared to
the baseline (Berman et al., 2002; Mayer et al., 2002). The SII
did not show significant changes between the PRE and POST
conditions in PET imaging studies.

Whole-Brain ALE Meta-Analysis of
Pain-Related Task fMRI Studies
Significant Clusters for After Treatment vs. Baseline

Contrast During Pain Tasks
For the coordinate based meta-analysis of whole-brain fMRI
studies, 118 activation and deactivation foci were extracted
from 11 pain-related fMRI studies in 256 chronic pain patients
(222 female). Chronic pain conditions included FM (n = 4),
neuropathic pain (post-herpetic neuralgia, CRPS; n= 2), chronic
OA (knee or hand; n = 2), chronic low back pain, irritable
bowel disease, and erythromelalgia (n = 1). Since the aim of the
coordinate-based ALE analysis was to identify brain regions that
are significantly modulated by pain treatments, we included the
significantly activated or deactivated foci separately during the
pain tasks extracted from the PRE vs. POST contrasts. The pain-
related tasks in fMRI studies included in the meta-analysis were
spontaneous pain rating, movement of the paining body parts
(e.g., hand squeezing), and receiving painful stimulation tasks
(painful thermal, cold, and mechanical stimulation including
rectal distention).

There were no significantly activated foci that survived a
multiple comparison correction (PRE < POST during pain
tasks). The likelihood of deactivation was significant after a
multiple comparison correction in the left medial posterior
thalamus (x=−6, y= 24, z = 0; p < 0.001, Figure 2B), pointing
thereby to a significant probability of deactivation in the medial
posterior thalamus in response to pain-related tasks after the
treatment compared to the pre-treatment states (POST < PRE
during pain tasks). The left thalamus, caudate, globus pallidus,
BA 18 (lingual gyrus), and right BA 30 (parahippocampal gyrus),
putamen, and BA 31 (cingulate gyrus) were also deactivated at
uncorrected p < 0.001 and extent threshold k > 30 (Figure 2A).

Sensitivity Analysis
Four studies had small sample sizes (n < 10) (Koeppe et al.,
2004; Baliki et al., 2008b; Kim et al., 2013; Geha et al., 2016),
and the results of the ALE analysis after removal of these studies
did not survive FWE correction (P < 0.05 at cluster-level and
uncorrected P < 0.001 at voxel-level, k > 30). According to the

Frontiers in Neuroscience | www.frontiersin.org 7 July 2021 | Volume 15 | Article 684926

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


K
im

e
t
a
l.

P
a
in

Tre
a
tm

e
n
t
C
h
a
n
g
e
s
th
e
B
ra
in

TABLE 2 | Summary of metabolic changes (pre-treatment vs. post-treatment) in the PET studies.

References (task,

analysis)

Chronic pain Treatment (duration) SI THAL MI INS ACC PCC PFC OFC SII/

OPER

Walitt et al. (2007)

(REST, VOIs)

FM Individualized,

comprehensive (8w)

Glu ↑ Glu ↑ Glu ↑

Magis et al. (2011)

(occipital nerve

stimulation, ROIs)

Drug-resistant

chronic cluster

headache

Occipital nerve

stimulation (various)

Glu ↑ Glu ↑ Glu ↓

Yoon et al. (2014)

(REST, whole-brain)

Neuropathic pain tDCS on the MI (10

days)

Glu ↑ Glu ↓ Glu ↑ Glu ↑ Glu ↓ Glu ↓ Glu ↓

Berman et al. (2002)

(pain, whole-brain,

ROIs)

IBS Alosteron (3w) Blood flow ↑ Blood flow ↓

Mayer et al. (2002)

(pain, ROIs)

IBS Alosteron (3w) Blood flow ↑ Blood flow ↓ Blood flow ↑ Blood flow ↓

Lackner et al. (2006)

(REST, whole-brain)

IBS Cognitive therapy

(10w)

Blood flow ↓ Blood flow ↓

Kishima et al. (2010)

(REST, whole-brain)

Neuropathic pain Spinal cord stimulation

(>6m)

Blood flow ↑ Blood flow ↑ Blood flow ↑ Blood flow ↑ Blood flow ↑

Maarrawi et al. (2007)

(REST, VOIs)

Neuropathic pain Motor cortex

stimulation

(7m)

Opioid REC ↓

Harris et al. (2009)

(ACU, ROIs)

FM ACU (4w) µ-opioid REC

↑

µ-opioid REC

↑

µ-opioid REC

↑

Red cells with up-arrow indicate increased measures of PET scans (e.g., glucose uptake, receptor bindings, etc.) after the treatments compared to those before the treatments of chronic pain (POST > PRE). Blue cells with down-arrow

indicate decreased measured PET scans after the treatments compared to those before the treatments of chronic pain (PRE> POST). ACU, acupuncture; ACC, anterior cingulate cortex; FM, fibromyalgia; Glu, glucose; IBS, irritable bowel

syndrome; INS, insula; LBP, low back pain; m, months; the MI, primary motor cortex; OFC, orbitofrontal cortex; OPER, Rolandic operculum; PCC, posterior cingulate cortex; PFC, prefrontal cortex; REC, receptor; REST, resting-state;

ROIs, regions of interest; SI, primary somatosensory cortex; SII, secondary somatosensory cortex; tDCS, transcranial direct current stimulation; THAL, thalamus; VOIs, volumes of interest; w, week(s).
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FIGURE 2 | ALE meta-analyses of fMRI studies in chronic pain patients during

pain-related tasks. (A) Activation likelihood map showing seven deactivation

clusters at uncorrected p < 0.001 and extent threshold k > 30. Deactivation

clusters include the left thalamus (−6, 24, 0; 99 voxels), caudate (−14, −14, 8;

55 voxels), globus pallidus (−20, 6, −12; 51 voxels), lingual gyrus (−20, 76, 2;

31 voxels), and right parahippocampal gyrus (22, 38, −4; 30 voxels), putamen

(30, 22, 2; 36 voxels), and posterior cingulate gyrus (6, 58, 32; 52 voxels) after

the chronic pain treatments compared to baseline (before the treatments) while

patients with chronic pain were performing pain-related tasks (e.g., hand

squeezing) or receiving painful stimulation. All clusters of activation (increased

activation likelihood scores after pain treatments than before the treatments) at

the uncorrected threshold were smaller than the minimum cluster size (k > 30).

(B) FWE rate corrected activation likelihood map showing the significant

deactivation cluster in the left medial posterior thalamus (−6, 24, 0; 99 voxels)

after the chronic pain treatments compared to the baseline (before the

treatments) while chronic pain patients were performing pain-related tasks

(e.g., hand squeezing) or receiving painful stimulation (P < 0.05 at cluster-level

and uncorrected P < 0.001 at voxel-level, k > 30). Seven out of ten

leave-one-out sensitivity analyses also showed a significantly decreased

likelihood of activation in the left thalamus (FWE corrected as above, cluster

sizes range 99–100). No clusters of activation passed the multiple comparison

correction threshold. ALE, activation likelihood estimation; FWE, Family-wise

error; PCC, posterior cingulate cortex; THAL, thalamus.

leave-one-out sensitivity analysis, 7 out of 10 ALE analyses on
coordinates of deactivation foci showed a significantly decreased
likelihood of activation in the left thalamus (FWE corrected as
above, cluster sizes range 99–100). No activation foci survived
a multiple comparison correction in any of the leave-one-out
sensitivity analyses.

DISCUSSION

Becerra et al. defined the effect of treatment by comparing brain
activities in patients with severe pain before treatment with
those experiencing less pain after treatment. They also depicted
the residual effect after treatment, which means the remaining
differences in neural properties between patients with chronic
pain and healthy controls (Becerra et al., 2014). To the best
of our knowledge, this is the first systematic review and meta-
analysis study to determine which brain regions show changes in
their functions and metabolic states (the treatment effect), and
which regions show remaining alterations (the residual effect)
after chronic pain treatment.

In the neuroimaging studies comparing pre- and post-
treatment conditions, task-based fMRI is the most frequently

applied imaging technique, followed by resting-state fMRI
scanning and PET imaging. In addition to the significant
improvements in pain intensity or pain-related emotional states,
psychological states (depression, anxiety), quality of life, and
medication use were also evaluated. Among 75 studies, only
12 studies monitored and reported treatment-related adverse
events. A meta-analysis of clinical outcomes was not performed
since there were only few randomized controlled trials, and the
data necessary to determine the effect size was not reported
in most of the studies. Although clinical neuroimaging studies
have been focusing on the changes of brain activities, however,
we argue that we should improve the quality of reporting
of clinical and behavioral data including adverse events. For
example, there are discrepancies between samples from whom
neuroimaging and clinical data were collected. Clinical outcomes
were often measured using different types of questionnaires
or scales, although heterogeneity of the included studies also
contributed to the heterogeneous clinical measurements, and
it makes us impossible to quantitatively summarize the results
across the studies. Although only a few studies provided relevant
data, we assessed the publication bias and heterogeneity using
available data from 11 studies and found that there’s a significant
positive publication bias (Egger’s regression t = 11.08, p < 0.001)
and moderate heterogeneity (I2 = 58.73%). They suggest that
the intervention effects were overestimated or there might be
a positive reporting bias, and caution is needed in interpreting
clinical results of the neuroimaging studies due to an insufficient
number of treatment sessions and lack of an appropriate control
group or intervention.

We found a tendency of decreased functional activities (in
the SI, MI, thalamus, insula, and ACC) and increased molecular
activities in the sensory-discriminative and affective regions
(glucose consumption in the SI, glucose consumption and blood
flow in the MI, glucose consumption, blood flow, and µ-opioid
receptor binding potential in the thalamus and insula) after
the treatments than before the treatments of chronic pain,
while other regions involved in reward and cognitive processes
(amygdala, PFC, OFC, etc.) yielded inconsistent results across
the studies. If we assume that these changes are associated
with pain relief, decreased functional activities might indicate
recovery from the sensitized response to pain-related tasks by
the treatments. On the other hand, molecular activities in the
SI, MI, thalamus, and insula might be elevated during the
resting and pain conditions. The results suggest that successful
pain treatments reduced processing of pain-related information
and boosted the metabolic functions of the brain, so that the
altered functional activities could be reversed while processing
sensory-discriminative and affective components of pain. On
the other hand, the regions involved in cognitive execution and
reward processing functions might be less adjustable in response
to pain treatments, as the complicated and higher cognitive
functions might be treated neither consistently nor completely
in the included studies. Further studies would be required to
substantiate this inference.

The multiple-comparison-corrected ALE analysis showed a
significantly decreased likelihood of activation in the left medial
posterior thalamus during pain-related tasks in chronic pain
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patients after treatment than before treatment (the treatment
effect), which suggests that the thalamus, especially the medial
posterior part, is the most consistent region affected by pain
treatments in patients with chronic pain. The thalamus is the
transmission center of acute noxious signals from peripheral
receptors to the cortex (e.g., SI and insula) through spinothalamic
track, and also plays an important role in pain modulation and
chronification. Pain modulatory effects of thalamus stimulation
have been tested since the 1970s (Hosobuchi et al., 1973; Mayer
and Liebeskind, 1974; Mazars, 1975; Rhodes and Liebeskind,
1978; Kupers et al., 2000), and thalamic stimulation influences
the cerebral blood flow in the insula (Duncan et al., 1998),
PAG, PFC (Kupers et al., 2000), and ACC (Davis et al., 2000).
According to previous meta-analyses, the evidence of functional
activities in the thalamus in patients with chronic pain compared
to healthy controls is conflicting. Lanz et al. (2011) and Jensen
et al. (2016) found that the thalamus was activated by pain tasks
in both healthy and affected patients, and the healthy controls
showed significantly stronger activity in the thalamus compared
to the patients during pain experience. They considered, as such,
that decreased activation likelihood in the thalamus may support
decreased sensory processing in patients with chronic pain due
to the continuous noxious input to the brain, and thalamic
disturbances may lead to chronic pain symptoms. Since not all
fMRI studies that reported PRE vs. POST contrasts reported them
separately for patients and control groups, we could not conclude
whether the decreased activation likelihood in the thalamus after
the treatments is due to the increased activity in the thalamus
during pain processing before the treatments (as we discussed
above) or not. We also cannot neglect the fact that functional
activities were actually decreased in the thalamus during pain
processing in patients with chronic pain than in healthy controls,
as shown in a previous meta-analysis, and that these activities
might be decreased further after treatment, as our study showed.
If so, it suggests that the functional activities in the thalamus may
not return to a normal state andmay only change upon treatment
to a new state.

The thalamus, ACC, and insula constitute the salience and
central autonomic network as well as the pain network (Lee
et al., 2020), and they are also commonly activated during
tasks related to non-painful stimulation, emotion, memory, and
interoception (Cauda et al., 2012). Thus, decreased likelihood of
activation in the thalamus and a tendency of decreased functional
activities in the insula and ACC might be not solely related to
the reduced pain sensations, but they might be also associated
with the reduced salience processing. As there is an active debate
about the pain specificity in the brain, please see Legrain et al.
(2011), Mouraux and Iannetti (2018), and Lee et al. (2020) for
more discussion.

Growing evidence demonstrates that chronic pain is not
a longer-lasting form of acute pain. Rather, chronic pain
has distinct mechanisms and mediators than acute pain in
healthy population, albeit with some overlap, and various factors
contribute to chronic pain such as psychological (Vachon-
Presseau et al., 2016a; Hruschak and Cochran, 2018), molecular,
structural, and functional neural mechanisms (Davis and
Moayedi, 2013; Bliss et al., 2016; Taylor et al., 2016; Groh et al.,

2018; Adebiyi et al., 2019). It has been argued that chronic
pain is a disease, in particular, a brain disease (Tracey and
Bushnell, 2009; Davis and Moayedi, 2013), and not just a pain
symptom left untreated or under-treated (Raffaeli and Arnaudo,
2017) [see Cohen et al. (2013) and Sullivan et al. (2013) for
the opposite opinions, and it is noteworthy that we should also
consider various chronic pain subgroups when dealing with
this issue (Treede et al., 2019)]. If untreated changes in the
brain result in a persistent pain cycle, the reversal of altered
brain structural and functional changes toward a normal state
may contribute to the relief of chronic pain. It is also plausible
that chronic pain relief can normalize structural, functional,
and metabolic abnormalities in the brain. Although we cannot
assess the direction of effects between “normalized brain” and
“reduced pain” in this study, this will be an interesting topic
for further research to estimate the influence of pain reduction
over brain changes, and the influence of the brain alterations on
symptom improvement.

A survey of patients with chronic pain in Europe showed
that one-third of the patients were currently not being treated;
only 2% of them were currently treated by a pain specialist,
and 40% were receiving inadequate pain management (Breivik
et al., 2006). Moreover, oral analgesics, one of the fastest and
cheapest medications for pain treatment, are not suitable for
long-term pain relief due to side effects, and patients’ tolerance
to opioids is increasing, which means that the dose needs to be
increased over time to achieve a certain amount of pain relief
(Hylands-White et al., 2017). Recently, chronic pain treatment,
which targets neural abnormalities in patients, has been receiving
more attention (Borsook et al., 2007; Bentley et al., 2016) along
with the advancement of pharmacological fMRI (investigating
the effects of pharmacological interventions on functional brain
changes) (Duff et al., 2015; Bauch et al., 2017) and increasing
efforts to search for brain markers for pain in the brain (Wager
et al., 2013; Duff et al., 2015; Lopez-Sola et al., 2017). Although
this study only covers central functional and metabolic changes
in chronic patients, our approach is important for identifying
neural targets for chronic pain treatment. Identifying brain
regions responding to the treatment offers valuable insight for
the development of neural markers of diseases (e.g., markers
for disease and symptom severity) and treatment effects (e.g.,
markers for symptom improvement of a certain treatment). For
example, µ-opioid receptor binding potentials were significantly
increased in the dorsolateral PFC, ACC, thalamus, amygdala,
putamen, and nucleus accumbens after treatment than before
treatment, and binding potentials were significantly correlated
with clinical pain ratings (Harris et al., 2009), which implies that
the µ-opioid receptor binding potentials are a strong candidate
for chronic pain markers. In addition, intervention-related and
disease-related functional and metabolic changes induced by
intervention in a single subject will contribute to personalized
pain management, as pain is an individual experience originating
from the neuropathological state of the brain. We can estimate
the effect of chronic pain in the brain, and also estimate and re-
evaluate the treatment effects focusing on neural changes using
neuroimaging techniques. If we combine multiple neuroimaging
techniques and measure various changes in the brain, such as
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structural, functional, and metabolic changes, we could develop
a marker for chronic pain as well as a marker for the treatment
effect, in the future. Questions related to future painmanagement
will include “which treatment is more effective in alleviating
hyper-sensitized thalamic response to painful stimulation?,”
“where should we target in the brain to reduce spontaneous
pain?,” and “which chronic pain disease is more likely to be
treated by central manipulation (e.g., TMS) on the motor
cortex?”; our approach may provide preliminary answers to
the questions.

This study has a number of limitations. As we strictly
restricted our analysis to the effects of chronic pain interventions,
and did not include functional neuroimaging studies that did
not involve chronic pain treatment, only a small number of
studies were included in our ALE meta-analysis. A cautious
interpretation of the results of the present study is necessary
as underpowered studies have increased risk of false positives
(Button et al., 2013). Previous meta-analysis studies may be
referred to with regard to brain activation during painful
stimulation in patients with chronic pain, irrelevant to the effect
of treatment, corresponding (but not equivalent) to the PRE
contrast in this study (Friebel et al., 2011; Lanz et al., 2011;
Tanasescu et al., 2016). As participants of included studies had
different diseases with different pathophysiology, our results
need further validation. Moreover, they were treated by various
interventions and few studies had small sample sizes, and most
of the included studies were carried out only in adult populations
(over 20 years old). All of these restrict generalizability of the
results. Thus, we are not arguing that all chronic pain diseases
have a single common mechanism, or that we could generalize
the results to a larger population or apply them to a specific
disease and intervention. Instead, our finding suggests that there
might be a hub region in the brain which remains malleable in
response to pain treatment, so that it can adapt itself to changes
in the pain state. We need further investigation to clarify whether
these changes are causally induced by pain relief or not, and
whether the changes we found are similar or different across
pain conditions. Moreover, due to methodological constraints,
we were not able to measure the relationship between the degree
of the treatment effect (the amount of pain reduction) and the
degree of functional and metabolic changes in the brain. A meta-
analysis of resting-state fMRI studies was technically available
(Zang et al., 2015); however, we did not conduct the meta-
analysis by combining heterogeneous statistical outcomes (ALFF,
regional homogeneity, functional connectivity, etc.) as it might
provide false information.

Based on the limitations of our study, we make following
suggestions which can benefit future research. We suggest
that clinical changes and adverse events should be monitored
and reported in detail in future studies, as treatments should
be effective and safe, and functional neuroimaging studies
are no exception to this point. To analyze the relationship

between the treatments and outcomes (e.g., pain intensity, pain
interference, psychological state, quality of life, etc.) accurately,
we need a standard guideline for reporting clinical outcomes
in neuroimaging studies. Lastly, future study should further
investigate “how” and “which factors” facilitate the changes
of functional and molecular neural activities in chronic pain
patients after treatment.

CONCLUSION

A systematic review of 62 fMRI and 13 PET studies showed
the functional (decreased functional activities) and metabolic
changes (increased glucose uptake, blood flow,µ-opioid receptor
binding potentials) in the somatosensory-discriminative regions
(SI and thalamus) and the MI after the treatment of chronic
pain compared to the pre-treatment baseline. Meta-analysis of
11 pain-related task fMRI studies showed that the activation
likelihood in the thalamus was significantly decreased after
the treatment compared to before the treatment. Our findings
might help us develop a new treatment for chronic pain
management that focuses on neural reorganization and allow for
personalized treatment of chronic pain by considering disease-
specific, intervention-specific, and individual-specific responses
in patients with chronic pain in the future.
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