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Abstract

Characterization of Human Endogenous Retrovirus (HERV) expression within the transcrip-

tomic landscape using RNA-seq is complicated by uncertainty in fragment assignment

because of sequence similarity. We present Telescope, a computational software tool that

provides accurate estimation of transposable element expression (retrotranscriptome)

resolved to specific genomic locations. Telescope directly addresses uncertainty in frag-

ment assignment by reassigning ambiguously mapped fragments to the most probable

source transcript as determined within a Bayesian statistical model. We demonstrate the

utility of our approach through single locus analysis of HERV expression in 13 ENCODE cell

types. When examined at this resolution, we find that the magnitude and breadth of the ret-

rotranscriptome can be vastly different among cell types. Furthermore, our approach is

robust to differences in sequencing technology and demonstrates that the retrotranscrip-

tome has potential to be used for cell type identification. We compared our tool with other

approaches for quantifying transposable element (TE) expression, and found that Tele-

scope has the greatest resolution, as it estimates expression at specific TE insertions rather

than at the TE subfamily level. Telescope performs highly accurate quantification of the ret-

rotranscriptomic landscape in RNA-seq experiments, revealing a differential complexity in

the transposable element biology of complex systems not previously observed. Telescope

is available at https://github.com/mlbendall/telescope.
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Author summary

Almost half of the human genome is composed of transposable elements (TEs), but their

contribution to the transcriptome, their cell-type specific expression patterns, and their

role in disease remains poorly understood. Recent studies have found many elements to

be actively expressed and involved in key cellular processes. For example, human endoge-

nous retroviruses (HERVs) are reported to be involved in human embryonic stem cell dif-

ferentiation. Discovering which exact HERVs are differentially expressed in RNA-seq data

would be a major advance in understanding such processes. However, because HERVs

have a high level of sequence similarity it is hard to identify which exact HERV is differen-

tially expressed. To solve this problem, we developed a computer program which

addressed uncertainty in fragment assignment by reassigning ambiguously mapped frag-

ments to the most probable source transcript as determined within a Bayesian statistical

model. We call this program, “Telescope”. We then used Telescope to identify HERV

expression in 13 well-studied cell types from the ENCODE consortium and found that

different cell types could be characterized by enrichment for different HERV families, and

for locus specific expression. We also showed that Telescope performed better than other

methods currently used to determine TE expression. The use of this computational tool to

examine new and existing RNA-seq data sets may lead to new understanding of the roles

of TEs in health and disease.

This is a PLOS Computational Biology Methods paper.

Introduction

Transposable elements (TEs) represent the largest class of biochemically functional DNA ele-

ments in mammalian genomes[1,2] comprising nearly 50% of the human genome. As many of

these transcriptionally active elements originated as retroelements, we refer to the set of RNA

molecules transcribed from these elements in a population of cells as the retrotranscriptome.

The contribution of the retrotranscriptome to the total transcriptome, cell-type specific expres-

sion patterns, and the role of retroelement transcripts in disease remain poorly understood[3].

Although most TEs are hypothesized to be transcriptionally silent (due to accumulated muta-

tions), recent studies have found many elements to be actively expressed and involved in key

cellular processes. For example, aberrant expression of LINE-1 (L1) elements, the most expan-

sive group of TEs, has been implicated in the pathogenesis of cancer[4–7], while human endog-

enous retroviruses (HERVs) are reported to be involved in human embryonic stem cell

differentiation[8,9] and in the pathogenesis of amyotrophic lateral sclerosis[10]. We, and others,

have shown that HIV-1 infection increases HERV transcription[11–15]. These lines of evidence

therefore indicate that TEs have important roles in the regulation of human health and disease.

The ability to observe and quantify TE expression, especially the specific genomic locations

of active elements, is crucial for understanding the molecular basis underlying a wide range of

conditions and diseases[16]. Traditional techniques for interrogating the TE transcriptome

include quantitative PCR[17,18] and RNA expression microarrays[19–23]. However, these

techniques are unable to discover elements not specifically targeted by the assay, and may fail

to detect rare, previously unknown, or weakly expressed transcripts. High-throughput RNA

sequencing (RNA-seq) promises to overcome many of these shortcomings, enabling highly
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sensitive detection of transcripts across a wide dynamic range. Mathematical and computational

approaches for transcriptome quantification using RNA-seq are well established[24,25] (reviewed

by Garber et al.[26]) and provide researchers with reproducible analytical pipelines[27,28]. Such

approaches are highly effective at quantifying transcripts when sequenced fragments can be

uniquely aligned to the reference genome, since the original genomic template for each transcript

can be unambiguously identified[29,30]. In contrast, sequencing fragments that originate from

repetitive sequences often have high scoring alignments to many genomic locations, leading to

uncertainty in fragment mapping and the derived transcript counts. Issues arising from these “mul-

timapping” or “ambiguous” fragments are well known and are often addressed by masking repeti-

tive sequences or otherwise discarding ambiguous fragments[31–33]. The disadvantage of ignoring

repeats is that interesting biological phenomena, including those involving TEs, are missed[31].

Several approaches have been proposed that account for read mapping uncertainty using statistical

models. The most common approach, described by Li et al.[34,35], involves modeling read assign-

ments using a mixture model, with expression levels as mixture weights and fragment assignments

as latent variables; model parameters are then estimated using an expectation-maximization algo-

rithm. Several variations on this model have been proposed, such as modeling read counts instead

of individual reads (MMSEQ[36]) or using Markov chain Monte Carlo (MCMC) to sample model

parameters (BitSeq[37]). A few approaches deviate from the mixture model approach; notably,

MMR instead evaluates alignments by minimizing a loss function[38]. To our knowledge, none of

these packages have been adapted specifically for quantifying TE expression.

A growing field of study is now interested in using high-throughput sequencing to character-

ize the retrotranscriptome[8,9,39–41]. Instead of considering repetitive sequences as a source of

noise that interferes with gene expression analysis, the TEs themselves are the features of inter-

est. Three general approaches are used to deal with challenges of aligning short sequencing

reads to repetitive elements. i) “Family-level” approaches combine read counts across multiple

instances of a TE subfamily, since fragments mapping to multiple genomic locations can often

be uniquely assigned to a single repeat subfamily. This approach provides valuable information

about which TE subfamilies may be differentially regulated, but lacks the resolution needed to

identify specific expressed elements. ii) “Heuristic” approaches simplify the problem of multi-

mapped fragments by examining alignments and using filtering criteria to resolve ambiguity.

Examples of heuristic approaches include discarding ambiguous reads (unique counts), ran-

domly assigning ambiguous reads to one of its best scoring alignments (best counts), or dividing

counts among possible alignments (fractional counts). Finally, iii) “statistical” approaches

implement a statistical model that estimates the most probable assignment of fragments given

underlying assumptions about the generating process and the observed data.

Several existing software packages have implemented these approaches specifically for TE

quantification. RepEnrich[42,43] maps reads to “pseudogenomes” composed of multiple loci

belonging to the same subfamily, then uses a fractional counts heuristic to resolve any remain-

ing ambiguous fragments. TEtranscripts[44] and SalmonTE[45] are both statistical approaches

that use mixture models estimated by expectation-maximization. The main difference between

these approaches is that TEtranscripts begins with genome alignment, while SalmonTE adapts

the Salmon[46] approach of quasi-alignment to transcriptome sequences. Like MMSEQ, Sal-

monTE also uses equivalence classes to reduce the effort needed for parameter optimization.

By default, all three TE quantification approaches summarize estimates by subfamily.

Here, we introduce Telescope, a tool which provides accurate estimation of TE expression

resolved to specific genomic locations. Our approach directly addresses uncertainty in frag-

ment assignment by reassigning ambiguously mapped fragments to the most probable source

transcript as determined within a Bayesian statistical model. We implement our approach

using a descriptive statistical model of the RNA-seq process and use an iterative algorithm to
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optimize model parameters. We use Telescope to investigate the expression of HERVs in cell

types from the ENCODE consortium.

Results

Telescope: Single locus resolution of transposable element expression

Resolution of transposable element (including those of human endogenous retroviruses,

HERVs) expression from RNA-seq data sets has been complicated by the many similarities of

these repetitive elements. Telescope is a computational pipeline program that solves the prob-

lem of ambiguously aligned fragments by assigning each sequenced fragment to its most likely

transcript of origin. We assume that the number of fragments generated by a transcript is pro-

portional to the amount of transcript present in the sample; thus, the most likely source tem-

plate for a randomly selected fragment is a function of its alignment uncertainty and the

relative transcript abundances. Telescope describes this relationship using a Bayesian mixture

model where the estimated parameters include the relative transcript abundances and the

latent variables define the possible source templates for each fragment[47].

The first step in this approach is to independently align each fragment to the reference

genome; the alignment method should search for multiple valid alignments for each fragment

and report all alignments that meet or exceed a minimum score threshold (Fig 1A). Next,

alignments are tested for overlap with known TE transcripts; transcript assignments for each

fragment are weighted by the score of the corresponding alignment (Fig 1B and 1C). In our

test cases, we typically find that less than 50% of the fragments aligning to TEs can be uniquely

assigned to a single genomic location and many fragments have more than 20 possible origi-

nating transcripts.

Telescope uses a Bayesian mixture model to represent transcript proportions and unob-

served source templates and estimates model parameters using an expectation-maximization

algorithm. In the expectation step (E-step), the expected value of the source template for each

fragment is calculated under current estimates of transcript abundance (Fig 1D). The maximi-

zation step (M-step) finds maximum a posteriori estimates of the transcript abundance depen-

dent on the expected values from the E-step (Fig 1E). These steps are repeated until parameter

estimates converge (Fig 1D and 1E). Telescope reports the proportion of fragments generated

by each transcript and the expected transcript of origin for each fragment (Fig 1F). The final

counts estimated by Telescope correspond to actual observations of sequenced fragments and

are suitable for normalization and differential analysis by a variety of methods. The software

also provides an updated alignment with final fragment assignments that can be examined

using common genome visualization tools.

The core statistical model implemented in Telescope is based on the read reassignment

model described by Francis et al.[47] and is similar to existing models for resolving mapping

uncertainty[34,35,44,45]. Three main differences distinguish our model from existing models.

First, our model includes a reassignment parameter, theta, that is absent in other models. This

parameter effectively penalizes ambiguous alignments and may be important in cases where

many highly similar transcripts are present. Second, our model includes an additional mixture

component for fragments that map outside of the known transcriptome, accounting for miss-

ing transcripts in the annotation. Finally, our model does not use equivalence classes; reassign-

ment occurs at the fragment level.

To demonstrate that our algorithm can truly resolve repetitive element expression to pre-

cise genomic locations, we generated sequencing fragments from a single genomic locus in sil-

ico and used Telescope to resolve alignment ambiguity and quantify expression. The locus

selected was HML2_1q22 (HERV-K102), an HML-2 provirus that is highly similar to several

Telescope: Characterization of the retrotranscriptome
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Fig 1. Telescope conceptual overview. Telescope requires as input an alignment to the reference genome (A) and an

annotation of transposable element locations (B). Alignments should identify many possible high-scoring mappings

for each fragment. Fragments shown in gold represent unique mapping locations, dark blue fragments represent a best

alignment out of several possible alignments, and light blue fragments represent alignments with suboptimal

alignment scores (A). Annotations describe the locations of TE transcripts to be quantified. Three representative

HML-2 loci are shown; vertical lines represent differences from the HML-2 consensus sequence (B). Telescope

intersects the aligned fragments with annotated TE loci; fragments with no alignments intersecting the annotation are

discarded (C). The set of alignments and corresponding alignment scores for each fragment are used to calculate the

expected assignment weights, initially assuming equal expression for all elements (D). For example, fragment f1 aligns

uniquely to locus t3, and has an expected assignment weight of 1; the best alignment for f2 is to t3 and has a weight of

0.6; f3 aligns equally well to t1, t2, and t3 (C,D). The assignment weights estimated in (D) are used to find the maximum

likelihood estimate (MLE) for the proportion of each transcript (E). Next, we update the expected assignment weights,

now assuming that the MLE represents our best estimate of transcript expression (D,E). The steps in panels (D) and

(E) describe an expectation-maximization procedure, and we further refine the assignment weights and MLE by

Telescope: Characterization of the retrotranscriptome
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other HML-2 loci[48] and should thus generate many ambiguously mapping fragments. All of

the simulated fragments aligned to multiple genomic locations, and most of these (68.4%) had

multiple distinct alignments sharing the same “best” alignment score (S1 Fig). Fragments

mapped to 71 different HERV proviruses, including 58 HML-2 loci. After using our model to

identify the most probable source locus for each fragment, we found that all fragments could

be confidently assigned to HML2_1q22 with greater than 99% posterior probability (S1 Fig).

This is possible because our model effectively reweights ambiguous alignments by borrowing

strength from nearby alignments that are unique or high-scoring. In this case, there were no

uniquely aligned fragments within HML2_1q22, but many fragments had best-scoring align-

ments to this locus. This result demonstrates that our approach can accurately reassign ambig-

uously mapping fragments and thus enables accurate expression quantification at single-locus

resolution.

Determination of HERV expression in major cell types from the ENCODE

consortium

To investigate HERV expression in a robust way across a diverse platform of cell types we

relied on publicly available RNA-seq data. The ENCODE data project is an invaluable source

of genomic data from disparate sources and provides the opportunity to mine the transposable

element expression in a setting of maximum genomic information. We profiled 13 human cell

types, including common lines designated by the ENCODE consortium, as well as primary cell

types, and applied our approach to determine HERV expression across the spectrum of

human cell types, including normal or transformed, and contrasting cell lines with primary

cells (Table 1, S1 Table).

Over 2.7 billion sequenced fragments aligned to human reference hg38 with between 23.6%

and 46.1% of the fragments in each sample aligning ambiguously to multiple genomic loca-

tions. Telescope intersected the aligned fragments with a set of 14,968 manually curated

HERV loci belonging to 60 families (see methods) and identified over 27 million fragments

that appear to originate from HERV proviruses. Most (80.1%) of these fragments aligned to

multiple genomic locations; we used Telescope to reassign ambiguous fragments to the most

likely transcript of origin and estimate expression at specific HERV loci.

We developed genome-wide maps of HERV expression for 8 of the analyzed cell types that

had replicates (Table 1, S1 Table), and used CIRCOS[49] to visualize the data (Fig 2). The

outer track is a bar chart showing the number of HERV loci in 10 Mbp windows, with the red

part of the bar representing the number of loci that are expressed in one or more cell types.

The 8 inner rings show the expression levels (log2 counts per million (CPM)) of 1365 HERV

loci that were expressed at least one of the cell types examined. Moving from the outer ring to

the inner ring are replicates for each of the 8 cell types with replicates: H1-hESC, GM12878,

K562, HeLa-S3, HepG2, HUVEC, MCF-7, and NHEK.

We found 1365 HERV loci that were expressed in at least one of the cell types (CPM > 0.5).

Not all HERVs were expressed in all cell types, some were widely expressed in all cells, whereas

others were only expressed in one or more cell type (Fig 2). There is also a spectrum of differ-

ential HERV expression, with some HERVs having significantly higher expression than others.

Visual inspection of HERV expression maps suggest that there are certain regions of the

iterating until parameter estimates converge. Telescope produces a report that includes the maximum a posteriori

estimate of the transcript proportions and the final number of fragments assigned to each transcript, as well as an

updated alignment including the final fragment assignments (F).

https://doi.org/10.1371/journal.pcbi.1006453.g001
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genome that have minimal HERV expression, while other regions appear dense in HERV

expression (Fig 2). The genomic context of HERV expression can also be inspected more

closely in areas of interest, i.e. chromosome 19 (S2 Fig) and chromosome 6 (S3 Fig).

HERV locus-specific analysis

To ascertain global, subfamily and locus level specific HERV expression, we assessed the num-

ber of HERVs expressed in each cell type. All cell types expressed HERVs; the number of

expressed loci ranged from 216 (in MCF-7), to 533 (H1-hESC) (Fig 3A). The number and pro-

portion of cell type specific locations (expressed in only one cell) differed among cell types.

Nearly half (46.3%) of locations expressed in H1-hESC were not expressed in any other cell

type, while 89.3% of locations expressed in MCF-7 were also present in other cell types (Fig

3A). This suggests that regulatory networks are shared among some cell types but not others.

We next examined the relative contribution of HERV families to overall HERV transcription

and found that different cell types could be characterized by enrichment for different HERV

families. For example, HERVH accounted for 91.8% of the transcriptomic output in H1-hESC

cells, while HERVE was dominant in K562 cells (24.4%) (Fig 4A). Other families, such as

HERVL, were evenly distributed across cell types, both in number of expressed locations and

in expression levels (Fig 4B). Resolving the most highly expressed locations in each cell type at

a locus specific level shows that the distribution of expression varies among cell types. (Fig

3C). For example, HepG2 is characterized by high expression from a single locus, while

H1-hESC has many locations that are activated.

HERV expression profiles generated by Telescope are cell type specific

Previous work has suggested that estimates of HERV expression are highly sensitive to

sequencing technology used, and differences due to sequencing technology can obscure bio-

logical differences due to cell type[40]. Since aligning shorter fragments (i.e. single-end reads)

tends to produce more ambiguously mapping fragments compared to longer fragments, we

hypothesized that Telescope (which resolves ambiguity) would create HERV expression pro-

files that are robust to differences in sequencing technology. Hierarchical clustering of all 30

polyA RNA-seq HERV profiles shows that replicates from the same cell type cluster most

closely with other samples from the same cell type, regardless of the sequencing technology

Table 1. ENCODE cell types used in this study.

Cell Type Description Karyotype Lineage Tissue Replicates

H1-hESC Embryonic stem cell Normal ICM ESC 4

GM12878 B-lymphocyte Normal mesoderm blood 4

K562 Leukemia Cancer mesoderm blood 3

HeLa-S3 Cervical carcinoma Cancer ectoderm cervix 3

HepG2 Hepatocellular carcinoma Cancer endoderm liver 3

HUVEC Umbilical vein endothelial cells Normal mesoderm vessel 3

SK-N-SH Neuroblastoma Cancer ectoderm brain 1

IMR90 Fetal lung fibroblasts Normal endoderm lung 1

A549 Lung carcinoma Cancer endoderm lung 1

MCF-7 Mammary gland adenocarcinoma Cancer ectoderm breast 2

CD20+ CD20+ B cells Normal mesoderm blood 1

CD14+ CD14+ Monocytes Normal mesoderm blood 1

NHEK Epidermal keratinocytes Normal ectoderm skin 3

https://doi.org/10.1371/journal.pcbi.1006453.t001
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used (Fig 5A). Clusters for all cell types had significant support using multiscale bootstrap

resampling (approximately unbiased (AU) > 95%). Principal component analysis (PCA) also

Fig 2. Genome-wide maps of locus-specific HERV expression for 8 ENCODE tier 1 and 2 cell types. The outer track is a bar chart showing the number of HERV loci

in 10 Mbp windows, ranging from 0 to 200, with the red part of the bar representing the number of loci that are expressed in one or more cell types. The 8 inner rings

show the expression levels (log2 counts per million (CPM)) of 1365 HERV loci that were expressed in at least one of the cell types examined. Moving from the outer ring

to the inner ring are replicates for each of the 8 cell types with duplicates: H1-hESC, GM12878, K562, HeLa-S3, HepG2, HUVEC, MCF-7, and NHEK.

https://doi.org/10.1371/journal.pcbi.1006453.g002
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indicates that cell type, not sequencing technology, is associated with the strongest differences

among expression profiles. The first principal component, accounting for 44% of the total vari-

ance in the data, separates H1-hESC samples from all other samples (Fig 5B). The second and

third components further separate the samples into the other 12 cell types, and capture 13%

and 10% of the total variance, respectively. Interestingly, the second component separates

blood-derived cell types (K562, GM12878, CD20+ and CD14+) from the other cell types, sug-

gesting that cells derived from the same tissue may share similarities in HERV expression

profiles.

We further explored differences among cell types using differential expression (DE) analy-

sis. Pairwise contrasts between cell types were performed to determine the number of signifi-

cant DE loci (FDR< 0.1, abs(LFC) > 1.0) (Fig 5C). As found in the unsupervised analysis,

HERV expression in H1-hESC was drastically different from other cell types, with between

578 and 1127 significantly DE loci.

Finally, we asked whether other existing approaches for TE quantification would be suffi-

cient to identify cell type specific signal in the data or whether these approaches would be sen-

sitive to other variables. We analyzed the ENCODE datasets using default parameters for five

other approaches, including best counts, unique counts, TEtranscripts, RepEnrich, and Sal-

monTE. Hierarchical clustering of the resulting expression profiles reveal that cell types

Fig 3. Overall HERV expression patterns. (A) Number of HERV elements that are expressed for each cell type; expressed loci have CPM> 0.5 in the majority of

replicates. The darker section of the bar corresponds to expressed loci that are unique to cell type, while the lighter part is expressed in other cell types. (B) The

proportion of mapped RNA-seq fragments that are generated from HERV transcripts in each of eight replicated cell types. Each point is one replicate; boxplot shows the

median and first and third quartiles. (C) Top 10 most highly expressed loci for each cell type. Height of the bar is average CPM of all replicates with error bars

representing the standard error calculated from replicates CPM values.

https://doi.org/10.1371/journal.pcbi.1006453.g003
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Fig 4. Family-level HERV expression profiles using Telescope. Family-level HERV expression profiles were

computed from locus-specific profiles (generated by Telescope) by summing expression across all locations within

each subfamily. (A) The proportion of fragments assigned to each HERV subfamily relative to the total amount of

HERV expression. Families that account for at least 5% of total HERV expression in at least one cell type are shown,

with the remaining families in “other”. (B) Number of expressed HERV loci (left) and fragment counts per million

mapped fragments (CPM, right) for selected HERV families. Boxplots for each family were constructed using the
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clusters are only recovered using unique counts and Telescope (S3 Fig), though unique counts

tended to have less support for clusters. In contrast, clustering with the other four approaches

did not recover all cell type clusters; 7 out of 8 cell types clustered together when using best

counts expression profiles, 5 cell types were recovered with TEtranscripts and RepEnrich, and

only 1 cell type cluster was recovered with SalmonTE profiles (S4 Fig). Interestingly, clustering

of the SalmonTE expression profiles revealed 5 samples that did not cluster with their respec-

tive cell types, but instead clustered with other single-end datasets (S4 Fig).

Statistical performance of TE quantification methods

In order to examine the sensitivity and biases of computational approaches for quantifying TE

expression, we designed simulation experiments with known expression values. Earlier studies

have suggested that the HERV-K(HML-2) subfamily (hereafter referred to as HML-2) is

expressed in human tissue and may be relevant to human health[8,10,50,51]. Furthermore, its

relatively few subfamily members (~90 distinct genomic loci[48]) and high nucleotide identity

make HML-2 a good model for studying TE expression. Here, we report on the performance

of each method to detect locus-specific expression of HML-2 by simulating RNA-seq frag-

ments with sequencing error. We simulated 25 independent RNA-seq datasets (see methods)

and analyzed each using 7 TE quantification approaches: 1) unique counts, 2) best counts, 3)

RepEnrich, 4) TEtranscripts, 5) RSEM, 6) SalmonTE, and 7) Telescope. To ensure equal com-

parisons, all approaches use the same annotation (S1 File), and modifications to the annotation

were made to allow locus-specific quantification (instead of family-level quantification) for

RepEnrich, TEtranscripts, and SalmonTE.

For all simulations, we plotted the final counts estimated by each approach compared to the

expected read count (Fig 6A–6G). We calculated the precision and recall across all loci and

simulations (Fig 6H) and represented the overall accuracy of the approach using the F1 score

(Fig 6I). Five out of seven approaches were highly sensitive, with true positive rates above 95%

in most simulations. The two exceptions were RepEnrich and unique counts, which both tend

to discard many more reads than expected (“Unassigned”, Fig 6A and 6C). The unique counts

approach consistently underestimated expression levels with ~40% of all estimates (96 out of

250) missing at least 50% of the true expression (Fig 6A). One striking example of this underes-

timation was for HML2_8p21e; this locus did not generate any fragment that could be

uniquely mapped, thus was never detected by this approach.

Performance of the other five approaches differed primarily in the type and magnitude of

misclassification errors. False positives occur when reads are incorrectly assigned to annotated

loci that are not expressed, resulting in incorrect detection of unexpressed HERV loci. Best

counts had a high false positive rate; on average, 12.1% of fragments were incorrectly assigned

to unexpressed loci resulting in false detection of unexpressed loci in all simulations (“Other”,

Fig 6B). Similarly, the average proportion of reads assigned to unexpressed HERVs is greater

than 5% for TEtranscripts, RSEM, and SalmonTE (“Other”, Fig 6D–6F) but is less than 0.1%

for Telescope (“Other”, Fig 6G). On the other hand, false negatives occur when reads originat-

ing from non-TE regions are assigned to TEs. Since we expect non-TE reads to be unassigned,

the number of false negatives can be measured by the difference between the expected number

of non-TE reads and the final number of unassigned reads (“Unassigned”, Fig 6). Best counts

and Telescope both tend to correctly discard non-TE reads (“Unassigned”, Fig 6B and 6G),

average CPM for each expressed locus, with a dark line representing the median of all loci and the box borders

representing the 1st and 3rd quartiles. Outlying loci that are greater than 1.5 times the interquartile range from the

border of the box are plotted as individual points.

https://doi.org/10.1371/journal.pcbi.1006453.g004
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Fig 5. Cell type characterization based on HERV expression profiles using unsupervised learning and linear models. Unsupervised learning and linear

modeling were used to identify patterns in HERV expression profiles generated by Telescope for 30 polyA RNA-seq datasets from 13 cell types. (A) Similarities
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while TEtranscripts, RSEM, and SalmonTE tend to incorrectly assign these reads to annotated

TEs (“Unassigned”, Fig 6D–6F). We suspect that the model implemented in TEtranscripts

attempts to assign all fragments to annotated transcripts, as there is no category for unanno-

tated regions in their model. For RSEM and SalmonTE, this error may be due to the restricted

sequence space used to classify the reads. As these methods are mapping to the transcriptome,

the true originating sequence is absent from the index and fragments are forced to map to sim-

ilar, yet incorrect, sequences. This error could be avoided by developing more complete TE

annotations or including additional loci that share sequence similarity with TEs of interest.

Of all methods considered here, Telescope had the highest rate of precision and recall from

all other counting methods tested (Fig 6H and 6I). In contrast to the best counts approach (Fig

6I), Telescope assigned only 20 fragments to genomic annotations that were not expressed,

while 6061 fragments were assigned incorrectly by best counts. The overall accuracy of Tele-

scope estimates from true expression levels, as measured by F1-score, was the highest of all

approaches (Fig 6I). These simulation results demonstrate that Telescope resolves ambiguously

aligned fragments and produces unbiased estimates of TE expression that are robust to

sequencing error.

Discussion

Transposable elements represent a major biochemically active group of transcripts that are

increasingly recognized as important regulators in complex biological systems and disease.

However, difficulties in identifying and quantifying these elements has led to TEs being largely

ignored in the literature. Here we present Telescope, a novel software package that can be used

to mine new or existing RNA-seq datasets to accurately quantify the expression of TEs. The

key advantage of our approach is the capability to localize TE expression to an exact chromo-

somal location.

Based on our analysis of 13 ENCODE cell types, we have identified 1365 individual HERV

loci that are expressed in one or more cell types and generated genomic maps that showing cell

type specific HERV expression profiles. The ability to quantify expression at specific loci dem-

onstrates that regulation of HERV expression occurs at the locus level (in addition to subfam-

ily-level regulation), as different expression patterns are observed for loci within the same

subfamily. For example, our results confirm previous studies identifying HERVH upregulation

in embryonic stem cells [9,39,52] and add to this finding by identifying the precise location of

HERVH insertions that produce the most transcripts. This high level of resolution for TE

expression enables further investigation into the local genomic context, epigenetic regulation,

and coding potential of expressed loci.

An earlier study investigating HERV expression using the same datasets found strong dif-

ferences in estimated HERV expression profiles depending on the sequencing technology used

(paired or single end)[40]. Using Telescope, we did not find this same bias; instead, replicates

of the same cell type clustered together, while most variance in the data was among cell types.

Four of the other TE quantification approaches tested did not appear biased with respect to

sequencing technology, while one (SalmonTE) appeared to separate single-end from paired-

end samples. We suspect that this is a result of SalmonTEs pseudoalignment approach, as

among normalized expression profiles were explored using hierarchical cluster analysis. Supporting p-values were based on 1000 multiscale bootstrap replicates

and calculated using Approximately Unbiased (AU, red) and Bootstrap probability (BP, green) approaches. Red dots are placed on nodes that exclusively cluster

together all replicates for a cell type. (B) Principal component analysis (PCA) of normalized expression profiles. The first component accounts for 44% of the

variance in the data, and is plotted against component 2 and 3, which account for 13% and 10% of the variance, respectively. (C) Heatmap of the number of HERV

elements found to be significantly differentially expressed (DE) among each pair of cell types. Significance was determined using cutoffs for the false discovery rate

(FDR< 0.1) and log2 fold change (abs(LFC)> 1.0). Yellow indicates low numbers of differentially expressed elements, while blue indicates high numbers.

https://doi.org/10.1371/journal.pcbi.1006453.g005
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Fig 6. Comparison of performance results for TE quantification approaches. 25 RNA-seq samples were simulated, each sample consisted of 10 randomly chosen HML-

2 loci with simulated counts equal to 30, 60, 90, 120, 150, 180, 210, 240, 270, and 300. Each point represents the final count from one simulation, with the expected

(simulated) expression value on the x-axis. Reads that were not assigned to one of the 10 expressed loci were categorized as “Unassigned” if the read did not map to any

loci in the annotation, and “Other” if assigned to an annotated locus that was not expressed; these categories are also shown on the x-axis. A boxplot showing the median

and quartiles is shown for each category, and the expected expression value is represented with a red dashed line. Approaches tested: (A) unique counts, (B) best counts,

(C) RepEnrich, (D) TEtranscripts, (E) RSEM, (F) SalmonTE, and (G) Telescope. The precision and recall for each sample simulated as well as the mean of both are shown

for all methods (H), and F1-score calculation (I).

https://doi.org/10.1371/journal.pcbi.1006453.g006
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more ambiguous assignments can occur if pairing information is not considered. Other types

of bias, such as fragment bias, have been identified in RNA-seq data[53] and may influence

expression estimates in Telescope and other programs. We expect future versions of our soft-

ware to implement corrections for these biases.

Our simulations show that Telescope is highly sensitive and has low type I and II error

rates. Unique counts, a heuristic that is commonly chosen for its unambiguous assignments,

was shown to discard much of the data and underestimate true TE expression. Best counts,

which is commonly used for convenience, also performed poorly and spuriously identified

transcripts that were not expressed. Several software packages, including RepEnrich, TEtran-

scripts, and SalmonTE, also aim to quantify TE expression, but use a family-level approach

that quantifies TE subfamilies instead of individual loci. Our simulations used modified inputs

for these approaches that allowed us to compare them to Telescope. Based on our simulation

results, we find that our approach achieves high sensitivity while minimizing spurious detec-

tions, while all other approaches tend to identify TEs that are not expressed. We conclude that

Telescope offers superior accuracy for TE quantification and is the only available software

package that quantifies TE expression at single-locus resolution.

Telescope will have widespread utility in other settings. Studies on TE expression have

become prominent in studies of embryonic stem cell development[8][9], neural cell plasticity

[54,55], oncogenesis[4–7,56,57], psychiatric and neurological disorders[58–60] and autoim-

mune diseases[61,62]. As the breadth of knowledge on TEs expands, expression profiling of

TEs using Telescope will allow scientists to discover unique and collective TE transcripts

involved in the biology of complex systems.

Methods

Fragment reassignment mixture model

Telescope implements a generative model of RNA-seq relating the probability of observing a

sequenced fragment to the proportions of fragments originating from each transcript. For-

mally, let F = [f1,f2,. . .,fN] be the set of N observed sequencing fragments. We assume these

fragments originate from K annotated transcripts in the transcriptome T = [t0,t1,. . .,tK]. In

practice, annotations fail to identify all possible transcripts that generate fragments, thus we

include an additional category, t0, for fragments that cannot be assigned to annotated tran-

scripts. Let G = [G1,G2,. . .,GN] represent the true generating transcripts for F, where Gi2T and

Gi = tj if fi originates from tj. Since the process of generating F from T cannot be directly

observed, the true generating transcripts G are considered to be “missing” data. The objective

of our model is to estimate the proportions of T by learning the generating transcripts of F.

The alignment stage identifies one or more possible alignments for each fragment, along

with corresponding alignment scores. Telescope uses the alignment score generated by the

aligner and reported in the AS tag[63]. This is typically calculated by adding scores and penal-

ties for each position in the alignment; a higher alignment score indicates a better alignment.

Let qi = [qi0,qi1,. . .,qiK] be the set of mapping qualities for fragment fi, where qij = Pr(fi|Gi = tj)
represents the conditional probability of observing fi assuming it was generated from tj; we cal-

culate this by scaling the raw alignment score by the maximum alignment score observed for

the data. We write the likelihood of observing uniquely aligned fragment fu as a function of the

conditional probabilities qu and the relative expression of each transcript for all possible gener-

ating transcripts Gu

Prð fujp; quÞ ¼
XK

j¼0

pjquj
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where π = [π0,π1,. . .,πK] represents the fraction of observed fragments originating from each

transcript. Note that quj = 0 for all transcripts that are not aligned by fu. For non-unique frag-

ments, we introduce an additional parameter in the above likelihood to reweight each ambigu-

ous alignment among the set of possible alignments. The probability of observing ambiguous

fragment fa is given by

Prð fajp; y; qaÞ ¼
XK

j¼0

pjyjqaj

where θ = [θ0,θ1,. . .,θK] is a reassignment parameter representing the fraction of non-unique

reads generated by each transcript.

Using these probabilities of observing ambiguous and unique fragments, we formulate a

mixture model describing the likelihood of the data given parameters π and θ. The K mixture

weights in the model are given by π, the proportion of all fragments originating from each

transcript. To account for uncertainty in the initial fragment assignments, let xi = [xi0,xi1,. . .,

xiK] be a set of partial assignment (or membership) weights for fragment fi, where
PK

j¼0
xij ¼ 1

and xij = 0 if fi does not align to tj. We assume that xi is distributed according to a multinomial

distribution with success probability π. Intuitively, xij represents our confidence that fi was

generated by transcript tj. In order to simplify our notation, we introduce an indicator variable

y = [y1,y2,. . .,yN] where yi = 1 if fi is ambiguously aligned and yi = 0 otherwise. The complete

data likelihood is

Lðπ; θjx; q; yÞ /
YN

i¼1

YK

j¼0

½pjy
yi
j qij�

xij

Parameter estimation and fragment reassignment by EM

Telescope iteratively optimizes the likelihood function using an expectation-maximization

algorithm[64]. First, the parameters π and θ are initialized by assigning equal weight to all

transcripts. In the expectation step, we compute the expected values of xi under current esti-

mates of the model parameters. The expectation is given by the posterior probability of xi:

E xij
h i

¼
pjy

yi
j qij

PK
k¼0
pky

yi
k qik

In the M-step we calculate the maximum a posteriori (MAP) estimates for π and θ

p̂j ¼

PN
i¼1

E½xij� þ aj
M þ

PK
k¼0

ak
and ŷj ¼

PN
i¼1

E½xij�yi þ bj
PN

i¼1
yi þ

PK
k¼0

bk

Where M ¼
PK

j¼0

PN
i¼1

E½xij� and aj and bj are prior information for transcript tj. Intuitively,

these priors are equivalent to adding unique or ambiguous fragments to tj. As currently imple-

mented, the user may provide a prior value for either parameter that is distributed equally

among all transcripts. We have found that providing an informative prior for the bj
(--theta_prior) is recommended given the repeat content of the human genome, since

large values for this parameter prevents convergence to boundary values. Convergence of EM

algorithms to local maxima has been shown by Wu[65], and is achieved when the absolute

change in parameter estimates is less than a user defined level, typically �<0.001.
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HERV annotations

A Telescope analysis requires an annotation that defines the transcriptional unit of each TE

to be quantified. For HERV proviruses, the prototypical transcriptional unit contains an

internal protein-coding region flanked by LTR regulatory regions. Existing annotations,

such as those identified by RepeatMasker[33] (using the RepBase database[32]) or Dfam

[66] identify sequence regions belonging to TE families but do not seek to annotate tran-

scriptional units. Both databases represent the internal region and corresponding LTRs

using separate models, and the regions identified are sometimes discontinuous. Thus, a

HERV transcriptional unit is likely to appear as a collection of nearby annotations from the

same HERV subfamily.

Transcriptional units for HERV proviruses were defined by combining RepeatMasker

annotations belonging to the same HERV subfamily that are located in adjacent or nearby

genomic regions. Briefly, repeat families belonging to the same HERV subfamily (internal

region plus flanking LTRs) were identified using the RepBase database[32]. RepeatMasker

annotations for each repeat subfamily were downloaded using the UCSC table browser[67]

and converted to GTF format, merging nearby annotations from the same repeat subfamily.

Next, LTRs found flanking internal regions were identified and grouped using BEDtools[68].

HERV transcriptional units containing internal regions were assembled using custom python

scripts. Each putative locus was categorized according to provirus organization; loci that did

not conform to expected HERV organization or conflicted with other loci were visually

inspected using IGV[69] and manually curated. As validation, we compared our annotations

to the HERV-K(HML-2) annotations published by Subramanian et al.[48]; the two annota-

tions were concordant. Final annotations were output as GTF (S1 File); all annotations, scripts,

and supporting documentation are available at https://github.com/mlbendall/telescope_

annotation_db.

HERV expression analysis of ENCODE datasets

We identified 30 ENCODE datasets with available whole-cell bulk RNA-seq data from tier 1

and 2 common cell types (S1 Table). Sequence data was obtained from SRA and extracted

using the parallel-fastq-dump package (https://github.com/rvalieris/parallel-fastq-dump).

Adapter trimming, quality trimming, and filtering were performed using Flexbar[70] (version

3.0.3). For Telescope analysis, the trimmed and filtered reads from each run were aligned to

human reference genome hg38 using bowtie2[71]. Alignment options were specified to per-

form a sensitive local alignment search (--very-sensitive-local) with up to 100

alignments reported for each fragment pair (-k 100). The minimum alignment score thresh-

old was chosen so that fragments with approximately 95% or greater sequence identity would

be reported

(--score-min L,0,1.6). Sequence alignment map (SAM/BAM) files from different

runs corresponding to the same sample were concatenated to obtain sample-level BAM files.

An annotation of HERV locations in hg38 (S1 File) and the BAM file for each sample were

provided as inputs for Telescope. Telescope options included up to 200 iterations of the expec-

tation-maximization algorithm (--max_iter 200) and an informative prior on theta

(--theta_prior 200000). The “final counts” column in the Telescope report are used as

HERV expression data in subsequent analysis.

ENCODE datasets were also analyzed using five other approaches. Unique and best counts

approaches use the same alignment and annotation as above and are included as part of the

Telescope output. RepEnrich, TEtranscripts, and SalmonTE were all run according to author

instructions, with author-provided annotations and default parameters.
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Differential expression analysis

Library size for each sample is considered to be the total number of fragments that map to the

reference genome. Counts per million (CPM) were calculated by dividing the raw count by the

library size and multiplying by 1 million. A CPM cutoff of 0.5 was used to identify expressed

loci; since the smallest sample considered has more than 20 million fragments, expressed loci

are represented by at least 10 observations. Raw counts output by Telescope were used for dif-

ferential expression analysis. Size factors for normalization were calculated by dividing the

library sizes by their geometric mean. Normalization, dispersion estimation, and generalized

linear model fitting was performed using DESeq2[72]; the model was specified with cell type

as the only covariate. Contrasts were extracted for each pair of cell types; HERVs with an

adjusted p-value < 0.1 and log2FoldChange > 1.0 were considered to be differentially

expressed.

Hierarchical clustering

Read counts for clustering were transformed using a variance stabilizing transformation in

DESeq2[72]. Hierarchical clustering with multiscale bootstrap resampling was performed on

transformed counts using correlation distance and UPGMA clustering implemented in

pvclust[73]. Uncertainty in hierarchical cluster analysis was assessed by calculating two p-val-

ues for each cluster that range from 0 to 1, with 1 indicating strong support for the cluster. The

bootstrap probability (BP) is calculated by normal bootstrap resampling and approximately

unbiased (AU) probability is computed by multiscale bootstrap resampling[74].

Simulated HML-2 expression data

For the simulation study, we simulated 25 independent RNA-seq datasets with 2100 paired-

end fragments each. For each dataset, we randomly selected 13 loci to be expressed, including

10 HML-2 proviruses and three “non-TE” loci. HML-2 proviruses were selected from 92

HML-2 loci present in our annotation; non-TE loci were selected from a set of 968 unanno-

tated genomic regions that share sequence similarity with the HML-2 subfamily (S2 File).

Non-TE loci are included to examine the type II error rate of the approaches; assigning non-

TE fragments to HML-2 loci is considered a false negative. Expression levels for the 10 HML-2

loci in each dataset were randomly chosen, ranging from 30 to 300 fragments per locus. Each

of the three non-TE loci were expressed at 150 fragments each. Using this expression pattern,

we simulated sequencing fragments with the Bioconductor package for RNA-seq simulation,

Polyester[75]. All simulations used the parameters of read length: 75 bp; average fragment size:

250; fragment size standard deviation: 25; and an Illumina error model with an error rate of

5e-3.

Analysis of simulation data with TE quantification approaches

Each simulation dataset was analyzed using 7 TE quantification approaches: 1) unique counts,

2) best counts, 3) RepEnrich, 4) TEtranscripts, 5) RSEM, 6) SalmonTE, and 7) Telescope. To

ensure a fair comparison among approaches, the same annotation (S1 File) was used as input

for all approaches. Note that the HML-2 loci used for simulation are contained in this annota-

tion, but the non-TE loci are absent. For RepEnrich, TEtranscripts, and SalmonTE, the locus

identifier was used in place of the family name in order to generate locus-specific estimates.

Aside from these changes, each program was run as suggested by the authors. Unique counts

was implemented by aligning reads with bowtie2, allowing for multi-mapped reads

(-k 100 --very-sensitive-local --score-min L,0,1.6) and filtering reads
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with multiple alignments. The same bowtie2 parameters were used for best counts without

specifying -k (--very-sensitive-local --score-min L,0,1.6).

The five software packages include final read counts as part of the output. Read counts for

the unique counts and best counts approaches were obtained using htseq-count[76]. After

mapping and counting the reads for each annotated HERV, reads can be divided in two cate-

gories, depending their origin, HML-2 reads or non-TE reads. Those reads can then be cor-

rectly or incorrectly mapped, depending of the outcome of the counting method, leading to 4

different categories: a) reads assigned to HML-2 correctly (True Positive) b) reads assigned to

HML-2 incorrectly (False Positive) c) reads not assigned correctly (True Negative) d) reads

not assigned incorrectly (False Negative). All classifications were made based on counts and

not fragment assignments, as several approaches do not provide final fragment assignments.

The classifications were used for recall and precision calculations.

Implementation

Telescope is implemented in Python, is available as an open-source program under the MIT

license, and has been developed and tested on Linux and MacOS. The software package and

test data can be found at https://github.com/mlbendall/telescope. We recommend installing

Telescope and its dependencies using the bioconda package manager[77].

A complete snakemake[78] pipeline for reproducing the ENCODE analysis is available

from https://github.com/mlbendall/TelescopeEncode. Scripts for reproducing the simulations

are available from https://github.com/LIniguez/Telescope_simulations. A tutorial for running

the single-locus analysis is available from https://github.com/mlbendall/telescope_demo.

Supporting information

S1 Fig. Telescope resolves alignment ambiguity and enables single-locus expression esti-

mation. Visualization of simulated fragment alignments to three selected HML-2 loci. Simu-

lated fragments were generated from HML2_1q22. Proviruses HML2_5q33.3 and

HML2_11q22.1 were chosen as examples because they are closely related to HML2_1q22 and

have high numbers of initially ambiguous mappings. The top track shows alignments found

using bowtie2 while allowing for multimapping (-k 100); bottom track shows the alignments

after being reassigned using Telescope. Fragments shown in gold represent unique mapping

locations, dark blue fragments represent a best alignment out of several possible alignments,

and light blue fragments represent alignments with suboptimal alignment scores. Alignments

shown in white (bottom track only) are included to indicate alignments that were present in

the initial alignment but were reassigned to HML2_1q22 by Telescope.

(PDF)

S2 Fig. HERV expression map for chromosome 19 positions 53,000,000–59,000,000. Outer

track is a plot of RefSeq gene locations, with genes containing zinc-finger domains in green.

(EPS)

S3 Fig. HERV expression map for chromosome 6 positions 25,000,000–37,000,000. Outer

track is a plot of RefSeq gene locations, with genes containing zinc-finger domains in green,

human leukocyte antigen (HLA) genes in blue, and histone genes in purple.

(EPS)

S4 Fig. Hierarchical clustering of HERV expression profiles estimated using other

approaches. Expression values were estimated using each approach using author provided

annotations and default arguments. Resulting counts were normalized by library size, trans-

formed, and clustered using pvclust[73]. Supporting p-values were based on 1000 multiscale
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bootstrap replicates and calculated using Approximately Unbiased (AU, red) and Bootstrap

probability (BP, green) approaches. Red dots are placed on nodes that exclusively cluster

together all replicates for a cell type.

(EPS)

S1 Table. ENCODE datasets profiled using Telescope. Information about each sample ana-

lyzed, including ENCODE experiment ID, GEO sample accession, and SRA run accessions.

The first column contains the display name of each sample used in Fig 5 and S4 Fig.

(XLSX)

S1 File. Annotation of HERV elements from 60 subfamilies in reference genome hg38.

Annotation contains 14,968 HERV loci in GTF format. The “locus” attribute is used to identify

features belonging to the same locus. “Exon” features are regions matching to transposable ele-

ment models, while “gene” features span the full locus, including insertions.

(GTF)

S2 File. Annotation of non-TE loci for simulation. Annotation contains a set of 968 unanno-

tated genomic regions that share sequence similarity with the HML-2 subfamily.

(BED)

S3 File. Comparison of HERV annotation to previously described HML-2 elements. The

HERV annotation created for this study was compared to previously described HML-2 provi-

ruses. Tables 1 and 2 from Subramanian et al.[48] were lifted over to hg38 and visualized using

IGV. The annotations were mostly concordant. Previously identified loci that are not found in

our annotation include two solo LTRs (10p12.1 and 12q13.2), one polymorphic locus

(19p12b), and one locus that did not satisfy the minimum length threshold (16p13.3).

(PDF)
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20. Pérot P, Mugnier N, Montgiraud C, Gimenez J, Jaillard M, Bonnaud B, et al. Microarray-based sketches

of the HERV transcriptome landscape. PLoS One. 2012; 7: e40194. https://doi.org/10.1371/journal.

pone.0040194 PMID: 22761958

21. Gnanakkan VP, Jaffe AE, Dai L, Fu J, Wheelan SJ, Levitsky HI, et al. TE-array—a high throughput tool

to study transposon transcription. BMC Genomics. 2013; 14: 869. https://doi.org/10.1186/1471-2164-

14-869 PMID: 24325565

22. Young GR, Mavrommatis B, Kassiotis G. Microarray analysis reveals global modulation of endogenous

retroelement transcription by microbes. Retrovirology. 2014; 11: 59. https://doi.org/10.1186/1742-4690-

11-59 PMID: 25063042
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36. Turro E, Su S-Y, Gonçalves Â, Coin LJM, Richardson S, Lewin A. Haplotype and isoform specific

expression estimation using multi-mapping RNA-seq reads. Genome Biol. 2011; 12: R13. https://doi.

org/10.1186/gb-2011-12-2-r13 PMID: 21310039

37. Glaus P, Honkela A, Rattray M. Identifying differentially expressed transcripts from RNA-seq data with

biological variation. Bioinformatics. 2012; 28: 1721–1728. https://doi.org/10.1093/bioinformatics/bts260

PMID: 22563066
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