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ABSTRACT Sika deer are an economically valuable species owing to their use in traditional Chinese =~ KEYWORDS
medicine, particularly their velvet antlers. Sika deer in northeast China are mostly farmed in enclosure.  sika deer
Therefore, genetic management of farmed sika deer would benefit from detailed knowledge of their =~ ddRAD-seq

genetic diversity. In this study, we generated over 1.45 billion high-quality paired-end reads (288 Gbp)  SNP discovery

across 42 unrelated individuals using double-digest restriction site-associated DNA sequencing (ddRAD-  genetic diversity

seq). A total of 96,188 (29.63%) putative biallelic SNP loci were identified with an average sequencing ~ STACKS
depth of 23x. Based on the analysis, we found that the majority of the loci had a deficit of heterozygotes ~ GenPred
(Fis >0) and low values of Hgps, which could be due to inbreeding and Wahlund effects. We also de-  Shared Data
veloped a collection of high-quality SNP probes that will likely be useful in a variety of applications in Resources
genotyping for cervid species in the future. Genomic
Selection

Sika deer are an economically valuable species, with some body parts,
such as antler, blood, penis, and placenta, used in traditional Chinese
medicine. In order to continue the tradition, people have captured sika
deer from the wild on a large scale in Jilin province in the northeastern
part of China since the Qing dynasty (c. 1733) (Sheng and Ohtaishi
1993). These animals were gradually introduced into many other re-
gions of China. The original captive population in northeast China is
generally considered to be the source of the entire sika deer population
on farms throughout China (Sheng and Ohtaishi 1993).
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Almost all sika deer raised on farms in northeast China are used for
antler (velvet antler) production (Sheng and Ohtaishi 1993; Wu et al.
2004). China is currently one of the largest producers of velvet antler in
the world and sika deer farming in China is still thriving. Nonetheless,
there is still concern about the deterioration of farm-bred sika deer (Wu
and Zhang 2001). In recent decades, people have been trying to im-
prove velvet antler yield through long-term improved management on
farms (McCullough et al. 2009). Whether a healthy genetic diversity
can be maintained is an open question. Therefore, any genetic man-
agement requires detailed knowledge of the genetic diversity.

The genetic diversity of the sika deer wild population has been
investigated using two major sources of genomic variation. Mitochon-
drial genes, such as cytochrome b and the control region, have proven
highly informative for investigations into the classification and phylog-
eny of sika deer with maternal haplogroups (Wu et al. 2004, 2005; Lu
et al. 2006; Takiguchi et al. 2012; Krojerova-Prokesova et al. 2013; Ba
et al. 2015, 2016). Autosomal microsatellites have been used extensively
to estimate levels of genetic diversity (Tamate et al. 2000; Thevenon et al.
2004; Krojerova-Prokesova et al. 2013; He et al. 2014). Although highly
polymorphic markers can be very informative, in particular when
assessing recent demographic bottlenecks (endangered and captive-bred
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species), the previous data are not sufficient to provide a good under-
standing of the level of genetic diversity in the farmed population in
China. This is the first study to report levels of genetic diversity within
sika deer using single nucleotide polymorphism (SNP) markers on a
global scale.

Their genomic abundance and amenability to cost-effective, high-
throughput genotyping, has meant that SNPs are now the most
widely used class of genetic markers. Use of genome-wide SNPs
constitutes an important genetic tool for investigating genetic di-
versity in livestock animals (Groeneveld et al. 2010). Although
genome-wide SNP discovery in white-tailed deer (Seabury et al
2011) and hog deer (Wang et al. 2017) has been reported, develop-
ment of this tool in deer has been hampered in part by the sub-
stantial duplicate regions in large parts of the deer genome, and by
the lack of a reference genome sequence. Fortunately, double-digest
restriction site-associated DNA sequencing (ddRAD-seq) technology
(Peterson et al. 2012) can provide a flexible and inexpensive platform
for the simultaneous discovery of tens of thousands of SNP markers in
model and nonmodel organisms. While several SNP genotyping tools
have been developed for SNP discovery, including GATK (DePristo et al.
2011), STACKS (Catchen et al. 2011, 2013), SAMtools (Li 2011) and
RADtools (Baxter et al. 2011), STACKS is recommended for ddRAD-seq
projects, as it uses a multinomial-based likelihood model to call SNPs,
which incorporates a bounded SNP model.

In this study, we employed the ddRAD-seq technology to achieve the
first genome-wide SNP discovery for farmed sika deer that are widely
distributed in northeast China. The STACKS pipeline was applied for
SNP calling. Using newly developed markers, we investigated the genetic
diversity of farmed populations. We also developed a collection of SNP
probes for genotyping in the future.

MATERIALS AND METHODS

Sample collection

A total of 42 unrelated animals were selected from eight farms (farm
codes: AD, CB, DF, NM, SP, SY, XF, and XK) in northeast China, with
six from NM and XK farms and five from the other six farms. Whole-
blood samples were extracted from the jugular vein using EDTA
vacuum tubes and were stored at —20 °C until DNA extraction.
The genomic DNA extractions from whole blood were performed
using a blood DNA kit (Qiagen) according to the manufacturer’s
instructions. Each DNA sample was evaluated by gel electrophoresis
for the presence of high-molecular-weight DNA and then stored
at —80°C until ddRAD-seq library construction.

ddRAD-seq library preparation and sequencing

The procedure was performed as described in previous studies (DaCosta
and Sorenson 2014) with some modifications. First, the double-digest
reactions were carried out in a volume of 25 pl containing ~0.8 g of
genomic DNA, 5U of Pstl and Msel, and 1x buffer 3.1 (NEB). The
reaction mixture was incubated at 37 °C for 2 hr and 65 °C for 30 min
Amplification and sequencing adapters with a unique barcode (5 or 6 bp)
were ligated on to the digested DNA. Each sample was then amplified via
PCRin a 50 .l reaction volume, containing 70-100 ng of adaptor-ligated
DNA fragments, and amplified with 22 cycles following the manufac-
turer’s protocol. Samples were run on a 2% agarose gel, and DNA in the
300-450 bp size range (with indices and adaptors) was excised using a gel
extraction kit (Qiagen). Each sample library was pooled in equal amounts
and quantified using Agilent 2100 (Agilent Technologies) and real-time
quantitative PCR, and then paired-end 101 bp sequencing was performed
using the Ilumina HiSeq4000 platform (BGI, Shenzhen, China).
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Available sika deer genome reference

The available sika deer genome reference (SK-REF) included 387,939
contigs, comprising a total of 2.73 Gbp. All sequences were longer than
500 bp, with aN50 length of 38.4 kbp. The percentage of repeat sequences
detected by Repeatmasker-4.0.6 (http://www.repeatmasker.org) was
44.14% and the GC level was 42.11% (H. Ba, unpublished data).

RAD-seq data analysis and SNP identification

Given the main quality score parameters (-c -q -r) of the process_radtags
program in STACKS v.1.41 (Catchen et al. 2011, 2013), raw reads were
filtered and separated by barcode. The filtered paired-end reads were
uniquely mapped to SK-REF using BOWTIE v2.0 (Langmead and
Salzberg 2012) (disallowing gaps and suppressing unpaired and discor-
dant alignments), followed by SAMtools v1.2 (Li 2011) to convert to a
BAM file. Putative orthologous loci were assembled for each animal
using the BAM file as the input of the pstacks function with the min-
imum depth of coverage above 5. Two mismatches were allowed be-
tween animals when assembling the catalog of ddRAD loci using the
cstacks program. Matches of individual ddRAD loci to the catalog were
searched using the sstacks program. Loci that have low depth of cov-
erage or high sequencing error will exhibit poor log likelihood scores
that are highly negative. The rxstacks program (-conf_filter -conf lim
0.75 -prune_haplo -Inl_lim -8.0) was used to make corrections to ge-
notype calls in individuals based on data from a population-wide ex-
amination. Subsequently, the cstacks and sstacks programs were again
run to rebuild and match to the catalog. The populations program was
used to filter the dataset to contain SNPs found in at least 75% of
individuals and with a minor allele frequency =0.05.

Estimates of genetic diversity within population

Observed heterozygosity (Hops), expected heterozygosity (Hex,) and
inbreeding coefficient of an individual relative to the subpopulation
(Fis) were calculated using the populations program in STACKS
v.1.41. Deviation from the Hardy-Weinberg equilibrium (HWE) was
assessed by performing a Fisher’s exact test with the HardyWeinberg R
package (Graffelman and Camarena 2008) for each SNP marker. The
False discovery rate correction (Benjamini-Hochberg) was performed
using the p.adjust program in the R package.

Population structure analysis

Bayesian clustering analysis implemented in STRUCTURE 2.3.4
(Pritchard et al. 2000) was used for estimating the number of popula-
tions/groups (k) represented by the dataset. Three iterations were run
per K (number of populations) for K = 2 or K = 3 using an admixture
model. Each run consisted of a burn-in of 100,000 MCMC steps, fol-
lowed by 500,000 replications. Population structure was also examined
by carrying out principal component analysis using SMARTPCA
within EIGENSOFT (Patterson et al. 2006).

Development of SNP probes for genotyping assay

A custom script was run to develop high-quality SNP probes. In
summary, sufficient 50 bp flanking sequences on either side of the SNPs
were derived from the SK-REF genome and then were filtered according
to four filtration criteria: (a) no repetitive sequences; (b) SNP-free within
flanking sequence; (c) one of two alleles in accordance with the base in
the reference; (d) flanking sequence on the SK-REF =50bp.

Data availability

Raw (adapter trimmed) Illumina ddRAD-seq sequences: NCBI Short
Read Archive (project accession: SRP105008). Statistics describing
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B Table 1 Filtering results for STACKS pipeline

Populating observed ddRAD loci for 42 animals
Removing ddRAD loci below the minimum depth of 5x
Removing ddRAD loci below the log likelihood threshold of —8

Removing ddRAD loci below the minimum constraint of 32 (75%) individuals

Putative biallelic SNP (MAF =0.05)

7,576,300 100.0
7,456,091 98.4
1,989,000 26.3
324,564 43
98,166 1.3

different properties of each sequenced individual and all high-quality
SNP probes are available in the Supplemental Material, Table S1 and
Table S2.

RESULTS

ddRAD sequencing

After trimming the barcodes and filtering low-quality bases, ddRAD
sequencing generated a total of over 1.45 billion high-quality paired-end
reads (288 Gbp) across the 42 animals. Of these clean reads, >0.93
billion (65.63%) were aligned uniquely to the SK-REF genome. As
variation among animals is often observed in a pooled ddRAD se-
quencing library, the number of aligned reads per individual ranged
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from 0.55 to 5.3 million (1.01-9.78 Gbp, with an average of 4.1 Gbp)
(Table S1).

SNP discovery

Using the Stacks pipeline, we initially obtained 7,576,300 candidates of
the ddRAD loci from all individuals. Quality filtering (see Methods)
reduced this to a total of 324,564 (4.28%), which were shared by >75% of
the individuals, corresponding to genomic size of 0.032 Gbp (~1.1% of
the genome) (Table 1). Within these 324,564 ddRAD loci of ~100 bp,
we detected 96,188 (29.63%) putative biallelic SNPs with an average
sequencing depth of 23x. For each individual, the number of SNPs
varied from 56,388 (58.6%) to 89,845 (93.4%), and the sequencing
depth ranged from 9x to 50X. The number of identified heterozygous
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Figure 1 Evaluation of putative SNP quality. (A) Distribution of SNP frequency on ddRAD tag positions. Distribution of the identified Ts/Tv is also
illustrated. (B) Distribution of six types of substitutions. (C) Distribution of SNP frequency in major allele, minor allele, and ddRAD loci against their
sequencing depth. (D) Distribution of SNP frequency of the number of SNPs in ddRAD loci tags.
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Figure 2 Population genetic parameters for putative SNP loci. (A) Frequency of SNPs across the MAF bins. The line depicts the cumulative
density function across the MAF bins. (B) Frequency of SNPs across the heterozygosity bins. (C) Frequency of SNPs across the Fis bins.

SNPs varied from 11,780 to 22,641 with an average of 19,078, corre-
sponding to 0.38-0.71 heterozygous SNPs per kilobase pair with an
average of 0.61 detected per individual animal (Table S1). With a read
rate within individuals averaging 83%, this suggests that the rate could
be ~0.74 per kbp.

Through evaluation of SNP frequency, substitution types and se-
quencing depth, the results showed that: (a) SNP frequency decreased
from 5’ to 3’ end in all loci excluding both ends; however, transition/
transversion (Ts/Tv) ratios were very stably distributed over the loci
except for the last five positions at the 3’ end (Figure 1A); (b) frequency
of A/T substitution is relatively less than other types of substitutions
(Figure 1B), which could be attributed to lower coverage in AT-rich
region; (c) minor alleles had relatively lower sequencing depth, but the
difference between the depths of the minor and major alleles was not
statistically significant (Wilcox paired test P value = 0.056) (Figure 1C);
(d) a majority of loci contained one SNP and only 1733 (2.14%) were
identified with >2 SNPs (Figure 1D).

Genetic diversity
Genetic parameters evaluated using putative SNPs included MAF, H,,,
Hexps Frs, and deviation from HWE for the studied population. The
distribution of MAF showed that the SNPs with MAF <0.15 were
overrepresented at nearly half of the SNPs (49.0%), and SNPs were
evenly distributed in high-MAF bins ranging from 0.25 to 0.5 (29%)
(Figure 2A). The average MAF of all SNP loci was 0.20.

Of 96,188 SNPs, 11,876 (12.35%, at P =0.05) were shown to de-
viate from HWE. Following application of the Benjamini-Hochberg
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correction, 8205 (5.53%) SNPs remained significant (P =<0.05). The
excess of Hop values was observed in the frequency distribution
from 0 to 0.15, and the deficit was from 0.4 to 0.5 (Figure 2B).
The deficit of heterozygotes (Fis >0) is shown in Figure 2C, indi-
cating a high level of inbreeding. The average Hops, Hexp, and Fig
calculated across all 96,188 SNPs were 0.24, 0.28, and 0.16,
respectively.

Genetic structure: In order to assess whether there is a stratification
within the farmed sika deer population, population structure was
estimated using all SNPs (96,188) across >32 animals (=75%). Since
the STRUCTURE model assumes that the loci are independent and at
HWE, we also performed STRUCTURE analysis on a filtered SNP
dataset (13,739) at HWE (P =0.05) with one SNP on each ddRAD loci
across >38 animals (=90%). Graphic displays of the consistent results
from two SNP datasets provided a meaningful explanation of the ge-
netic structure and levels of admixture for the farmed populations
(Figure 3, A and C). At K = 2, the two clusters were distinct; four
animals (SP1, SP3, SP4, and SP5) were clearly distinguished and, of
these, SP3 and SP4 represented an admixture pattern (two clusters
of genetic background). At K = 3, another cluster of two animals
(AD5 and DF4) was evident. Similar results were also observed
using the PCA approach based on these two SNP datasets. Although
PC1 and PC2 accounted for only 2.4% and 1.9% of total variation,
respectively, four animals (SP1, SP3, SP4, and SP5) were clearly
distinguishable based on PCI, and two animals (AD5 and DF4)
based on PC2 (Figure 3, B and D).
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SNP probes at the very ends of the reads, and was not affected by the relatively

We selected 27,009 high-quality SNPs probes according to four filtration
criteria. The Ts/Tv ratio was 3.72. The MAF frequency distribution was
accordant between the 96,188 and 27,009 SNP datasets (Figure 4),
suggesting that the repetitive sequences have no effect on the change
of MAF frequency distribution for the discovered SNPs. These SNP
probes (101 bp) were matched with the bovine genome assembly
(UMD3.1) via BLASTN, and their alignment resulted in 58.42%
(15,778/27,009) probes producing 50,447 E-value informative hits (E
value 1le=29). As expected, 96.24% (15,185/15,778) of these matched
SNP probes produced one unique alignment to a bovine genome, with
an average identity of 94.39%. Only 3.76% (593/15,778) probes hit
multiple cattle genome positions (35,262).

DISCUSSION

The ddRAD-seq technique is an efficient and cost-effective means of
SNP discovery, providing thousands of high-quality SNPs, even in the
absence of an available genome sequence (Peterson et al. 2012). Using
the ddRAD-seq technique, we reported here the first genome-wide set
of 96,188 novel SNPs in sika deer from 42 unrelated animals selected
from eight farms.

In order to evaluate the application of SNPs reported in our study, the
SNP quality was screened based on the data characteristics of next-
generation sequencing technology. Sequencing errors are often found at
the 3" end of the sequence reads (Dohm et al. 2008). If a substantial
proportion of the SNPs in the dataset were the result of sequencing
errors, the number of SNPs toward the end of the reads should increase.
However, our results showed that the number of SNPs identified actu-
ally decreased from the 5 to the 3’ end (Figure 1A), indicating that base
errors at the 3’ end were not identified as SNPs. An underrepresenta-
tion at both ends of the reads (positions 1-3 and 95-100) was attributed
to the Msel and PstI restriction sites and the effect of barcode trimming.
However, the Ts/Tv ratio is very stably distributed over the loci except
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higher base error rate at the ends of the reads.

The expected Ts/Tv ratio can vary with the targeted region (i.e.,
whole genome, exon, specific genes) and can also vary greatly in the
CpG islands and GC content of the region (Dohm et al. 2008). For
example, the Ts/Tv ratio of 3.5 is typical of coding regions in human
genomes (Le and Durbin 2011). Higher Ts/Tv ratios are also observed
in other reduced representation libraries for SNP discovery (Kraus et al.
2011; Le and Durbin 2011). Therefore, it is not unexpected that the
observed Ts/Tv ratio is relatively higher in the SNP dataset. The num-
ber of A/T substitutions is relatively lower than other types of substi-
tutions (Figure 1B). This could be attributed to the fact that higher
coverage needs to be attained to discover real SNPs in AT-rich regions
(Dohm et al. 2008). Matching the base content of a restriction site to a
reference genome can also influence substitution types (Davey et al.
2011).

To date, the SK-REF database comprises ~90% of the sika deer
genome, and is incomplete. The unique alignment of ddRAD reads
does not guarantee that there is no other similar sequence in the
remainder of the genome. This type of genome mapping could result
in abnormally high coverage in the paralogous or duplicated se-
quence, which will likely generate a large number of false-positive
SNPs with excessive heterozygotes (Malhis and Jones 2010). Our
results show that the depths of almost all alleles fall into a reasonable
range (less than threefold average depth, 42X for minor alleles and
60x for major alleles) (Figure 1C). This is an acceptable depth range
for SNP discovery that had been identified in other reduced repre-
sentation libraries of sequencing projects, including cattle (Eck et al.
2009), porcine (Amaral et al. 2009) and turkey (Kerstens et al.
2009). We did not observe excess heterozygotes, in which the num-
ber of SNPs with Hps >0.5 is relatively lower in the SNP dataset
(Figure 2B). In addition, only 1733 (2.14%) ddRAD loci were iden-
tified with >2 SNPs, which was also a good indicator of correct
homologous loci matching (Figure 1D).
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The average frequency of heterozygous SNPs per kilobase pair is 0.74
in the genome of sika deer individuals. As a comparison, this value is
slightly higher than that of milu (a highly endangered species that is
susceptible to genetic drift and inbreeding because of small population
size), but almost <2 times those of cow and panda (Table 2). The
relatively low level of genetic variability in the farmed population could
be due to ongoing inbreeding within a narrow gene pool and genetic
drift. Additionally, the 42 individuals sequenced were from eight
farmed populations that may be small and divergent in allele frequen-
cies. For instance, almost 5.53% (8205) of SNPs (Benjamini-Hochberg
correction P =0.05) deviate from HWE, which may be caused by the
different subpopulations sampled. The higher values of Fis and the
lower-than-expected values of Hy,s could be also explained by subpop-
ulation structure (Wahlund effect). The STUCTURE and PCA results
further provide evidence of subpopulation structure in farmed sika
deer, despite the lack of overall variation and the fact that the PCl
and PC2 accounted for such a small proportion (2.4% and 1.9%, re-
spectively) of the total variation. The small-scale farming population
and the application of the technique of artificial insemination over a
long period have encouraged inbreeding and genetic drift for velvet
antler production. Such population events also compromise the genetic
structure of the original population. Hence, our results could help in
investigating the structure of farmed populations so such disadvantages
can be better managed.

SNP markers are not only readily applied to population genetic
analyses, but also suitable for parentage testing and assessment of

B Table 2 Information of SNP frequency among four species

m All putative SNPs (98,166)
= High-quality SNPs (27,009)

Figure 4 Comparison of SNP frequency distribu-
tion between all putative SNPs and high-quality
SNPs.

breed composition. Genome-wide association analysis may offer the
opportunity to identify the genomic regions and mutations that
underpin production traits such as velvet antler weight. One attrac-
tive feature of association studies is that pedigrees are not necessary,
so potentially a larger number of the farmed animals may be
amenable to this type of analysis (Seabury et al. 2011). However,
high-quality phenotypes are critical, and this will require major
investment.

There may be potential to apply genomic selection for the genetic
improvement of farmed sika deer. The small effective population size
may make this an attractive proposition. The option of introducing a
different subpopulation would also enable the exploitation of heterosis
(hybrid vigor).

Overall, we have discovered ~27,009 high-quality SNPs in 1% of
the sika genome using ddRAD-seq technology. A total of 58%
(15,778/27,009) probes were uniquely matched on to the bovine
genome (BLASTN E value 1e~2%), which could be an indication of
the sharing of SNP genotypes between the genomes. Only 593 SNP
probes of sika deer could be aligned multiple times to the bovine
genome, which may represent a duplicated and/or expanded region
on the cattle genome. In comparison, Haynes and Latch (2012)
successfully genotyped a lower proportion of loci (39%) in mule
deer using BovineSNP50 BeadChip, and Powell et al. (2016) directly
captured 60% exon data from bovine genome on mule deer genome,
matching rates almost concordant with our data. As deer and cattle
diverged 27-32 MYA (Hassanin and Douzery 2003; Guha et al.

Sika Deer Deer from eight farms 42
Milu (Pere David's Deer) Captive population 5
Panda Wild population 34
Holstein-Friesian Cows Breeding population 32

0.74 23x This study

0.51 NA?2 Zhu et al. (2016)
1.32 4.7% Zhu et al. (2016)
1.35 14.3x Szyda et al. (2015)

aNA, not applicable.
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2007), the matching of sika deer SNPs discovered in the bovine
genome would likely be useful to study genomic evolution and
phylogenetic analysis across species within Cervidae, given the high
cross-species matching success rate. Although, to date, there is no
valuable reference genome within the Cervidae family and map
positions are unknown, SNP assays derived from nonrepetitive loci
(contigs) could be designed for high-density genotyping across cer-
vid species, providing a reasonable genome analysis tool for future
research.
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