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Abstract

Background and Purpose: Knowledge of outcome prediction is important in stroke management. We propose a lesion size
and location-driven method for stroke outcome prediction using a Population-based Stroke Atlas (PSA) linking neurological
parameters with neuroimaging in population. The PSA aggregates data from previously treated patients and applies them
to currently treated patients. The PSA parameter distribution in the infarct region of a treated patient enables prediction. We
introduce a method for PSA calculation, quantify its performance, and use it to illustrate ischemic stroke outcome prediction
of modified Rankin Scale (mRS) and Barthel Index (BI).

Methods: The preliminary PSA was constructed from 128 ischemic stroke cases calculated for 8 variants (various data
aggregation schemes) and 3 case selection variables (infarct volume, NIHSS at admission, and NIHSS at day 7), each in 4
ranges. Outcome prediction for 9 parameters (mRS at 7th, and mRS and BI at 30th, 90th, 180th, 360th day) was studied
using a leave-one-out approach, requiring 589,824 PSA maps to be analyzed.

Results: Outcomes predicted for different PSA variants are statistically equivalent, so the simplest and most efficient variant
aiming at parameter averaging is employed. This variant allows the PSA to be pre-calculated before prediction. The PSA
constrained by infarct volume and NIHSS reduces the average prediction error (absolute difference between the predicted
and actual values) by a fraction of 0.796; the use of 3 patient-specific variables further lowers it by 0.538. The PSA-based
prediction error for mild and severe outcomes (mRS = [2–5]) is (0.5–0.7). Prediction takes about 8 seconds.

Conclusions: PSA-based prediction of individual and group mRS and BI scores over time is feasible, fast and simple, but its
clinical usefulness requires further studies. The case selection operation improves PSA predictability. A multiplicity of PSAs
can be computed independently for different datasets at various centers and easily merged, which enables building
powerful PSAs over the community.
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Introduction

Knowledge of outcome prediction is important in effective

stroke management [1]. The ability to estimate prognosis is

important in stroke treatment decisions, particularly, with the

advent of novel therapies, such as intra-arterial thrombolysis [2]

and new stent retrievers [3], [4]. Outcome prediction can help in

the planning of discharge, rehabilitation, end-of-life care, and

patient and/or family communication and counselling [5].

Numerous approaches have been proposed for stroke outcome

prediction [5–28]. They are based on a statistically significant

correlation among patient-specific parameters, such that the

patient-specific outcomes are predicted based on some indepen-

dent variables measured for the same patient, mostly without

accounting for infarct location. Despite the availability of

numerous prognostic models, risk scores and prediction rules,

none has gained widespread use in clinical practice [6].

The existing stroke prediction methods can be classified as a

‘‘same-patient-different-parameters’’ type or model. Here we

propose a conceptually different model, namely, ‘‘same-parame-

ter-different-patients’’. Furthermore, we introduce a novel stroke

outcome prediction method based on the ‘‘same-parameters-

different-patients’’ model. This method is lesion size and location-

driven and uses a Population-based Stroke Atlas (PSA). The

rationale for PSA-based prediction is to use the aggregated

information from similar cases (patients) to predict an outcome for
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a new case. The PSA is a means of aggregating data and

knowledge from the previously treated patients with a preferable

long follow up (to enable long-term predictions) and applying them

to the currently treated patients. The PSA links neurological

examination parameters with pathology localized on diagnostic

neuroimages for a population of stroke patients. It aggregates a

multiplicity of parameters and presents the distribution of each

parameter as a three-dimensional (3D) image volume. These 3D

volumes can be processed, analyzed and visualized as well as

knowledge, trends and predictions extracted from them. Any PSA

is a collection of population-based stroke maps (PSMs), each map

calculated for a single parameter to be predicted. The predicted

parameter distribution is obtained by getting it from the PSA in

the normalized infarct region of the predicted case.

The purpose of this work (which is an extended version of our

preliminary work presented at the International Stroke Confer-

ence ISC 2012 [29]) is 1) to introduce a method for calculation of

the PSA and 2) to study PSA properties for different data

aggregation and data selection schemes. To study PSA-based

prediction properties, we introduce (i) PSA variants to account for

various spatial mutual configurations of ischemic infarct outlines

(i.e., different data aggregation schemes) and (ii) constrained PSA

to accommodate for selection of suitable or relevant cases forming

the PSA (i.e., different data selection schemes). We additionally

demonstrate examples of PSA use illustrated by preliminary results

of outcome prediction in ischemic stroke measured in terms of

modified Rankin Scale (mRS) and Barthel Index (BI).

Materials and Methods

Material
A cohort of generally treated stroke patients with a large

number (for some patients up to 170) of neurological parameters

per patient, noncontrast CT (NCCT) scan at admission, and one

year follow up was acquired. The Hospital Bioethics Committee’s

approval was obtained (The Ethics Committee of the Poznan

University of Medical Sciences, Poznan, Poland – decision no.

167/07, dated 01 Feb 2007; the title of approval ‘‘Clinical,

laboratory and neuroimaging predictive factors in stroke’’) and all

scans were anonymized. From this cohort, a group of 458

consecutive ischemic stroke patients were selected (the baseline

characteristics of this group were described in detail earlier [10]).

The neurological parameters included history, hospitalization,

demographics, laboratory parameters, clinical measures and

outcomes. The scans were acquired on Picker PQ2000/5000

scanners with KVP 120 kV, tube current 200 mA, and recon-

struction slice 5 mm. Outcome measurements in terms of mRS

and BI were assessed for up to one year after stroke onset. From

this group, cases suitable to build a preliminary version of the PSA

were selected. This selection was limited to the cases with clearly

visible ischemic infarcts that could be delineated. Cases with a

complete set of data and at least one year patient’s survival (and if

not available, then the longest possible) were preferable. More-

over, the cases with a midline shift, leukoaraiosis and old infarcts as

well as hemorrhages and edemas causing anatomical distortion

were excluded. The strict process resulted in selecting for this study

a dataset of 128 cases of neurologically confirmed ischemic strokes

with all the infarcts delineated (contoured) earlier (as part of

another study [30]). The numbers of cases for mRS and BI scores

at different days are given in Table 1. The time from stroke onset

along with the number of the corresponding cases were: below 3

hours (10 cases) between 3–8 hours (52 cases), above 8 hours (66

cases), and above 24 hours (33 cases). The mean 6 standard

deviation (SD) of NIHSSa (National Institutes of Health Stroke

Scale (NIHSS) at admission) = 8.366.6, range = [0–31]. The mean

6 SD of NIHSS7 (NIHSS at day 7) = 6.967.2, range = [0–30].

The NIHSS means of infarcts in the left/right hemispheres were

(8.83/7.25) and those for NIHSS7 (7.11/6.12). The mean of

infarct volumes for the left/right hemispheres were (25.96 cm3/

20.45 cm3). The mean 6 SD of patients’ age were 64.6612.5.

The mean 6 SD of patients’ mRS(7;30;90;180;360) (i.e., mRS at

7th, 30th, 90th, 180th and 360th day) and BI(30;90;180;360) (i.e.,

BI at 30th, 90th, 180th and 360th day) were (2.961.7;2.46

2.1;2.0462.1;2.0262.2;2.262.3) and (73.0633.7;83.8625.1;86.8

621.5;87.0621.2), respectively. The mean 6 SD size of the

NCCT scans (in MB) were 11.8760.80, range = [10–15.5].

Method
The method has two stages: 1) calculation of the PSA, and 2)

PSA-based patient-specific outcome prediction, as diagrammed in

Figure 1. The PSA is built for a set of predictable parameters,

where a parameter is a neurological parameter, scan density

(intensity) or its characteristics, or generally any computable entity.

A high level description of the algorithm for PSA calculation is the

following.

Table 1. Numbers of cases for mRS (upper part) and Barthel Index (lower part).

mRS at day Number of cases with mRS = 6 Number of cases with mRS,6 Unavailable values

7 1 125 2

30 6 119 3

90 11 111 6

180 15 103 10

360 18 98 12

Barthel Index at day Number of cases with Barthel Index = 0 Number of cases with Barthel Index.0 Unavailable values

30 7 112 9

90 1 110 17

180 2 101 25

360 2 97 29

doi:10.1371/journal.pone.0102048.t001

Population-Based Stroke Atlas for Outcome Prediction
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For each parameter

For each case/scan

Contour the infarct(s) (create the contour file)

Normalize spatially the contour file

For each voxel within the normalized contour file

Aggregate the parameter value

Divide the aggregated values by the number of the contributing
cases

Figure 1. Illustration of PSA calculation and outcome prediction. Top) processing of a single patient (case) contributing to formation of the
PSA. Bottom) formation of the PSA from its contributing patients (left) and PSA-based prediction (right). The horizontal arrow represents weighting
dependency between the PSA and a predicted case.
doi:10.1371/journal.pone.0102048.g001
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The ischemic infarcts were contoured manually on all the scans

by using a dedicated contour editor [31]. This tool provides means

to create and edit contours in the acquisition (axial) plane; display

coronal and sagittal planes; and window images, including the

routine head (30,80) and acute stroke (30,30) windows in

Hounsfield units. For each case, the complete set of contours

(called a contour file) delineating the whole ischemic lesion region

was generated.

Each case was spatially normalized by projecting it to a

common stereotactic (Talairach) space of 5126512664 voxels and

0.32011960.32011962 mm3 resolution [32]. We used a land-

mark-based, fast normalization method which employs the

midsagittal plane extracted by using the algorithm by Volkau et

al. [33] and the modified Talairach landmarks [34] calculated by

employing a statistical approach detailed in [35].

For each studied parameter, its corresponding PSM was

calculated by aggregating the parameter’s value within each

contour file across all spatially normalized cases and by dividing

the aggregated value in each voxel by the number of contributing

cases (i.e., the number of contour files containing this voxel). The

simplest way to aggregate data was to assign the parameter value

to all the voxels within the contour file and accumulating them

across all cases, which resulted in a spatial distribution of the

average value of a considered parameter. In general, the process of

parameter value aggregation shall take into account the size,

overlap and distance of the contour files, both these which form

the PSA and that under prediction.

An instant of PSM (i.e., a PSA for a given parameter) can be

calculated for all the cases or any subset of them selected by

determining the case selection variables. This selection operation

determines the contour files used for the construction of the PSM

by including relevant and/or excluding unsuitable cases. For this

study, three simple, patient-specific case selection variables were

applied and examined here: infarct volume, NIHSS at admission

(NIHSSa) and at 7th day (NIHSS7), although, generally, any other

variables can be chosen for analysis.

To study the impact on outcome prediction of various

relationships between the infarct regions (contours files) forming

the PSA and the infarct region of the case under prediction, we

created eight variants of PSA. They differ in the way how the

contour files are combined when forming the PSA, meaning if they

are amplified or dampened depending on their overlap, PSA

contour file volume, contour file volume of the to-be-predicted

case, and/or contour localization. The variants were calculated by

applying weighting with eight weights denoted as w1,…,w8.

Let PSMp,k denote the population-based stroke map for

parameter p calculated by applying the k-th weight to each

normalized contour file Ci, i = 1,…,N, where N is the number of

cases forming this PSM. Then

PSMp,k~

PN
i~1

wk(Ci)pi

PN
i~1

wk(Ci)

ð1Þ

The weighs are defined as follows:

W1~1

W2~
1

Vpsa

W3~
V0

Vpsa

z
V0

Vp

W4~
V0

Vp

W5~
1

d
, dw0

W6~

1

Vpsa

z
1

Vp{V0

1

Vpsa

8>><
>>:

9>>=
>>;

if VpwV0, else

W7~

1

Vpsa

z
Vp{V0

Vp

1

Vpsa

8>><
>>:

9>>=
>>;

if VpwV0, else

W8~
V0

Vpsa

ð2Þ

where Vpsa is the volume of a PSA contour file, Vp is the volume

of the infarct region of the case under prediction, Vo is the volume

of the overlap of the PSA infarct region and that under prediction,

and d is the distance between the centroids of the PSA infarct

region and that under prediction.

The interpretation of the weights is as follows. Weight w1

produces averaging of the parameter value (meaning that no

weighting is applied). Weight w2 causes more weightage to smaller

(i.e., with a better localization) PSA contours (this weighting is also

applied as a component in weights w3 and w6–w8). Weights w3–w4

and w8 give more weightage to the PSA contour files with a higher

overlap or closer (weight w5) to the contour file of the to-be-

predicted case; note that the knowledge of the latter is required

prior to the PSA calculation (i.e., for w3–w8 weights). Weights w6–

w7 take into account the difference between the infarct and

overlapped regions.

As the rationale for PSA-based prediction is to use the

aggregated information from similar cases to predict an outcome

for a new case, a high level description of the algorithm for patient-

specific outcome prediction is the following (see also Figure 1

bottom).

Contour the infarct(s) of a case under prediction (create the contour
file)

Normalize the contour file of the case under prediction

Weight contours

Obtain PSA parameter characteristics from within this normalized
contour file

Analyses
Two main types of analyses were carried out: 1) to study the

properties of the PSA in terms of data aggregation and data

selection (2 analyses); and 2) to evaluate the prediction capabilities

Population-Based Stroke Atlas for Outcome Prediction
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of the preliminary PSA in terms of individual mRS scores and

dichotomical classification for mRS and BI scores (2 analyses).

We used a leave-one-out prediction approach to obtain

preliminary prediction results. Then, each case (patient) was

predicted based on the PSA constructed from the remaining 127

cases, meaning that a predicted case was not included into a

construction of the corresponding PSA used for prediction. A

single PSM instance was calculated for each of 8 weights, 3

ischemic infarct volume thresholds resulting in 4 volume ranges

(whole range, #8.0 cm3 (at 50th volume percentile), #25.9 cm3

(at 75th volume percentile), and #70 cm3), and 4 selections for

each NIHSSa and NIHSS7, each with two thresholds of 5 and 13

resulting in 4 ranges ([0–42], [0–5], [6–13] and [14–42]). These

NIHSS ranges are associated with the following predictions:

discharge home [0–5], rehabilitation [6–13], and nursing facility

care [14–42] [22). Therefore, 512 PSM instances had to be

calculated per case and per predicted outcome parameter. For a

single case, 9 parameters were predicted: mRS7, mRS30, mRS90,

mRS180, mRS360, BI30, BI90, BI180, and BI360. To predict all

128 cases, 589,824 PSMs were calculated. Each PSM required

processing all but one scans. In other words, during these analyses

the scans were processed 74,907,648 times.

The prediction accuracy error to be minimized was defined as

the absolute difference of the actual outcome parameter value

(known for this patient from the follow-up) and the predicted value

(as calculated by our method) for the studied parameter of the

considered patient. Effects of different PSA variants and case

selection variables on the prediction error were examined to select

the best variants and variables. Note that mRS and BI vary not

only across time but also across value (mRS = [0–6], BI = [0–100]),

which substantially increases the number of combinations to be

analyzed. Moreover, the narrower the selection range, the lower

the statistical power and potentially the higher the influence of

outliers.

To assess the PSA variants (i.e., different ways of PSA

construction in terms of data aggregation) on the outcome

prediction error, we combined the mRS7, mRS30, mRS90,

mRS180 and mRS360 parameters and calculated the prediction

error. Student’s t-statistic and 2-tailed p-value assessed significant

differences between the errors corresponding to the different

variants.

The effect of case selection variables on error was evaluated in 4

situations; namely for: infarct volume; NIHSSa; infarct volume

and NIHSSa; and infarct volume, NIHSSa and NIHSS7. The

error reduction ratio, defined as the prediction with variable

selection to that without variable selection, was calculated for 2

and 3 variables. The best variables, defined as the most frequent

values in the first quartile (#25th percentile) error range, were

determined for individual prediction at mRS = 0,…,6 along with

the resulting errors (note that the lowest error values were not used

to avoid outliers).

To assess PSA performance in distinguishing favourable from

unfavourable outcomes, we measured the area under the Receiver

Operating Characteristic (ROC) curve. The mRS predictions

calculated for all 3 variables were dichotomized as: 1) 0–2

(favourable outcome) and 3–6 (unfavourable outcome), and 2) 0–1

(excellent outcome) and 2–6 (unfavourable outcome) [36]. This

analysis was repeated for BI dichotomized as [0–45] and [46–100]

[37].

Results

A software platform to calculate PSAs and provide PSA-based

prediction was developed, and its user interface is shown in

Figure 2. The results of analyses described in Section 2.3 are

presented here. By using this software platform, the preliminary

version of the PSA was calculated for the predicted parameters

(including mRS7, mRS30, mRS90, mRS180, mRS360, BI30,

BI90, BI180, BI360), and (for illustration) for NIHSS at admission

and NCCT image density (infarct frequency) distribution,

Figure 3.

The overall average mRS accuracy results are summarized in

Table 2 providing the prediction errors and their standard

deviations with respect to the PSA variants and case selection

variables for the mRS scores combined across time

(mRS7,…,mRS360) and value in two situations mRS = [0–6]

and mRS = [2–5]. The two tailed p-value for pairwise variant

comparison is .0.22 implying that the variants are statistically

similar. Table 2 also gives the error reduction ratios for 2- and 3-

variable selection and the average values across variants.

The best selection variables for mRS scores and the corre-

sponding average errors are given in Table 3.

The areas under ROC curves corresponding to a dichotomical

favourable versus unfavourable classification for mRS and BI are

given in Table 4.

PSA-based prediction took 8.4461.13 seconds (s) computed on

a Dell Precision WorkStation 390; OS: Microsoft Windows XP

Professional SP3; CPU: Intel Core2 Quad Processor Q6600,

2.40 GHz, 4 GB RAM. Most of this time was spent for landmark

detection (6.0660.92 s).

Discussion

The key objective of this work was to introduce a new class of a

stroke outcome prediction method and to study its properties from

two standpoints: data aggregation and data selection. In addition,

we evaluated prediction capabilities of the preliminary PSA in

terms of individual mRS and BI scores as well as dichotomical

classification.

PSA-based prediction
The proposed prediction method belongs to a class of ‘‘same-

parameter-different-patients’’, is infarct size and location-driven

and combines neurological data with neuroradiology imaging.

The analyses carried out here assumed that a predicted case was

known prior to the PSA calculation, so the prediction and

computation of the PSA were performed simultaneously. This

assumption allowed us to study different ways of PSA creation

(data aggregation) expressed in terms of variants (weights).

Although intuitively the results of weighting should vary (as the

weights depend on multiple factors, including the size of overlap

(of the normalized ischemic lesions), PSA contour file volume,

contour file volume of the to-be-predicted case, and/or distance

between the contour centroids), the prediction outcomes of all PSA

variants are statistically equivalent (at least for the data used in this

study). This feature has several important consequences. First, the

use of the simplest weight w1 is feasible resulting in the fastest PFA

calculation. Second, the PSA can be pre-calculated before

prediction, which is not feasible when employing the w3–w8

weights. Third, a multiplicity of PSAs can be computed

independently for different datasets (and possibly at various

centers) and easily merged, which opens a possibility of building

powerful PSAs over the community. Fourth, although this analysis

covered all 8 weighting schemes and required excessive data,

future studies of PSA can disregard weighting.

The average prediction error of mRS [2–5] is around one grade

(1.09660.564) and a 3-parameter selection lowers it to about half

a grade (0.61260.059). The PSA constrained by 2-variable case

Population-Based Stroke Atlas for Outcome Prediction
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selection reduces the average prediction error by a fraction of

0.796 for mRS = [0–6] (or 0.723 for mRS = [2–5]), whereas 3-

variable selection (feasible at day 7th) further lowers this error by a

fraction of 0.538 (or 0.560), see Table 4. This result indicates that

PSAs customized to certain situations or patient sub-groups may

provide better results (as the selected PSA data closer correspond

to those of the case under prediction). Obviously, by applying w1

weighting, a series of customized PSAs can be pre-calculated

before prediction.

Multi-parameter prediction is also feasible and could potentially

improve the outcome. For instance, the concurrent use of the low-

thresholded infarct frequency map, Figure 3d (i.e., 0 for low and 1

for the remaining frequencies) multiplied by a predicted parameter

map could reduce outliers by eliminating from prediction the PSA

regions with a few cases only.

Prediction of individual mRS scores is feasible and the case

selection operation improves it. Although, generally, it is known

that it is hard to predict more severe cases [12], our results indicate

that this may be feasible, as the PSA-based prediction error for

mild and severe outcomes (mRS = 2,…,5) is between 0.5–0.7

(Table 3).

The dichotomical favourable versus unfavourable classification

with the PSA is also feasible (Table 4), and the areas under curves

could improve with removal of low infarct frequency values.

Stroke atlas comparison
Our probabilistic atlas differs from the other efforts aiming to

develop stroke atlases. A 3D stroke atlas [38] correlates disorders

with neuroanatomy by linking a cerebrovascular lesion location

with the resulting disorder along with the corresponding signs,

symptoms and/or syndromes. A probabilistic atlas [39] created

from 22 cases provides a spatial distribution of acute infarcts (it is a

special case of the PSA for the image density only and without

weighting and case selection). To quantify the impact of infarct

location on stroke severity, Menzes et al. [40] constructed brain

atlases composed of location-weighted values from 80 ischemic

stroke patients. Predefined anatomical regions (but not infarcts)

were weighted depending on their size and NIHSS. Note that

these existing probabilistic stroke-related atlases use a smaller

number of cases than that in our atlas.

Prediction approach comparison
The existing stroke outcome prediction approaches differ in

terms of prognostic models, risk scores, number of independent

variables, and predicted scores, among others. There are at least

110 stroke and cardiovascular disease risk scoring methods [26].

The stroke outcome prediction methods range from layperson-

oriented models [21] to quick and easy-to-perform scales [14],

[18] to regression-based models [7] to stroke risk (point- and web-

based) calculators [24] to infarct volume-based prediction [25] and

to examinations requiring specialized kits to measure biochemical

parameters, such as free triiodothyronine [9] or serum tight-

junction proteins for clinically significant hemorrhagic transfor-

mation measurement [10]. The majority of prediction models are

clinical-based versus layperson-oriented models, which do not

Figure 2. The software platform for PSA calculation and illustration of PSA-based prediction. The calculated maps of interest and the
cases (patients) to be predicted are selectable from the first two top panels on the right. For illustration, the mRS90 map is selected here and shown
as an axial image along with the superimposed normalized contour of the case under prediction (in the left hemisphere). The results of mRS90
prediction (the mean value of 4.25) along with the actual value for this patient (of 4) are shown in the right-bottom panel.
doi:10.1371/journal.pone.0102048.g002

Population-Based Stroke Atlas for Outcome Prediction
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require a clinic visit and contain modifiable lifestyle and

behavioural parameters [21].

A range of predicted outcomes includes risk of intracranial

hemorrhage after thrombolysis [15], [18], [19], [20], poor

prognosis and severe disability [6], [9], functional outcome after

thrombolysis [7], [17], risk of hemorrhagic transformation [10],

short- and long-term mortality [5], [6], [28], long-term outcome

[8], hospital disposition [22], ischemic stroke recurrence [23],

acute stroke outcome [13], [16], [27], and incidence of ischemic

stroke [21]. The number of independent variables varies, e.g.,

from two variables only (age and NIHSS) [14] to six simple

variables (age, living alone, independence in activities of daily

living before the stroke, verbal component of the Glasgow Coma

Scale, arm power, and ability to walk) [11] to numerous variables

(e.g., 12 in mortality prediction [5]).

Some works, such as [41], [42], also use the ROC curves to

assess binary classification. Asadi et al. used 107 consecutive acute

anterior circulation ischemic stroke patients to evaluate a binary

Figure 3. Examples of PSA maps calculated for w1 weighting (i.e., parameter and scan averaging): a) mRS (from the left to the right
mRS7, mRS30, mRS90, mRS180, mRS360); b) BI (from the left to the right BI30, BI90, BI180, BI360); c) NIHSS at admission (note that
the left hemisphere intensity of the NIHSS map is higher than that of the right hemisphere corresponding to the fact that patients
with a right sided ischemic stroke are associated with a lower NIHSS score [45]); d) NCCT image intensity (infarct frequency)
distribution. Image intensity, proportional to map value, was normalized to 0–255 range. Note the trends over time in the similar locations of the
mRS and BI maps (demonstrating the decrease in intensity for mRS and the increase in intensity for BI) which correspond to the improvement of
outcomes over time (as the patients with up to one year survival were included). The images are in the radiological convention.
doi:10.1371/journal.pone.0102048.g003

Population-Based Stroke Atlas for Outcome Prediction
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classifier for potential good (mRS#2) and poor (mRS.2)

outcomes and report the area under ROC of 0.6 [41]. Our

approach gives a better accuracy, as this area for distinguishing

mRS7 outcome of 0–2 versus 3–6 is 0.779 and that for

distinguishing 0–1 versus 2–6 is 0.704. For mRS30, the

corresponding areas are 0.71 and 0.72. This shows a promising

potential of our approach. By applying it to the ACA, MCA, and

PCA territories, the ROC area may potentially be improved.

Weimar et al. used a data pool of 9849 patients collected in 23

neurology departments [42]. The prediction concerned complete

restitution (BI$95) versus incomplete restitution or mortality (BI,

95). For a 0.437 threshold, the ROC gives correct classification for

80.7% patients. The model is based on conventional logistic

regression which does not take location into account. Our method,

when assessing favourable (BI$46) versus unfavourable (BI,46)

outcome prediction for BI180, resulted in the area under ROC of

0.85.

PSA advantages
Our approach conceptually differs from the abovementioned

efforts (as illustrated in Figure 1), although it is complementary to

and can be combined with them. It is ischemic infarct size and

location-driven and combines neurological with neuroradiological

approaches by correlating neurological parameters with diagnostic

scans in a population. The PSA for a given neurological parameter

represents its spatial distribution across the brain, aggregated by

the case selective and infarct region weighted accumulation for a

population of stroke patients. The prediction is based on obtaining

the distribution of this parameter in the normalized infarcted

region of the case under prediction. The resulting PSA not only

gives insights into the nature of an ischemic lesion distribution (see,

e.g., Figure 3d) but also into a parameter distribution (e.g.,

Figures 3a, b, c) and it enables outcome prediction simultaneously

for multiple parameters.

Weighting fine tunes the process of data aggregation by

imposing a penalty to reduce the influence of a non-overlapping

part of a PSA contour file onto a predicted case. Weighting is also

applicable as a selection operation to identify the most relevant

cases to build the PSA. Theoretically, the most desirable weighting

is w3 restricted to cases satisfying w3<2 (meaning that the selected

PSA contour files are very close or same to that of the to-be-

predicted case).

As the PSA contains time-specific maps, prediction over time is

potentially feasible. The case selection operation in PSA

construction enables the inclusion of specific patients allowing

the computation of PSAs for patient subgroups. As the PSA is a

stereotactic atlas located in the Talairach space, it can be

combined with anatomical [31], [43] and blood supply territories

[43] atlases. The PSA is a dynamic atlas, easily updatable with new

cases.

In this work, a preliminary PSA was calculated and analyzed for

ischemic lesions imagined on NCCT; however, the proposed

method is general and any parameters may be linked with any

imaging data, not only structural but also connectional by the use

of diffusion tensor imaging to assess the integrity of white matter

pathways and functional imaging to study patterns of cortical

activity [12].

Despite a time consuming simulation and analyses performed

here for numerous parameters and a huge number of combina-

Table 3. Best selection variables for mRS scores and the corresponding mean errors and standard deviations (the maximum
volume is 250.99 cm3).

mRS
Volume
(cm3) NIHSSa variable range NIHSS7 variable range Mean absolute error Error standard deviation

0 #8.008 0–5 0–5 2.273 1.043

1 #8.008 0–5 0–5 1.275 0.882

2 #8.008 0–5 0–5 0.690 0.572

3 #70 14–42 6–13 0.699 0.614

4 #max volume 14–42 0–42 0.524 0.462

5 #max volume 14–42 14–42 0.624 0.561

6 #max volume 14–42 14–42 1.894 0.707

doi:10.1371/journal.pone.0102048.t003

Table 4. Favourable/excellent versus unfavourable outcome prediction for 3 variable case selection for the w1 weight.

Time
(in days) Modified Rankin Scale Barthel Index

[0–2] vs [3–6] [0–1] vs [2–6] [0–45] vs [46–100]

7 0.779[0.688–0.854] 0.704[0.608–0.789] -

30 0.710[0.608–0.798] 0.720[0.620–0.807] 0.748[0.650–0.830]

90 0.657[0.550–0.753] 0.663[0.557–0.758] 0.774[0.675–0.855]

180 0.668[0.560–0.765] 0.664[0.556–0.762] 0.850[0.755–0.919]

360 0.573[0.459–0.681] 0.582[0.468–0.690] 0.653[0.536–0.756]

The areas under ROC (95% confidence interval) for mRS and BI corresponding to different times.
doi:10.1371/journal.pone.0102048.t004
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tions, the actual PSA-based prediction is fast and takes a few

seconds only.

Limitations
This work has two major types of limitations: one due to the

method and another one due to the available data. The method

requires the lesion of a case, either forming the PSA or to be

predicted, to be delineated, meaning that the lesion has to be

visible. This may not be feasible in hyperacute stage on NCCT,

and these cases cannot be used and predicted. We also assumed no

mass displacement and midsagittal plane shift to enable using a

fast normalization method due to a huge number of combination

analyzed. We employed a low degrees of freedom (DOF)

transformation for spatial normalization. This approach is rapid

and works with sparse data. The use of a high DOF warping

techniques, such as those reviewed in [44], could potentially

improve the predictability of the PSA, though increasing the time

of PSA calculation, which may be an issue when the number of

cases is large. Moreover, these techniques are mostly applicable to

magnetic resonance imaging, whereas our statistically-based

approach works for any acquisition, including sparse NCCT and

does not require scan interpolation.

Though the number of times the CT scans were processed was

vast (about 75 millions), the number of actual cases (patients) was

still relatively small because of the strict case selection criteria

(which reduced the initial dataset almost 4 times) aiming to choose

the most relevant and accurate cases to build the preliminary PSA

and to perform this proof of concept study. The PSA was

computed here for 11 parameters only, whereas 9 parameters were

used for prediction (in fact, practically, we employed 2 outcome

parameters for prediction and reported the results in Tables 2, 3,

4, as the mRS and BI scores were combined over time; all 11

parameters were illustrated only as maps in Figure 3). The current

PSA was created for generally treated patients. To provide

prediction of functional outcome after thrombolysis, adequate data

shall be collected and suitable probabilistic maps built.

Although the patients were followed-up for one year in terms of

outcome, causes of mortality or morbidity other than stroke

potentially influencing this outcome were not recorded and taken

into account in this study.

The currently constructed PSA was limited to ‘‘pure’’ ischemic

infarcts to facilitate the analyses, so cases with leukoaraiosis, old

infarcts, hemorrhage, edema and mass effect were not included.

By including other pathologies, potentially more specific and

clinically useful atlases can be constructed. Cases with mass effect

causing an anatomical distortion of the interhemispheric fissure

were not included to avoid misregistration errors, as the method

used for image normalization is based on an automatic detection

of the midsagittal plane. This method is very fast making all 75

million normalizations feasible in a reasonable time.

Future work
We aim to construct more powerful and specific PSAs, quantify

and validate them as well as compare with the existing methods.

Such validation will be essential before the PSA can be considered

adequate for any clinical use. For this purpose, large cohorts of

patients shall be employed.

As anatomical localization is vital [38], [40], the PSA will be

combined with our anatomical [31], [43], blood supply territories

[43] and stroke [38] atlases. The PSA will be built with a higher

sampling rate along the third axis to get isotropic PSA volumes.

The current prediction procedure requires the determination of

the contour file of the predicted case, which in this work has been

delineated manually. Infarct localization and its volume estimation

can be determined automatically [30], which will expedite the

procedure.

Summary
We introduced a novel stroke outcome prediction method based

on the ‘‘same-parameters-different-patients’’ model. This method

is lesion size and location-driven and uses a Population-based

Stroke Atlas (PSA). The PSA links neurological parameters with

pathology localized on neuroimages for a population of stroke

patients. It aggregates a multiplicity of parameters and presents the

distribution of each parameter as a 3D image.

The properties of the PSA were studied for different data

aggregation and data selection schemes. We examined eight data

aggregation schemes expressed in terms of variants (weights). The

prediction outcomes of all eight PSA variants were statistically

equivalent. Computationally, the most efficient and simplest was

the w1 variant aiming at parameter averaging, and this PSA

variant was used to study PSA-based prediction. This variant also

allows the PSA to be pre-calculated before prediction, which is not

feasible for the other 6 PSA variants. Moreover for the w1 variant,

a multiplicity of PSAs can be computed independently for different

datasets at various centers and easily merged, which enables

building powerful PSAs over the community.

We demonstrated that the data selection process improved

outcome accuracy. The PSA constrained by 2 variables reduced

the average prediction error by a fraction of 0.796 and the PSA

constrained by 3 variables further lowered this error by a fraction

of 0.538.

By employing a preliminary version of the PSA, we demon-

strated that prediction of individual mRS and BI scores was

feasible. Despite a known difficulty in predicting more severe

cases, our results indicated that this might be feasible with our

method, as the PSA-based prediction error for mild and severe

outcomes (mRS = 2,…,5) was between 0.5–0.7.

We also demonstrated the feasibility of the dichotomical

classification by means of our method to distinguish favourable

(mRS#2) from unfavourable (mRS.2) outcomes. The highest

value of the area under ROC was of 0.779, while that reported

recently in PLoS One was of 0.6.
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