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S u m m a r y  

Beginning at the time of insulitis (7 wk of age), CD4 + and CD8 + mature thymocytes from 
nonobese diabetic (NOD) mice exhibit a proliferative unresponsiveness in vitro after T cell receptor 
(TCR) crosslinking. This unresponsiveness does not result from either insulitis or thymic involution 
and is long lasting, i.e., persists until diabetes onset (24 wk of age). We previously proposed 
that it represents a form of thymic T cell anergy that predisposes to diabetes onset. This hypothesis 
was tested in the present study by further investigating the mechanism responsible for NOD 
thymic T cell proliferative unresponsiveness and determining whether reversal of this unrespon- 
siveness protects NOD mice from diabetes. Interleukin 4 (IL-4) secretion by thymocytes from 
>7-wk-old NOD mice was virtually undetectable after treatment with either anti-TCR c~/B, 
anti-CD3, or Concanavalin A (Con A) compared with those by thymocytes from age- and sex- 
matched control BALB/c mice stimulated under identical conditions. NOD thymocytes stimulated 
by anti-TCR o~/B or anti-CD3 secreted less IL-2 than did similarly activated BALB/c thymocytes. 
However, since equivalent levels of IL-2 were secreted by Con A-activated NOD and BALB/c 
thymocytes, the unresponsiveness of NOD thymic T cells does not appear to be dependent on 
reduced IL-2 secretion. The surface density and dissociation constant of the high affinity IL-2 
receptor of Con A-activated thymocytes from both strains are also similar. The patterns of 
unresponsiveness and lymphokine secretion seen in anti-TCR/CD3-activated NOD thymic T 
cells were also observed in activated NOD peripheral spleen T cells. Exogenous recombinant 
(r)IL-2 only partially reverses NOD thymocyte proliferative unresponsiveness to anti-CD3, and 
this is mediated by the inability of IL-2 to stimulate a complete IL-4 secretion response. In contrast, 
exogenous rlL-4 reverses the unresponsiveness of both NOD thymic and peripheral T cells 
completely, and this is associated with the complete restoration of an IL-2 secretion response. 
Furthermore, the in vivo administration of rlL-4 to prediabetic NOD mice protects them from 
diabetes. Thus, the ability of rlL-4 to reverse completely the NOD thymic and peripheral T 
cell proliferative defect in vitro and protect against diabetes in vivo provides further support 
for a causal relationship between this T cell proliferative unresponsiveness and susceptibility to 
diabetes in NOD mice. 

D uring T cell development, the thymus has a central role 
in the induction and maintenance of immunological 

self-tolerance, which is a prerequisite for the prevention of 
autoimmune diseases (1, 2). The mechanisms responsible for 

I The first two authors made equivalent contributions to this paper. 

this self-tolerance depend on the ability of developing imma- 
ture thymocytes to proliferative in response to antigenic and/or 
mitogenic stimuli presented by thymic APCs (1-4). There- 
fore, the identity and functional status of T cells that are ex- 
ported from the thymus to the periphery depend on their 
intrathymic proliferative capacity. Accordingly, if a thymic 
T cell after it first encounters a self-thymic Ag becomes func- 
tionally inactivated and enters a long-lasting state of prolifer- 
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ative unresponsiveness, i.e., a state of anergy, this may lead 
to changes in the function and/or repertoire of peripheral 
T cells that could ultimately lead to a breakdown in self- 
tolerance and autoimmune disease (1~6). Hence, if regula- 
tory T cells that normally confer protection from diabetes 
become anergic either in the thymus or periphery during the 
early prediabetic stages of the disease, this event could result 
in diabetes. 

Our previous findings, that thymic and peripheral T cell 
unresponsiveness after TCR crosslinking correlates with the 
time of insulitis and persists until the onset of overt disease 
in nonobese diabetic (NOD) 2 mice (7, 8), raised the possi- 
bility that this age-dependent event predisposes to diabetes 
onset. In this report, we tested this possibility by investigating 
the mechanisms that elicit thymic and peripheral T cell prolifer- 
ative unresponsiveness in prediabetic NOD mice and deter- 
mining whether treatment protocols that reverse this un- 
responsiveness can protect these mice from diabetes. We 
analyzed whether CD4 + and CD8 + thymic and splenic T 
cells from >7-wk-old NOD mice are unresponsive after TCR 
crosslinking due to a defect(s) in their production of or re- 
sponse to IL-2 and/or IL-4. Interaction between the IL-2- 
and IL-4-stimulated signaling pathways is important for the 
regulation of T cell proliferation and maturation, and both 
IL-2 and IL-4-dependent proliferation of Ag-specific periph- 
eral CD4 + Th0 (produce IL-2 and IL-4) cell clones are sen- 
sitive to anergy induction (reviewed in references 8-11). We 
report that after crosslinking by anti-TCR ot/~ or anti-CD3 
mAbs, the secretion of both IL-2 and IL-4 by NOD thymo- 
cytes is reduced considerably. Similar results were obtained 
with anti-TCR/CD3-activated peripheral T cells. However, 
while the activation of NOD thymic T cells by Con A elicits 
levels of IL-2 secretion and high affinity IL-2R (HIL-2R) 
expression/binding capacity comparable to that of control 
BALB/c mice, their level of IL-4 secretion remains low. By 
comparison, Con A-activated NOD peripheral T cells se- 
crete significantly less IL-2 and IL-4 than similarly activated 
BALB/c peripheral T cells. Exogenously added rlL-4 not only 
restores the in vitro NOD thymic and peripheral T cell prolifer- 
ative responses to the higher level of control BALB/c thymic 
and peripheral T cells but also protects, NOD mice from de- 
veloping diabetes in vivo. These observations demonstrate 
that NOD T cell proliferative unresponsiveness to TCR cross- 
linking may result from a TCR-mediated defect that leads 
to decreases in IL-4 and IL-2 secretion. They also raise the 
intriguing possibility that this thymic and peripheral T cell 
proliferative unresponsiveness is a causative factor that pre- 
disposes to susceptibility to type I diabetes in NOD mice. 

Materials and Methods 
Mice. In vitro assays of thymic and splenic T cell function were 

performed using prediabetic male and female inbred NOD/Del mice 
between 4 and 12 wk of age. These mice were screened for the 

2 Abbreviations used in this paper: HIL-2R, high affinity IL-2 receptor; 
NOD, nonobese diabetic; SMLR, syngeneic mixed lymphocyte reaction. 

absence of glycosuria (Diastix; Miles Laboratories, Rexdale, On- 
tario), and were maintained in the Department of Comparative 
Medicine's specific pathogen-free mouse facility at the University 
of Toronto. This colony derived from a breeding nucleus of 
NOD/LtAlt mice provided by Dr. B. Singh from the University 
of Alberta (Edmonton, Alberta) breeding colony. The onset of in- 
sulitis in NOD/Del mice occurs at 7 wk of age, and diabetes inci- 
dence currently is 50-60% in females and 10% in males by 24 wk 
of age. Age- and sex-matched BALB/cJ mice obtained from the 
Department of Comparative Medicine mouse facility were used 
as controls. The spedfic pathogen-free NOD/Lt and NOD/Jd colo- 
nies at The Jackson Laboratory (Bar Harbor, ME) and the Hospital 
for Sick Children, respectively, were used to study the in vivo effects 
of Ib4. Diabetes incidence in the NOD/Lt colony is currently 
60-80% in females and 40% in males by 24 wk of age, and the 
incidence in the NOD/Jd colony is currently 92% in females and 
10% in males by 24 wk of age. 

Reagents and mAbs. A cell supernatant containing an mAb 
(PC61, rat IgG1; reference 12) that detects the HIb2R was kindly 
provided by Dr. H. R. MacDonald (Ludwig Institute for Cancer 
Research, Lausanne, Switzerland). FITC-labeled goat anti-mouse 
IgG and goat anti-rat IgG (H+L) were purchased from Jackson 
ImmunoResearch Inc. (West Grove, PA). Ascites containing the 
H57-597 anti-TCR c~/3 mAb (13) were generously provided by 
Dr. R. Kubo (National Jewish Center for Immunology and Respi- 
ratory Medicine, Denver, CO). The 145-2Cll anti-CD3e mAb (14) 
was kindly supplied by Dr. J. Bluestone (University of Chicago, 
Chicago, IL). The 11Bll anti-Ib4 mAb (15) was kindly provided 
by Dr. W. E. Paul (National Institute of Allergy and Infectious 
Diseases, National Institutes of Health, Bethesda, MD). The $4B6 
anti-IL-2 mAb was kindly provided by Dr. T. R. Mosmann (Univer- 
sity of Alberta, Edmonton, Alberta) (16). Murine rlL-2 was kindly 
provided by Dr. G. Mills (Oncology Research, Toronto General 
Hospital, Toronto, Ontario). Murine rlL-4 was obtained from ei- 
ther the supematant of murine Ib4 cDNA-transfected X63Ag8- 
653 myeloma cells (17) (kindly supplied by Dr. F. Melchers, Basel 
Institute, Basel, Switzerland), a baculovirus system that expresses 
a vector containing the murine rlL-4 gene (18) (kindly provided 
by Dr. W. E. Paul), or from Dr. T. Higgins (Sterling Drug, Inc., 
Malvern, PA). The Ib4-dependent T cell line CT.4S (19) was also 
generously supplied by Dr. W. E. Paul. The Ib2-dependent CTLL 
line (20) was a kind gift from Dr. M. Pierres (Centre d'Immunologie 
de Marseille-Luminy, Marseille, France). [3H]Thymidine was ob- 
tained from Amersham (Oakville, Ontario). [nSI]rlb2 (sp act 
20-50 #Ci//~g) was obtained from NEN (-DuPont Canada Inc., 
Mississauga, Ontario). 

T Cell Isolation and Activation. NOD/Del and BALB/c mice 
were killed by cervical dislocation, thymi and spleens were removed, 
and single cell suspensions were prepared. Erythrocytes were re- 
moved from spleen cell suspensions by treatment for 3 min with 
0.1 mM EDTA, 155 mM NH4C1, and 10 mM KHCO3. Thymo- 
cytes and spleen cells were washed and suspended in high-glucose 
DMEM (HGDMEM) containing 10% heat-inactivated FCS, 10 
mM Hepes buffer, 1 mM sodium pyruvate, 2 mM t-glutamine, 
100 U/ml penicillin, 0.1 mg/ml streptomycin, and 50/~M 2-ME 
(all purchased from Gibco Laboratories, Grand Island, NY). Purified 
splenic T cells were obtained by passage of the cell suspensions 
through a nylon wool column. Cells isolated in this way consisted 
of i>95% CD3 + T cells, as estimated by fluorescence microscopy 
using the 145-2Cll anti-CD3 mAb (14). T cells (final concentra- 
tion, 106/ml) were cultured for 72 h at 37~ in round-bottomed 
96-well plates in the presence of 2.5/~g/ml Con A with or without 
rib2 or rib4, and were then used for either flow cytometric anal- 

88 Nonobese Diabetic T Cell Proliferative Unresponsiveness and Diabetes 



yses or assayed for cell proliferation. Alternatively, anti-TCR or/B- 
and anti-CD3-induced proliferation were performed by culturing 
thymocytes for 72 h at 37~ in round-bottomed 96-well plates 
precoated with a 1:1,000 dilution of ascites containing the H57- 
597 anti-TCR ot/B mAb or a 1:200 dilution of hybridoma super- 
natant containing the anti-CD3 mAb. Irradiated (3,000 rad, 3' ir- 
radiation) and mitomycin C (50 mg/ml; 30 min at 370C)-treated 
syngeneic splenocytes (final concentration, 2 x 104/ml) were 
added when thymocytes were activated by anti-CD3, as described 
(7). [3H]Thymidine (1/~Ci/well) was added 18 h before termina- 
tion of culture. Cultures were harvested using a 96-well cell har- 
vester (Skatron Inc., Sterling, VA), and the extent of cell prolifera- 
tion was determined by assay of the amount of [3H]thymidine 
incorporation using a rack B counter (LKB Instruments, Inc., 
Gaithersburg, MD). Ib2 or IL-4 production by activated thymo- 
cytes or splenic T cells (106 cells/ml) was quantified by culturing 
cells for 48 h at 37~ in round-bottomed 96-well plates in the pres- 
ence of either plate-bound anti-TCR c~/~ and anti-CD3 mAbs or 
Con A (2.5 #g/ml), and by assay of the culture supernatant for 
their Ib2 and 1I.,4 content. 

Flow Cytometric Analysis. Thymocytes activated by Con A in 
the presence or absence of Ib2 (800 U/ml) were harvested after 
72 h in culture and washed three times in PBS containing 0.01 M 
c~-methylmannoside to remove residual Con A. Cells were layered 
above 30% Percoll and centrifuged at 800 g for 20 min to recover 
viable cells, further washed, and resuspended in PBS containing 
0.5% FCS. Viable ceUs (2 x 103) were incubated for 30 rain at 
4~ in 200 #1 of undiluted anti-HIb2R mAb-containing super- 
natant, washed once with PBS plus 0.5% FCS, and further in- 
cubated for 30 min at 4~ with 4 mg of FITC-labded goat anti-rat 
IgG (H+L) that was previously absorbed on mouse Ig. The stimu- 
lated T cell blasts were distinguished from the unactivated cells 
based on their forward light scatter vs. 90 ~ light scatter character- 
istics. Stained cells (104 cellsAample) were enumerated using an 
Epics V flow cytometer (Coulter Electronics, Hialeah, FL) equipped 
with a three-decade logarithmic amplifier. Specific staining was ob- 
tained after subtracting the background value of second antibody 
alone from values obtained in the presence of both antibodies. 

IL.2 Binding Assay. An I1+-2 binding assay was performed as 
described by Robb et al. (21) with minor modifications. Cells were 
harvested, washed three times, and counted in binding medium 
(RPMI 1640 supplemented with 5% heat-inactivated FCS, 2 mM 
t-glutamine, 100 U/m1 Penicillin, 0.1 mg/ml streptomycin, and 
50/~M 2-ME). They were then resuspended in 3 ml of binding 
medium, pH 3, for 30 s on ice, washed with ice-cold medium, 
and resuspended in binding medium, Ceils (0.5-1.0 x 106) in a 
final reaction volume of 100/~1 were added in triplicate to flat- 
bottomed 96-well plates containing twofold serial dilutions of 
12SI-labeled human rib2 (starting concentration, 4-6 nM). To de- 
termine the specificity of binding, unlabeled rib2 was added as 
competitor in 500-fold excess of [12SI]rIb2. After incubation for 
2 h at 4~ cell suspensions were transferred to Eppendorf tubes 
and the bound and free [12SI]rlb2 were separated by eentrifuga- 
tion through 100/~1 of an oil mixture (80% dibutyl phthalate and 
20% olive oil). The radioactivity in the cell pellets and superna- 
tants containing the bound and the free [lzSI]rID2, respectively, 
was determined in a gamma counter. The number of binding sites 
per cell and the dissociation constants (Kd) of the HIb2R were 
calculated by Scatchard analysis. 

Ib2 and IL.4 Secretion Assays. Secreted ID2 or Ib4 activity was 
measured using the Ib2-dependent CTLL line or IL-4-dependent 
CT.4S cell line, respectively, as described (18, 20). Twofold serial 
dilutions of test supernatant were added to cultures containing ei- 

ther 1.5 x 104 CTLL cells or 5 x 103 CT.4S cells in flat- 
bottomed 96-well plates in a final volume of 100 #l/well for 24 h or 
48 h, respectively. Cell proliferation was assessed by addition of 
1 #Ci/well of [3H]thymidine 6 h (Ib2) or 18 h (II~4) before ter- 
mination of culture, and [3H]thymidine incorporation was deter- 
mined by liquid scintillation counting. 

IL4 Treatment In Viw In the first experiment, NOD/Lt  fe- 
males from four separate litters were randomized at 6 wk of age, 
and a group of 12 females received twice weekly intraperitoneal 
injections of 500 U (50 ng) routine rlL-4 (sp act, 107 U/mg; Ster- 
ling Drug). The control group of 12 females received injections 
of the vehicle (PBS + 1% serum from 6-wk-old prediabetic 
NOD/Lt females) to provide carrier protein. The mice were main- 
rained under specific pathogen-free conditions at The Jackson Lab- 
oratory and allowed free access to food (Old Guilford 96W pellets; 
Emory Morse Co., Guilford, CT) and chlorinated drinking water. 
Mice were tested weekly for glycosuria using Tes-Tape TM (kindly 
provided by Eli Lilly Co., Indianapolis, IN). Diabetes was diag- 
nosed when mice were glycosuric for at least a consecutive 2 wk. 
At the end of a 14-wk treatment period, two normoglycemic fe- 
males from the control and treatment groups, respectively, were 
killed for analysis, and the remainder of the nondiabetic mice were 
aged to 52 wk without further treatment. At death, pancreas, sub- 
mandibular salivary glands, and kidneys from each mouse were fixed 
in Bouin's solution, embedded in paraffin, sectioned, and stained. 
Aldehyde fuchsin staining of pancreas sections sampled at three 
different nonoverlapping levels was used to compare the extent to 
which insulitic infiltrates had reduced the mass of granulated 3 
cells. Splenic leukocyte populations were enumerated by FACScan | 
(Becton Dickinson & Co., Mountain View, CA) analyses using 
the anti-Thy-l.2 (clone HO-13-4.9), anti-CD4 (clone GK 1.5), and 
anti-CD8 (clone 53-6.72) mAbs in ascites form at 1:100, 1:200, 
and 1:200 dilutions, respectively, as described (7). Analyses of Esch- 
erichia coli LPS-stimulated IIr secretion from peritoneal macro- 
phages and of T cell immunoregulation after activation in a syn- 
geneic mixed lymphocyte reaction (SMLR) were performed as 
described (22). 

In a second experiment, a group of eight 3-wk-old female 
NOD/Jd mice from two separate litters received twice weekly in- 
traperitoneal injections of 500 U (50 ng in 250 #1) of a murine 
rlL-4 (sp act, "~107 U/mg)-containing supernatant derived from 
Sf9 Drosophila cells infected with a baculovirns that expresses a 
vector containing the murine rib4 gene (18). The control group 
of six age-matched NOD females received injections of superna- 
tant (250 #1) derived from Sf9 cells infected with the wild-type 
baculovirus vector that does not contain the murine II+-4 gene (18). 
Treatment of both groups of mice was continued for 12 wk until 
the mice were 15 wk of age, after which treatment ceased. The 
mice were maintained at the Hospital for Sick Children, tested 
weekly for glycosuria, and diagnosed for diabetes, as described in 
the first experiment. 

Results 

Expression of HIL-2R on NOD Con A-activated Thymic T 
CellBlasts Is Normal. Engagement of  the T C R / C D 3  com- 
plex by a mitogenic lectin or A g / M H C  generally leads to 
a rapid increase in HIL-2R expression followed by I1+-2 produc- 
tion and stimulation of T. cell proliferation (23). Alternatively, 
if such T C R  stimulation results in a decrease in or lack of 
expression of HIL-2R,  then T cell proliferative unrespon- 
siveness ensues (24). In Con A-activated CD4 + and CD8 + 
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spleen T cells from 10-wk-old NOD/ShiKbe mice, HIL-2R 
expression is reduced about threefold (25). The latter result 
raised the possibility that the proliferative unresponsiveness 
of NOD thymocytes from >7-wk-old mice to Con A stim- 
ulation (7) is mediated by a diminished expression of HIL- 
2R. To test this possibility, NOD and BALB/c thymocytes 
were cultured in the presence of 2.5/~g/ml Con A for 72 h, 
and were then analyzed by flow cytometry for their surface 
expression of HIL-2R. The percentages of these thymocytes 
that express HIL-2R were very similar (Table 1), and their 
levels of surface expression of HIL-2R were equivalent (our 
unpublished data). 

Binding of IL-2 to the HIL-2P, generally results in an in- 
creased level of expression of the HIL-2R (23). To determine 
whether the post-HIL-2R part of the IL-2 pathway that en- 
hances HIL-2P, membrane expression is intact, the level of 
HIL-2R surface expression in NOD and BALB/c thymocytes 
stimulated by Con A plus 800 U/ml rlL-2 was assayed. The 
latter saturating concentration of rlL-2 was chosen since NOD 
thymocytes proliferate rather poorly in response to lower con- 
centrations of rlL-2 (7). The addition of 800 U/ml rlL-2 in- 
creased both the proportions ofT cells bearing HIL-2R (Table 
1) and the surface densities of these receptors on NOD and 
BALB/c thymocytes (our unpublished data). 

Results obtained by Seatchard analysis of [12q]rlL-2 binding 
to thymocytes supported our estimates of the relative levels 
of expression of HIL-2P, on these cells observed by flow cytom- 
etry. The number per cell and affinity of HIL-2R were very 
similar in both young (<7 wk) and old (>7 wk) Con A-ac- 
tivated NOD and BALB/c thymocytes (Table 2). An age- 
dependent effect was noted since a twofold decrease in the 
number of HIL-2R molecules per cell on old vs. young acti- 
vated thymocytes was observed. No significant difference was 
observed between the affinity and number per cell of HID 
2R on NOD and BALB/c quiescent tbymocytes (data not 
shown). Thus, the surface density and binding capacity of 
HIL-2P, on activated NOD thymic T cells appears to be 

normal (i.e., equivalent to that of activated BALB/c thymo- 
cytes), and presumably is not responsible for the Con A-medi- 
ated proliferative defect of >7-wk-old NOD thymocytes. 

NOD Thymic T Cells Secrete Reduced Amounts of lL-2 after 
Stimulation by Anti-TCR/CD3 but Not Con A. Since the level 
of HIL-2K expression on Con A-activated NOD thymocytes 
is normal, we analyzed whether the unresponsiveness of these 
T cells results from a defect in IL-2 production after stimula- 
tion through the TCK, as has been observed in Thl clones 
(3, 4, 9, 26, 27). The capacity of NOD thymocytes to se- 
crete IL-2 after activation by either anti-TCK cx/~ anti-CD3, 
or Con A was compared. Anti-TCK c~/3 (Fig. 1 A) and 
anti-CD3 (Fig. 1 B) each stimulated '~10-fold less IL-2 secre- 
tion by thymocytes from 8-12-wk-old NOD mice than from 
age- and sex-matched control BALB/c thymocytes. However, 
the amounts of IL-2 secreted by NOD and BALB/c Con A-ac- 
tivated thymic T cells were virtually identical (Fig. 1 C). Thus, 
mitogen stimulation of NOD thymocytes overcomes the de- 
fect in IL-2 secretion that is observed after crosslinking the 
TCK with an anti-TCK mAb. 

NOD Spleen T Cells Secrete Reduced Amounts of lL-2 after 
Stimulation by Either Anti-TCR/CD3 or Con A. To deter- 
mine whether the reduced IL-2 secretion observed in stimu- 
lated NOD thymic T cells is also manifested in activated NOD 
peripheral T ceils, we compared the levels of IL-2 secretion 
by activated spleen T ceils from NOD and BALB/c mice. 
The level of IL-2 secreted by activated NOD splenic T cells 
is significantly lower than that noted for activated thymic 
T cells. This was observed not only for after T cell stimula- 
tion by anti-TCK oe/3 (Fig. 1 D) and anti-CD3 (Fig. 1 E) 
but also by Con A (Fig. 1 F). Thus, while Con A normalizes 
the defect in IL-2 secretion by NOD thymic T cells, this is 
not the case for Con A-activated NOD spleen T calls. 

NOD Thymic and Splenic T Ceil Proliferative Unresponsive- 
ness Is Associated with Diminished IL-4 Secretion and Is Reversed 
by Exogenous rlL-4. Interaction between the IL-2- and IL- 
4-stimulated signaling pathways plays an important role in 

Tab le  1. Frequency of HIL-2R-bearing NOD and BALB/c 
Con A-activated T Cell Blasts Is Equivalent 

Stimulus 

Strain Con A Con A + IL-2 

% 

N O D  25 56 

BALB/c 18 49 

Tab le  2. Expression of HIL-2R by Con A-activated NOD 
Thymocytes Is Normal 

Affinity 
Strain Age Kd Molecules/cell 

pM 
N O D  Young 38 2,025 

BALB/c  Young 67 2,145 

NOD Old 52 1,015 
BALB/e Old 57 1,215 

Thymocytes from 8-12-wk-old NOD or control BALB/c mice were in- 
cubated for 72 h at 37~ with Con A (2.5/~g/ml) in the absence or 
presence of rIL-2 (800 U/ml). The recovered viable cells were stained 
with an anti-HIL-2R, mAb and FITC-labeled goat anti-rat Ig (H + L), 
and the large thymocyte blasts were gated and analyzed. The mean per- 
centages of positively stained thymocytes obtained in three independent 
experiments are indicated, and the SD of the means were ~10%. 

Assays of binding of [t2SI]rlL-2 to Con A-activated NOD thymocytes 
were performed as described in Materials and Methods. Young mice were 
4-6 wk of age and old mice were 8-12 wk of age. The number of bind- 
ing sites per cell and the dissociation constants (Kd) of the HIL-2K were 
calculated by Scatchard analysis. Each result was obtained using a group 
of two to five mice in three independent experiments. 
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Figure 1. Ib2 secretion by activated thymic 
and splenic T cells. Thymic (A-C) and splenic 
(D-F) T cells from 8-12-wk-old NOD and 
BALB/c mice were activated for 48 h at 37~ 
by either plate-bound anti-TCR a/B (.4 and 
D) and anti-CD3 (B and E) mAbs, or by 2.5 
vg/ml Con A (C and F). Culture supernatants 
were removed and assayed for their IL-2 activity 
by stimulation of proliferation of CTLL II~2- 
dependent T ceUs. The results of triplicate cul- 
tures are expressed as the mean values _+ SD, 
and are representative of three different ex- 
periments. 

the regulation of T cell proliferation and maturation (28-30). 
In addition, T h l  and Th2 cells differ in their function and 
production of autocrine growth factors; IL-2 is produced by 
Th l  and IL-4 is produced by Th2, respectively (31). We there- 
fore examined the level of secretion of IL-4 by activated N O D  
thymic and splenic T cells. N O D  thymocytes activated by 

either ant i-TCR a / ~  (Fig. 2 A) or anti-CD3 (Fig. 2 B) did 
not secrete detectable amounts of IL-4 in comparison with 
similarly activated thymocytes from age- and sex-matched 
BALB/c control mice. Con A-activated N O D  thymocytes 
secreted considerably less IL-4 than did similarly activated 
BALB/c thymocytes (Fig. 2 C). Similar results were obtained 
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Figure 2. IL-4 secretion by activated thymic 
and splenic T cells. Thymic (A-C) and splenic 
T cells (D-F) from 8-12-wk-old NOD and 
BALB/c mice were activated for 48 h at 37~ 
by either plate-bound anti-TCR a/B (,4 and 
D) or anti-CD3 (B and E) mAbs, or by 2.5 
/~g/ml Con A (C and F). Culture supernatants 
were removed and assayed for their Ib4 activity 
by stimulation of proliferation of CT.4S II..4- 
dependent T cells. The results of triplicate cul- 
tures are expressed as the mean values _+ SD, 
and are representative of three different ex- 
periments. 
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upon activation of NOD splenic T cells activated by either 
anti-TCR ol//3 (Fig. 2 D), anti-CD3 (Fig. 2 E), or Con A 
(Fig. 2 F). Therefore, NOD thymic and peripheral T ceils 
both display a relative inability to secrete IL-4 after activa- 
tion through either the TCK or by mitogen. 

To establish whether this defect in IL-4 secretion is caus- 
ally related to T cell hyporesponsiveness, the ability of rlL-4 
plus either anti-TCK ot//~, anti-CD3, or Con A to stimu- 
late NOD T cell proliferation was assayed. Addition of ex- 
ogenous rlL-4 restored to normal the proliferative capacity 
of NOD thymocytes stimulated by anti-TCK ot/~ (Fig. 3 
A), anti-CD3 (Fig. 3 B), or Con A (Fig. 3 C). Similarly, 
exogenous rlL-4 also restored the proliferative response of 
anti-TCR oUB-activated NOD spleen T cells to that of acti- 
vated control BALB/c spleen T cells (Fig. 3 D). In contrast, 
supraphysiobgical amounts of rlL-2 only partially correct 
the thymic T cell unresponsiveness to anti-CD3 (Fig. 4) or 
Con A (7). Therefore, NOD thymic and peripheral T cell 
proliferative unresponsiveness may be due to diminished IL-4 
secretion as a consequence of a defect in the Th2 T cell subset. 

Exogenous rlL-4 Completely Restores Normal IL-2 Secretion 
by NOD Thymic T Cells, whereas Exogenous rlL-2 Only Par- 
tially Restores IL-4 Secretion by NOD Thymic T Cells. To test 
whether an increased level of IL-2 secretion is associated with 
the capacity of exogenous rIL-4 to restore the proliferative 
responsiveness of NOD T cells, the ability of anti-TCK c~//5 
plus exogenously added rlL-4 to stimulate IL-2 secretion by 
BALB/c and NOD thymocytes was assayed. The amount of 
rIL-4 added, i.e., 125 U/ml, promotes essentially a maximal 
proliferative response of anti-TCK cU~-stimulated NOD 
thymic T cells (Fig. 3 A). Equivalent levels of IL-2 secretion 
by anti-TCK c~/~ + rlL-4-activated thymocytes from both 
strains were noted (Fig. 5 A). Since the IL-2-dependent CTLL 
cell line used here may be partially responsive to IL-4, we 
verified whether CTLL proliferation observed in Fig. 5 A 
was at all due to the presence of residual exogenous rlL-4 
present in the supernatants of the activated T cells. The ability 
of the 11Bll anti-IL-4 mAb to block CTLL and CT.4S cell 
proliferation was compared. This mAb (10 #g/ml) reduced 

the CTLL proliferative response to BALB/c- and NOD- 
activated thymic T cell culture supernatants by only 33 and 
26~ respectively (Fig. 5 B). In contrast, this mAb inhibited 
virtually 100070 of the IL-4-dependent CT.4S proliferative re- 
sponse, demonstrating that the CTLL proliferative response 
obtained in Fig. 5 A was stimulated predominantly by IL-2. 
Thus, the ability of IL-4 to restore the proliferative respon- 
siveness of NOD T cells activated via the TCK is associated 
with its capacity to restore to normal (i.e., to the BALB/c 
T cell level) the level of IL-2 secretion by these cells. 

To test whether deficient IL-4 secretion mediates the par- 
tial restoration of the NOD thymic T cell proliferative re- 
sponse by exogenous rIL-2, the ability of anti-TCR or//3 plus 
exogenously added rIL-2 to stimulate IL-4 secretion by BALB/c 
and NOD thymocytes was assayed. The amount of rIL-2 
added, i.e., 250 U/ml, promotes essentially a maximal prolifer- 
ative response of anti-TCR et//3-stimulated NOD thymic 
T cells (Fig. 4). NOD thymocytes secreted considerably less 
IL-4 than did BALB/c thymocytes after stimulation with anti- 
TCR oUB + rIL-2 (Fig. 5 C). Since the IL-4-dependent CT.4S 
cell line is partially responsive to IL-2 at a concentration of 
>150 U/ml (19), we verified whether any CT.4S proliferation 
observed in Fig. 5 C was stimulated by residual exogenous 
rIL-2 present in the supernatants of the activated T cells. The 
ability of the $4B6 anti-IL-2 mAb to block CT.4S and CTLL 
cell proliferation was compared. This mAb (25 070 of hybridoma 
culture supernatant) reduced the CT.4S proliferative response 
to BALB/c- and NOD-activated thymic T cell culture super- 
natants by only 27 and 33070, respectively. In contrast, this 
mAb inhibited the IL-2-dependent CTLL proliferative response 
to BALB/c- and NOD-activated thymic T cell culture super- 
natants by 86 and 85~ respectively (Fig. 5 D). Thus, the 
inability of IL-2 to completely restore the proliferative re- 
sponsiveness of TCR-activated NOD thymic T cells is as- 
sociated with the partial restoration of IL-4 secretion by these 
cells. 

NOD Thymic T Cells Require a Continuous IL-4 or IL-2 
Stimulus to Secrete Normal Levels of IL-2 or Partial Levels of 
IL-4, Respectively. Our data described above raise the possi- 
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Figure 3. Exogenous rIL-4 cor- 
rects the proliferative unresponsive- 
ness of activated NOD thymic and 
splenic T cells. Thymocytes from 
8-12-wk-old NOD and BALB/c 
mice were activated by either plate- 
bound anti-TCK oUB (A) and anti- 
CD3 (B) mAbs or by Con A (C') 
in the presence of varying amounts 
of rib4. Splenic T cells were acti- 
vated by phte-bound anti-TCR or/3 
mAb in the presence of varying 
amounts of rIL-4 (D). CeU prolifera- 
tion was determined by [3H]thy- 
midine incorporation. The results 
of triplicate cultures are expressed 
as the mean values _+ SD, and are 
representative of three different ex- 
periments. 
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Figure 4. Exogenous rib2 partially corrects the proliferative unrespon- 
siveness of activated NOD thymic T cells. Thymocytes from 8-12-wk-old 
NOD and BALB/c mice were activated by anti-CD3 mAb in the presence 
of varying amounts of rib2. Cell proliferation was determined by 
[3H]thymidine incorporation. The results of triplicate cultures are ex- 
pressed as the mean values _+ SD, and are representative of three different 
experiments. 

bility that NOD T cell proliferative unresponsiveness may 
be due primarily to a defect in the Th2 T cell subset. In- 
terestingly, Ben-Sasson et al. (18) previously reported that 
Th2 cells may actually consist of two distinct subsets: one 
that requires IL-2 for IL-4 production and a second that can 
produce IL-4 without the requirement of IL-2. Based on this 
report, we considered that the following two possibilities may 
explain our findings. First, only the IL-2-responsive NOD 
Th2 subset produces IL-4 upon stimulation with anti-TCR 
+ rlL-2, and this would account for the partial restoration 
of endogenous IL-4 production. Second, this IL-2-responsive 
Th2 subset does not produce sufficient amounts of endoge- 
nous IL-4 upon stimulation with anti-TCR + rlL-2, and 
therefore IL-4 may not be available in the amounts required 
for complete restoration of the response to be achieved. 

To further examine why rlL-2 only partially restores the 
level of IL-4 secretion and proliferative responsiveness of NOD 
thymic T cells, we investigated the autocrine effect of rlL-4 
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Figure 6. NOD thymic T cells ~xtuire a continuous IL-4 or ID2 stimulus 
to secrete normal levels of Ib2 or partial levels of Ib4, respectively. Thymic 
T cells from 8-12-wk-old NOD and BALB/c mice were activated by anti- 
TCR oL/fl in the presence of rib2 (250 U/ml) or rib4 (125 U/m1). After 
24 h of culture, cells were harvested, layered above 30% Percoll, and cen- 
trifuged at 800 g for 20 min to remove dead cells. After washing, viable 
T cell blasts were incubated for an additional 48 h in 96-well plates coated 
with anti-TCR. (.4) Culture supernatants were harvested and assayed for 
their Ib2 activity. (B) Culture supernatants were harvested and assayed 
for their Ib4 activity. The results of triplicate cultures are expressed as 
the mean _+ SD, and are representative of three different experiments. 

on these responses of NOD Th2 cells and compared it with 
the effect of rlL-2 on these cells. If there is a defect only in 
the IL-2-dependent pathway of IL-4 production, the addi- 
tion of sufficient amounts of exogenous rlL-4 would be ex- 
pected to restore the production of endogenous IL-4 because 
all Th2 T cells are responsive to high concentrations of IL-4. 
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Figure 5. Exogenous rlL-4 com- 
pletely restores Ib2 secretion by 
NOD thymic T cells whereas ex- 
ogenous rIL-2 only partially restores 
Ib4 secretion by NOD thymocytes. 
(A) Thymic T cells from 8-12-wk- 
old NOD and BALB/c mice were 
activated by anti-TCR c~/B in the 
presence of rIL-4 (125 U/ml). Cul- 
ture supernatants were harvested 
and assayed for their IL-2 activity, 
as in Fig. 1, in the presence of the 
11Bll anti-Ib4 mAb. The results of 
triplicate cultures are expressed as 
the mean _+ SD, and are represen- 
tative of three different experiments. 
(B) NOD- and RALB/c-stimulated 

T cell culture supernatants were assayed for their I1~2 and Ib4 activities in the presence or absence (control) of the 11Bll anti-IL-4 mAb. The results 
of triplicate cultures are expressed as the mean _+ SD, and are representative of two different experiments. (C) Thymic T cells from 8-12-wk-old NOD 
and BALB/c mice were activated by anti-TCR ot/3 in the presence of rIL-2 (250 U/ml). Culture supernatants were harvested and assayed for their 
IL-4 activity, as in Fig. 2, in the presence of the $4B6 anti-IL-2 mAb. The results of triplicate cultures are expressed as the mean + SD, and are representa- 
tive of two different experiments. (D) NOD- and BALB/c-stimulated T cell culture supernatants were assayed for their IL-2 and Ib4 activities in the 
presence or absence (control) of the $4B6 anti-IL-2 mAb. The results of triplicate cultures are expressed as the mean + SD, and are representative 
of two different experiments. 
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To test this possibility, BALB/c and NOD thymic T cell blasts 
were generated during an initial 24-h culture in the presence 
of anti-TCR or/3 plus exogenous rlL-4 or rlL-2, and after 
washing and selection of viable T cell blasts, their profiles 
of IL-2 and IL-4 secretion were determined after a further 
48 h of stimulation in the presence of only anti-TCR c~/3. 
NOD T cell blasts secreted significantly lower levels of IL-2 
than did BALB/c T cell blasts (Fig. 6 A). Interestingly, BALB/c 
T blasts pretreated with rlL-2 or rlL-4 secreted equivalent 
levels of IL-2, and similar results were obtained for NOD 
T blasts. However, the levels of IL-4 secretion by NOD T 
blasts pretreated with rlL-2 or rlL-4 were considerably lower 
than those of BALB/c T cell blasts, and were equivalent to 
those observed in untreated control cultures (Fig. 6 B). Thus, 
although stimulation by anti-TCR plus rlL-4 restores the 
proliferative responsiveness of NOD T cells (Fig. 3) by en- 
hancement of IL-2 secretion by these cells (Fig. 5 A), these 
data indicate that rlL-4 must be present continuously 
throughout the culture period so that normal IL-2 secretion 
by activated NOD T cell blasts can be achieved. In addition, 
these observations demonstrate that Th2 cells are significantly 
more unresponsive to both IL-2 and IL-4 than Thl cells. Pre- 
sumably, the continuous presence of IL-4 is required for NOD 
Thl cell blasts to synthesize a sufficient amount of IL-2 that 
will enable these cells to progress through the cell cycle and 
proliferate. These results may also account for our previous 
findings that NOD thymic T cell blasts, generated after 3 d 
of culture in the continuous presence of rlL-2, are deficient 
in their TCR-mediated activation of p21 'a' and tyrosine 
phosphorylation of p42 m~Pk (32). Because reduced p2Y" and 
p42maP k activities inhibit progression to S phase of the cell 
cycle, these deficiencies likely mediate the proliferative un- 
responsiveness of these cells (32). 

In Vivo Administration of rlL-4 Protects N O D  Mice against 
Diabetes. Inasmuch as rlL-4 corrects the proliferative hypo- 
responsiveness of prediabetic NOD mice thymic T cells in 

vitro, we examined whether administration of murine rlL-4 
in vivo prevents diabetes in NOD mice. As shown in Fig. 
7, chronic treatment with the rlL-4 preparation supplied by 
Sterling Drug markedly suppressed diabetes development in 
NOD/Lt females (1/12 diabetic at the end of 20 wk vs. 9/12 
receiving vehicle control). At 21 wk of age, widespread, se- 
vere insulitis was present in the pancreas of one of the two 
normoglycemic rlL-4-treated females examined. Severe insu- 
litis was present in the pancreases of both of the normoglycemic 
vehicle-treated controls necropsied. Four of the nine rlL-4- 
treated mice remaining normoglycemic at the cessation of 
rlL-4 treatment at 20 wk subsequently developed diabetes 
by 52 wk of age. Of the five normoglycemic rlL-4-treated 
mice surviving to 52 wk, pancreases of three were free of 
insulitis, while insulitis was present in the other two. The 
single control mouse remaining normoglycemic at the end 
of 20 wk remained normoglycemic to 52 wk of age. How- 
ever, only a single islet with granulated B cells was found 
in the pancreas of this mouse, suggesting that diabetes was 
incipient. Heavy sialitis in submandibular glands and focal 
nephritis in the kidney was observed at 52 wk of age in all 
mice regardless of treatment. 

A similar protective effect from diabetes was obtained in 
a second experiment in which another source of murine rlL-4 
derived from a baculovirus expression system (18) was ad- 
ministered to NOD/Jd female mice beginning at 3 wk of 
age. This preparation, injected intraperitoneally for 15 wk 
in a similar amount (50 ng, twice weekly) to the rlL-4 used 
above in the first experiment, protected eight of eight NOD/Jd 
mice from diabetes upon analysis at 28 wk of age. The inci- 
dence of diabetes in untreated female NOD/Jd mice at this 
age was ~92%. 

Effect of In Vivo Administration of rlL-4 on Various Immune 
Parameters of N O D  Mice. The unusually high percentage of 
T cells present in the spleens of NOD/Lt mice (33) was not 
altered by treatment with rIL-4 (Sterling Drug preparation) 
(Table 3). In addition, cervical and pancreatic lymph nodes 
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Figure 7. Decreased incidence of diabetes in female NOD/Lt mice 
treated in vivo with rib4. 12 female NOD/Lt prediabetic mice (randomized 
from four different litters) were injected twice weekly, from 6 to 20 wk 
of age, with 500 U (equivalent to 50 ng) murine rib4 or with vehicle 
(PBS + 1% serum from 6-wk-old prediabetic female NOD/Lt mice) only. 
Mice were screened weekly for the presence of glycosuria starting at 7 
wk of age. Diabetes was diagnosed when mice were glycosuric for a con- 
secutive 2 wk. 

Table 3. rlL-4 Treatment In Vivo Does Not Reduce the High 
Percentage of T Cells in NOD/Lt Spleen 

T/CD8 
Treatment B cells T cells CD4 cells* CD8 cells* ratio 

% % % % 

Vehicle 31.5 52.4* 35.4 17.0 3.0 

IL-4 36.3 53.8 38.1 15.7 3.4 

Pooled splenic leukocytes from two normoglycemic females per group 
were enumerated by FACS ~ at the end of the 14-wk treatment period 
(i.e., at 20 wk of age). 
* The percentage of T ceils in the spleens of mouse strains at The Jack- 
son Laboratory generally ranges from 25 to 30%�9 Thus, the presence 
of ~50% T ceils in the spleens of NOD/Lt  mice represents an unusually 
high percentage. 
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were enlarged in both rlL-4-treated and vehicle control-treated 
N O D / L t  mice (our unpublished data). 

N O D / L t  macrophages secrete little IL-1 after LPS stimu- 
lation, and due to a stimulator cell defect, NOD/Lt  T cells 
neither proliferate in response to self-MHC class II in an SMLR 
nor acquire immunoregulatory function (22). Since protec- 
tion from diabetes in NOD/Lt  mice treated with IL-2 in 
vivo was associated with increased IL-1 secretion from LPS- 
stimulated macrophages and a reversal of the SMLR defect 
(34), we examined whether these defects were also reversed 
by rlL-4 treatment. T cells from NOD/Lt  female mice treated 
with rlL-4 from 6 to 20 wk of age failed to respond in an 
SMLK and did not acquire immunoregulatory function (Table 
4). Treatment of NOD/Lt  mice with rlL-4 in vivo also failed 
to increase appreciably the ability of macrophages from these 
mice to secrete IL-1 after LPS stimulation (Table 5). This 
suggests that the mechanism(s) by which the in vivo adminis- 
tration of rlL-4 protects prediabetic NOD mice from dia- 
betes differs from that associated with rlL-2 therapy. 

Discussion 

We have demonstrated that after activation by either anti- 
CD3 or anti-TCR c~/B mAbs, IL-2 and IL-4 secretion by 
thymic and peripheral (splenic) T ceils from NOD mice (>7 
wk old) are significantly reduced. This suggests that N O D  
T cell proliferative unresponsiveness is mediated by a defect 
in the signaling pathway that links the TCR to IL-2 and IL-4 
production. However, based on our studies of Con A activa- 

Table 4. Treatment of NOD/Lt  Mice with rlL-4 In Vivo Does 
Not Restore Their Ability to Activate Immunoregulatory 
T Cells in an SMLR 

Suppression of 
Strain Treatment SMLR response* MLC response* 

cpm +_ SEM % 
NOD Control 285 _+ 165 0 
NOD IL-4 524 _+ 132 5 
SWR/Bm Control 3,320 _+ 466 56s 

Nylon wool-enriched T cells (SMLR responders) and irradiated splenic 
leukocytes (SMLR stimulators) were pooled from two mice each. 
* SMLR blastogenic responses (5 x 105 T cells cultured in triplicate 
with 5 x 105 stimulators) represent the mean [3H]thymidine uptake over 
the final 8 h of a 6-d culture. 
* Viable blast cells recovered on day 6 from bulk SMLR cultures (5 x 
106 T cells plus 5 x 106 stimulators) were added in triplicate at 2.5 x 
105/well to an allogeneic MLC consisting of either 5 x 10 s NOD or 
SWR T cells responding to 5 x 105 irradiated CBA/J splenocytes. 
S Significant suppression (/, <0.05 by Student's t test) from allogeneic 
MLC response in the absence of SMLR-activated T cells. The mean 
[3H]thymidine uptake on day 4 for the unsuppressed MLC response of 
NOD T cells to CBA stimulators was 27,116 _+ 3,329 cpm, whereas 
the response of SWR/Bm T cells to CBA stimulators was 69,064 _+ 6,061 
cpm. 

Table 5. Treatment of NOD/Lt  Mice with rlL-4 In Vivo Does Not 
Increase the IL-1 Secretory Capacity of Macrophages 

Macrophage Endogenous IL-1 LPS-stimulated 
source Treatment secretion IL-1 secretion 

U/ml U/ml 
NOD Control 0 1.3 
NOD IL-4 0 2.0 
SWR/Bm Control 0 4.2 

Peritoneal macrophages were pooled from two mice each and cultured 
at 105/ml for 24 h in the presence and absence of 10/~g/ml LPS. IL-1 
content of culture supernatants was determined by comparing their abil- 
ity to support C3H/HeJ thymocyte proliferation stimulated by a murine 
rlL-1 standard (Hoffmann-La Roche, Inc., Nutley, NJ). 

tion of NOD thymocytes, a defect in IL-2-mediated signal 
transduction may not necessarily be causal to decreased thymic 
T cell proliferation for several reasons. First, equivalent per- 
centages of NOD and BALB/c Con A-activated T cell blasts 
express HIL-2R both in the absence and presence of exoge- 
nous rlL-2. Second, the relative affinity (Kd) of HIL-2R for 
IL-2 and the number of HIL-2R molecules per cell on acti- 
vated N O D  and BALB/c thymic T cells are similar. This re- 
sult differs from the previous report that HIL-2R expression 
is reduced about two- to threefold in mitogen-stimulated 
CD4 + and CD8 + spleen T cells from 10-wk-old N O D /  
ShiKbe mice, and that this reduction might mediate the patho- 
genesis of type I diabetes in these mice (25). T cell respon- 
siveness in the thymus of NOD/Del  mice therefore does not 
appear to be due to a decrease in either the level of expression 
or binding affinity of HIL-2R on CD4 + or CD8 + T cells. 
Third, Con A-activated NOD thymocytes secrete normal 
levels of IL-2. Fourth, although we did not formally test if 
IL-2-induced signal transduction is normal in thymic T cells 
from >7-wk-old NOD mice, we found that Con A plus ex- 
ogenous rlL-2 induces an increase in HIL-2R expression. 
Hence, it seems that the post-HIL-2R part of the IL-2- 
mediated signaling pathway that results in this enhanced ex- 
pression is intact. 

Various modalities (anti-TCR mAbs vs. Con A) of NOD 
thymic and splenic T cell activation stimulated different levels 
of IL-2 secretion. The higher level of IL-2 secretion observed 
for Con A-activated thymic T cells may result from the ability 
of Con A to bind to and signal through several T cell surface 
molecules in addition to the TCR (35). This may not occur 
to the same extent for Con A-activated NOD splenic T cells, 
which yielded a low level of IL-2 secretion. There may exist 
different requirements of activation by NOD thymic and 
splenic T cells. Alternatively, Con A may activate a thymic 
T cell subpopulation that is absent from the spleen. Nonethe- 
less, we observed that NOD thymic T cell unresponsiveness 
is maintained after activation by Con A even in the presence 
of normal levels of IL-2 secretion, HIL-2R expression, and 
IL-2/HIL-2R binding. This unresponsiveness is not restored 

95 Rapoport et al. 



to normal by addition of physiological concentrations of ex- 
ogenous rlL-2, and is at best only partially corrected by ad- 
dition of supraphysiological amounts of rlL-2 (7; this report). 
A similar finding was reported for the inability of IL-2 to 
promote normal proliferative responses of Con A-stimulated 
NOD spleen T cells from 3- and 10-wk-old NOD/ShiKbe 
mice (25). These data are compatible with the observation 
that anergy can be induced in Thl cells as a consequence of 
TCR occupancy by Ag in the absence of cell division (9). 
This can be achieved either because the Ag is presented by 
an APC that cannot provide the costimulatory signal(s) neces- 
sary for IL-2 production or because the T cell cannot respond 
to IL-2. The latter explanation likely accounts for NOD 
thymic T cell proliferative unresponsiveness, since we previ- 
ously showed that NOD thymic APCs are capable of providing 
a costimulatory signal(s) and that, in comparison with con- 
trol BALB/c thymocytes, NOD thymocytes proliferate rela- 
tively poorly in response to exogenous rlL-2 (7; this report). 

Why then do NOD thymic T cells not respond well to 
IL-2? Is this due to the requirement of another proliferative 
stimulus? Since a determining factor in the control of T cell 
proliferation is the crosstalk between the IL-2 and IL-4 sig- 
naling pathways (28-30), and T cell production of IL-2 and 
IL-4 can be regulated by anergy induction (10), we consid- 
ered that this additional stimulus might be ILo4, an auto- 
crine growth factor for Th2 cells (31). We found that in vitro 
activated NOD thymic and splenic T cells fail to produce 
sufficient IL-4 to support their proliferation. Relatively little 
if any IL-4 secretion was detectable after stimulation of NOD 
thymic and splenic T cells by an anti-TCR ct/3 or anti-CD3 
mAb. In addition, the level of IL-4 secretion by NOD thymic 
T cell blasts stimulated by anti-TCR plus either rlL-4 or rlL-2 
for 24 h and then further activated for 48 h by anti-TCR 
was as low as that of control NOD T blasts. In contrast, 
their level of IL-2 secretion was slightly enhanced compared 
with that of control NOD T blasts. These findings indicate 
that IL-4 secretion by NOD thymic T cells is compromised 
to a greater extent than IL-2 secretion. Unlike rlL-2, exoge- 
nous rlL-4 completely restored the in vitro proliferative ca- 
pacity of NOD thymic and splenic T cells. IL-4-induced resto- 
ration of the thymic T cell response stimulated by anti-TCR 
was associated with a normalization of the level of IL-2 secre- 
tion by these cells. This result agrees closely with the previous 
observation that IL-4 has a critical role in the stimulation 
of IL-2 production by mouse T cells in response to accessory 
cell-independent stimuli (plate-bound anti-CD3) (36). Similar 
results were also previously reported for the activation of 
human T cells by PHA (37) and anti-CD2 (38). Since IL-2 
also potentiates the production of IL-4 by anti-CD3~ 
T cells (18, 39), partial restoration of the in vitro prolifera- 
tive response of NOD thymocytes by exogenous rlL-2 may 
arise from the inability of IL-2 to potentiate sufficient IL-4 
secretion (Fig. 5 C). In addition, NOD thymocytes exhibit 
significantly reduced IL-4 secretion (Fig. 2 B) and diminished 
proliferative responsiveness after stimulation with anti-CD3 
even in the presence of normal amounts of IL-2 (Fig. 4). For 
complete restoration of the NOD thymocyte proliferative re- 
sponse, IL~ therefore needs to be present in addition to ei- 

ther exogenous rlL-2 or Con A-induced endogenous IL-2. 
Thus, decreased IL-4 secretion by activated NOD thymic and 
peripheral T cells appears to be a primary defect that elicits 
the proliferative unresponsiveness of these cells. 

The in vivo administration of either rlL-2 (34) or two 
different preparations of rlL-4 (this report) protects predia- 
betic NOD mice against diabetes. Protection against diabetes 
in NOD mice by in vivo treatment with rlL-2 is associated 
with a reversal of the decreased splenic T cell SMLR of these 
mice and an increase in the LPS-induced IL-1 secretion by 
peritoneal exudate macrophages (34). In contrast, we report 
here that protection from diabetes by in vivo rlL-4 therapy 
is not associated with similar changes in the SMLR and/or 
IL-1 secretion. Thus, IL-2 and IL-4 appear to protect NOD 
mice from diabetes by different mechanisms. Unlike rlL-2, 
rlL-1, rlFN-3', and rTNF-o~ (7), rlL-4 completely restores 
the in vitro NOD thymic T cell proliferative response and 
may achieve close to 100% protection from diabetes in vivo 
by a similar mechanism(s). 

Reconstitution of lymphopenic prediabetic BB rats with 
the IL-4-producing CD4+CD45RC l~ subset of Th cells 
but not with the IL-2-producing CD4+CD45RChis h Th 
subset protects these rats against autoimmune diabetes (40). 
In addition, diabetes and insulitis may be completely prevented 
by injection of the IL-2- and IL-4-producing subset of 
CD4+CD45RCI~ o~/3+RT6 + thoracic duct T cells 
from healthy donors into a normal nonautoimmune rat strain 
that may be induced to become lymphopenic and diabetic 
by adult thymectomy and sublethal 2/irradiation (41). Al- 
tered ratios of CD4 + CD45RA to CD4 + CD45RO of PBL 
T cells together with decreased proliferative responses in the 
AMLR occur in human prediabetic patients, and may be di- 
agnostic indicators of rapid progression to overt disease (42, 
43). Immunohistochemical analyses performed using fluores- 
cent mAbs indicate that IFN-y predominates in situ in the 
relative absence of IL-4 at the time of diabetes onset in NOD 
pancreatic islets previously transplanted beneath the kidney 
capsule of syngeneic female NOD mice at 4.5 mo of age. 
In contrast, IL-4 predominates and IFN-3/ is present in 
significantly lower amounts in NOD islets transplanted be- 
neath the kidney capsule of control age-matched female NOD 
mice that were protected from diabetes by the previous 
administration (at 1 mo of age) of CFA (44). The in vivo 
administration of anti-IFN-3, mAbs to NOD mice also pre- 
vents the onset of diabetes (45). Moreover, during the induc- 
tion of tolerance, immunization with antigen and adjuvant 
induces an expansion of IL-4-producing Th2 cells (46). IL-4 
inhibits the secretion of IFN-3, by tolerant Thl cells that re- 
tain the ability to secrete IFN-'y. In addition, Th2 cells that 
are expanded by IL-4 may secrete other cytokines, such as 
IL-10, which has also been shown to regulate Thl-dependent 
immune responses (46). Taken together, these observations 
suggest that T cell proliferative unresponsiveness in vitro and 
onset of diabetes in vivo may arise by the anergy and/or dele- 
tion of CD4 § IL-4-producing Th2 cells in NOD mice, 
thereby enhancing the expansion of IFN-y producing poten- 
tially diabetogenic Thl clones. 

Mature CD4+CD8 - thymocytes are the predominant 
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IL-4 producers during primary immune responses (47). These 
IL-4-producing thymocytes are exported to the periphery and 
provide the IL-4 necessary for the generation of peripheral 
IL-4-secreting Th2 cells. Hence, the choice of an immature 
thymocyte to differentiate into a Thl  or Th2 mature T cell 
is likely dependent on the relative abundancy of IL-4 (47). 
In support of this notion is the observation that low doses 
of IL-4 are insufficient to promote IL-2-supported growth 
of thymic T cell precursors (27). A failure of N O D  thymo- 
cytes to produce sufficient IL-4 for the differentiation of and 
export from the thymus of certain regulatory CD4+CD8 - 
Th2 clones may potentiate their unresponsiveness and even- 
tual deletion. In this case, the balance between self-tolerance 
and autoimmunity would be disrupted and could result in 
type I diabetes. 

Thus, IL-4 therapy may prevent the onset of diabetes in 
N O D  mice by promoting the differentiation and exit from 
the thymus of "protective" regulatory CD4 + CD8-  T cells. 
This protection afforded by IL-4 may also be mediated by 
its ability to perturb the development of CD4-CD8 + thy- 
mocytes, which was shown to occur in IL-4 transgenic mice 
in which the intrathymic expression of IL-4 was constitu- 

tively increased (48). Only peripheral CD4 + T cells were 
found in significant numbers in these transgenic mice, while 
CD4-CD8  + thymocytes bearing high levels of TCK oz/~/ 
were present in increased numbers, apparently because of their 
failure to emigrate to the periphery. Since these results indi- 
cate that IL-4 can regulate thymocyte maturation, they may 
explain in part how IL-4 can protect from diabetes by ex- 
erting reciprocal effects on the maturation of CD4 + CDS- 
(positive regulation) and CD4-CD8 § (negative regulation) 
thymic T cells. 

In conclusion, our findings further document the ther- 
apeutic value of immunostimulation protocols for the preven- 
tion of autoimmune type I diabetes. In addition to IL-2 (34) 
and TNF-cz (49, 50), we now report that IL-4 may also be 
used efficaciously for this purpose. Since IL-4 is required for 
the production of IL-2, this might explain in part why IL-2 
deficiencies have been noted in both N O D  (22, 51) and other 
strains of autoimmune mice (52), as well as in human type 
I diabetic patients (53). Further experimentation is required 
to test the possibility that prevention of type I diabetes in 
NOD mice by IL-4 is mediated by correction of an IL-2 
deficiency. 
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