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Abstract
Introduction: The clinical significance of a treatment effect demonstrated in a randomized trial is
typically assessed by reference to differences in event rates at the group level. An alternative is to
make individualized predictions for each patient based on a prediction model. This approach is
growing in popularity, particularly for cancer. Despite its intuitive advantages, it remains plausible
that some prediction models may do more harm than good. Here we present a novel method for
determining whether predictions from a model should be used to apply the results of a randomized
trial to individual patients, as opposed to using group level results.

Methods: We propose applying the prediction model to a data set from a randomized trial and
examining the results of patients for whom the treatment arm recommended by a prediction model
is congruent with allocation. These results are compared with the strategy of treating all patients
through use of a net benefit function that incorporates both the number of patients treated and
the outcome. We examined models developed using data sets regarding adjuvant chemotherapy
for colorectal cancer and Dutasteride for benign prostatic hypertrophy.

Results: For adjuvant chemotherapy, we found that patients who would opt for chemotherapy
even for small risk reductions, and, conversely, those who would require a very large risk
reduction, would on average be harmed by using a prediction model; those with intermediate
preferences would on average benefit by allowing such information to help their decision making.
Use of prediction could, at worst, lead to the equivalent of an additional death or recurrence per
143 patients; at best it could lead to the equivalent of a reduction in the number of treatments of
25% without an increase in event rates. In the Dutasteride case, where the average benefit of
treatment is more modest, there is a small benefit of prediction modelling, equivalent to a
reduction of one event for every 100 patients given an individualized prediction.

Conclusion: The size of the benefit associated with appropriate clinical implementation of a good
prediction model is sufficient to warrant development of further models. However, care is advised
in the implementation of prediction modelling, especially for patients who would opt for treatment
even if it was of relatively little benefit.
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Introduction
The typical approach to interpreting and applying the
results of a randomized trial to clinical practice is to deter-
mine first whether differences between groups are statisti-
cally significant, and then second, whether they are
clinically significant, that is, large enough to be worth-
while. Clinical significance can be evaluated in two dis-
tinct ways. In some cases, where treatment is associated
with side-effects or is inconvenient, clinical significance is
a matter for the individual patient. A good example is
adjuvant chemotherapy for early stage breast cancer.
Patients vary as to how unpleasant they rate the various
side-effects of chemotherapy relative to the importance of
avoiding an early death, and different patients will there-
fore disagree whether a certain reduction in the risk of
death is worthwhile. Clinical significance can also be eval-
uated from a clinician or policy maker perspective: a clini-
cian might evaluate the additional benefit of a new
analgesic in the light of an increased risk of a rare, fatal
side-effect; a policy maker might consider whether the
benefit provided by an expensive treatment, such as beta-
interferon for multiple sclerosis, is worth the cost.

Clinical significance is typically assessed by reference to
between-group differences in means or proportions. In
the adjuvant chemotherapy example, the result of a trial
or meta-analysis might be that 35% of breast cancer
patients receiving adjuvant chemotherapy died within 10
years compared to 40% of the controls undergoing sur-
gery alone. A doctor practicing evidence-based medicine
might therefore counsel a breast cancer patient that she
reduces her risk of death by 5% if she undergoes chemo-
therapy. The patient would then consider whether this is
sufficient benefit to pursue treatment.

Implicit in the use of such group level estimates is that all
patients are at average risk and have an average likelihood
of response to therapy. This is known to be untrue: a
woman with a large breast tumor that has spread to local
lymph nodes is at far higher risk of death from cancer than
a woman with a smaller tumor and no nodal spread;
moreover, response to chemotherapy depends on estro-
gen-receptor status.

An alternative to the group level approach to evaluating
clinical significance is to make individualized predictions
for each patient based on a statistical model. In the case of
adjuvant chemotherapy for breast cancer, there are good
data showing how both overall survival and response to
chemotherapy are affected by prognostic factors such as
size and grade of tumor, age, number of affected nodes
and estrogen-receptor status. Given particular values of
these variables for an individual patient, a prediction
model can be used to predict risk of death both with and
without adjuvant therapy. The difference between these

two predictions is the individualized estimate of treat-
ment benefit.

This model-based approach to individualizing estimates
of treatment benefit is apparently growing in popularity.
This is particularly true for cancer, where both the benefits
and harms of treatment can be large. Recent years have
seen the publication of papers describing the develop-
ment of prediction models for treatment benefit [1-4] and
the concomitant introduction of web-based systems [5-7]
that enable complex predictions to be made with a few
keystrokes. There are clear indications that patients and
clinicians like these models, with emerging examples of
physicians explicitly recommending their use during the
clinical consultation[8].

Models that predict the outcome of different cancer treat-
ment options are intended to be used in patient coun-
seling, that is, the clinician presents an individualized
estimate of benefit to the patient and the patient then
decides whether the magnitude of benefit is sufficient to
pursue treatment. A slightly different use of prediction
models is particularly common in cardiovascular medi-
cine. Many therapies used to treat cardiovascular disease
have competing effects: warfarin reduces the risk of
embolic stroke but increases the risk of hemorrhagic
stroke. Prediction models have been advocated to ensure
that, for an individual patient, the decrease in the risk of
the targeted cardiovascular event is greater than the risk of
the cardiovascular side-effect[9,10]. Prediction models
have been published for several other cardiovascular treat-
ments[3,4]

Despite their intuitive advantages, it remains plausible
that some prediction models may do more harm than
good. For example, it is possible that a model might mis-
takenly predict little or no benefit from adjuvant chemo-
therapy for a patient with a small number of viable tumor
cells after surgery. The patient forgoes treatment and dies
from a curable cancer.

The current approach to determining whether a predic-
tion model is of clinical value is implicit and indirect:
researchers address whether their model has good proper-
ties in general using measures of predictive accuracy such
as calibration and discrimination, and more qualitative
criteria such as validation on an independent data set and
the size and variability of the data used to generate the
model. A key drawback of this approach is that predictive
accuracy does not fully determine the clinical value of a
model: it is quite possible for an accurate model to be use-
less, and a model with relatively poor accuracy to be use-
ful[11]. For example, no one would consider a using a
model to predict response to a highly effective, low-risk
treatment for a mortal disease (such as antibiotics for bac-
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terial meningitis); conversely, a model of moderate accu-
racy may be useful if the benefit of treatment was
marginal.

In this paper, we develop a decision-analytic
approach[11] for determining whether a prediction
model should be used to apply the results of a rand-
omized trial to individual patients. We propose that our
methods be used by researchers who develop prediction
models. Our methods would supplement traditional
measures, such as the area-under-the-ROC-curve, to help
potential users determine the value of the modelling
approach.

Methods
Notation
We define D as the predicted difference in outcome
between two treatment alternatives: Di is the individual-
ized difference that varies between patients on the basis of
a prediction model; D without a subscript is the group
level estimate derived, for example, from the difference
between event rates in a randomized trial. We define T in
terms of the threshold for agreeing to treatment: T without
subscript is a single threshold applied to all patients; Ti is
an individualized threshold that differs from patient to
patient based on personal values and circumstances. T is
defined so that we opt for treatment if T < D and avoid
treatment if T > D. If T = D, then we are in a state of equi-
poise and are unsure as to whether treatment is worth-
while.

Most of our discussion will refer to the binary case, where
patients are at risk for an event ("event"), such as death or
a recurrence of cancer. In this case both T and D are
expressed in proportions: for example, if the death rate in
a trial was 10% in controls and 7% in the treated group, D
would be 3%. Nonetheless, the same notation can be used
for a continuous endpoint, such as a pain score, or length
of survival in days.

Our notation has an immediate application for categoriz-
ing modes of decision making. In paternalistic medicine,
or in guidelines based on expert opinion, D is compared
with T. Evidence-based counselling of individual patients
compares D with Ti. This paper is concerned with compar-
ison of Di with Ti, patient counselling based on individu-
alized risk prediction accounting for patient-specific
preferences as described in the chemotherapy example,
and comparisons of Di with T, where individualized pre-
dictions of treatment benefit are compared to a fixed
threshold, such as in the cardiovascular medicine exam-
ple.

Prediction Modelling
Several different methods of developing prediction mod-
els to inform treatment decisions have been described.
These include using the randomized trial data to develop
the model[1] or creating a model for untreated patients on
the basis of cohort studies, then using a fixed relative risk
derived from a randomized trial to estimate risk in treated
patients[2,10]. Models also differ in terms of the specific
statistical techniques applied, for example, use of non-lin-
ear terms, bootstrap correction or model selection criteria.
For the purposes of this paper, we will remain agnostic
about the methods of model building, except that investi-
gators need to be able to demonstrate the validity of their
model independent of the methods we propose. This
would include documentation of the data and methods
used to build the model, measures of model accuracy,
such as the concordance index[12], and correction for
overfit.

Method for evaluation of prediction models: background 
theory
We propose an extension of decision-curve analysis, a pre-
viously published method for evaluating prediction mod-
els[13]. In its original formulation, decision-curve
analysis was used for models that predicted the probabil-
ity of an event, such as the presence of cancer outside the
prostate capsule in a patient scheduled for prostatectomy.
Here we use the method to predict the difference between
the probabilities of an event under two conditions: treat-
ment and control.

We start by noting that the value of a prediction model is
usually evaluated by applying it to a data set and deter-
mining whether the predictions match the outcomes actu-
ally observed. For our current purposes, we are not
interested in the predictions themselves, but in the deci-
sions that result from these predictions. We therefore
require a data set in which there is a decision between two
treatments and a subsequent outcome. Randomized trials
provide such a data set, except that the "decision" of
which treatment to use is made by chance. Nonetheless, a
randomly chosen treatment will be congruent with how a
decision would have been made on the basis of the pre-
diction model for a proportion of patients in the trial. Our
proposal is therefore that the prediction model be applied
to a data set from a randomized trial or meta-analysis and
the results documented for patients whose randomized
allocation is congruent with the recommendations of the
prediction model. These results could then be compared
with use of a group level estimate.

To make this comparison, we note that there are three
strategies for applying the results of a randomized trial to
clinical practice: treat all patients (the typical approach
where treatment effects are sufficiently large), treat no
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patients (where the difference between groups is not
thought to be clinically significant), and treat patients
according to a prediction model. Applying each of these
strategies to a group of patients will lead to certain
number being treated and a certain number experiencing
the study event. For example, take a hypothetical trial of
adjuvant chemotherapy with 2000 patients where the
death rates were 35% and 40% for patients on treatment
and control, respectively. Applying the strategy of "treat
all" to 1000 patients, would result in 1000 treatments and
350 events; treating no-one would result in 400 events.
Applying a prediction model, where only patients with a
predicted benefit of T or more are treated, typically leads
to a number of treatments and a number of events that is
intermediate. For this hypothetical example, let us assume
that the prediction model leads to 650 treatments and 355
events; the prediction model leads to some patients not
being treated as not all have estimated Di's less than T, but
some patients who would benefit from chemotherapy do
not undergo chemotherapy and therefore relapse. Hence,
compared with treating all patients, the use of a prediction
strategy will tend to increase the number of events.

We propose comparing the "net benefit" of the two strat-
egies involving treatment: treat all patients vs. treat
according to the prediction model. Net benefit is a con-
cept often used in economic analysis and is simply bene-
fits minus harms. In the case of a treatment, "benefits" are
associated with reduction in the event rate compared to
no additional treatment: in an adjuvant therapy trial, for
instance, benefit would be a reduction in cancer recur-
rences or deaths compared to surgery alone. "Harms" are
associated with the treatment itself: side-effects, risks,
costs, inconvenience and so on.

To calculate net benefit we require a single scale for treat-
ments and events. We have previously demonstrated[13]
that this question -"How many treatments are equivalent
to one event?" – is answered by the threshold at which a
patient would opt for treatment, that is, T. We know from
clinical practice that patients will demand that a treatment
with important side-effects must lead to a relatively larger
reduction in the risk of event than a treatment with trivial
toxicities. In the appendix (see additional material file 1),
we demonstrate that T is equivalent to the ratio between
harms of treatment and those of an event. Thus, if a
patient states that they would be unsure what to do if the
benefit of treatment were an absolute 5% risk reduction,
they are telling us that they consider an event to be about
20 times worse than the risks, side-effects and inconven-
ience of treatment.

Method for evaluation of prediction models: calculation of 
net benefit
We calculate net benefit as the decrease in the proportion
of events associated with treatment minus the proportion
of patients treated multiplied by T. That is, we combine
treatments given and events by weighting the proportion
of treatments by the ratio of harm from treatment and
harm from event. The unit is therefore in terms of events,
or, alternatively, the disutility of event is defined as 1.

Net benefit = decrease in event rate – treatment rate × T

More generally, we define net benefit as:

where n is the number of patients, 1 and 0 are indicators
for treatment and no treatment respectively, x is the indi-
cator for event, and i is an indicator for each patient. To
illustrate calculation of net benefit, and as a simple proof,
we will use the hypothetical data above and set T at 5%
(see table 1). As T is equal to the observed difference
between groups, net benefit should be and is zero for the
strategy of "treat all". The "treat by prediction" model has
a net benefit of 0.0125, suggesting that, for a T of 5%, pre-
diction is the best strategy.

The net benefit function can also be applied to continuous
endpoints. In this case x is the endpoint, such as depres-
sion score or number of days with pain, for each patient.
When a high value of the endpoint is a desirable, such as
duration of survival, x should be replaced in the function
by -x. For continuous endpoints, T is defined as the mini-
mum improvement, such as a percent reduction in pain,
that a patient would require before opting for treatment.

Net benefit is calculated separately for the strategy of treat-
ing all patients – in which case the event and treatment
rates are simply the observed group level proportions –
and for the strategy of treating patients according to the
prediction model, where event and treatment rates are cal-
culated by using the outcomes from patients whose rand-
omized allocation is congruent with the recommendation
of the prediction model. Our methodology for determin-
ing the effectiveness of a model is therefore as follows:

1. Obtain data from one or more randomized trials.
The data should consist of the variables required by
the prediction model, treatment assignment and an
indicator as to whether the patient experienced an
event.
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2. Determine the number of patients and the number
of events in the control and treatment groups.

3. Apply the prediction model to the data set and esti-
mate the individualized prediction of treatment bene-
fit, Di, for each patient.

4. Choose a value for the treatment threshold, T, based
on consideration of the harms associated with treat-
ment and those associated with an event.

5. Compare the estimate for Di with T for each patient:
if Di > T, define patient as "Treatment recommended";
if Di < T define patient as "Treatment not recom-
mended".

6. Identify all patients where the treatment recommen-
dation is the same as the randomized assignment. For
example, if T is 3%, and a patient in the treatment arm
has an estimated Di of 8%, the patient's actual and rec-
ommended treatment are congruent. The patient
would therefore be retained for analysis. A patient
with in the treatment arm with an estimate Di of 2%,
or a patient in the control arm with a Di estimate of

12%, would not be included in the analysis (see table
2 for illustrative data).

7. Determine the total number of patients with con-
gruent treatment recommendations, the number of
these who have an event and the number who are
treated.

8. Apply the net benefit function to the data in 3 and
8 to determine the relative value of treating everyone
and treating according to the prediction model.

9. If appropriate, repeat for a range of T's.

Simulation studies
We first applied our methods to a variety of simulated
data sets (further details are available on request from the
authors). In brief our findings were that the value of pre-
diction modelling was increased with lower event rates,
less effective treatment, and higher predictive accuracy.
Prediction modelling was of less benefit if event rates were
high, treatment was highly effective, or predictive accuracy
was poor. We also found that, even where application of
a prediction model was of benefit, there were patients for

Table 2: Hypothetical data for some example patients using a treatment threshold (T) of 5%. 

ID Group Event Predicted risk if treated Predicted risk if not treated Risk reduction from treatment (Di) Treat?

1 Treatment 1 0.309 0.328 0.020 0
2 Control 0 0.352 0.396 0.045 0
3 Treatment 0 0.474 0.586 0.112 1
4 Control 1 0.219 0.350 0.132 1
5 Treatment 1 0.559 0.704 0.145 1
6 Control 1 0.360 0.409 0.049 0
7 Treatment 0 0.690 0.884 0.194 1
8 Control 1 0.406 0.477 0.071 1

The patients in bold are those whose treatment allocation is congruent with the recommendation of the prediction model at a T of 5%. Data from 
these patients would be used to calculate the outcome of decisions made by prediction modelling.

Table 1: Calculation of net benefit in a hypothetical data set for a T of 5%. 

Strategy Treat no patients, 
regardless of model

Treat all patients, 
regardless of model

Treat according to prediction model

Prediction model 
recommends treatment

Prediction model 
recommends no treatment

Prediction model total

Number of patients 1000 1000 650 350 1000
Number of events 400 (40%) 350 (35%) 253 (39%) 102 (29%) 355 (35.5%)

Decrease in event rate 5% 4.5%
Number of treatments 1000 (100%) 650 (65%)

Net benefit 5% – 100% × 0.05 = 0 4.5% – 65% × 0.05 = 0.0125

The results in the first and second columns give the results from the treatment and control groups. The third column shows that there were 650 patients in the treatment 
group for whom the prediction model estimated a benefit of 5% or more and that 253 of these died. The fourth column shows that there were 350 patients in the control 
group of the randomized trial with predicted benefit of less than 5%, of whom 102 died. The net benefit is the decrease in event rate minus the treatment rate × T.
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whom prediction modelling should not be applied. Typi-
cally these were patients with either very high or very low
Ti: prediction modelling was often not suitable for these
patients due to poor model calibration for patients at
either very high or low risk, and high misclassification
costs for patients with very low Ti.

Application to real data
We then applied our method to three real data sets. The
first data set is from the ACCENT (Adjuvant Colon Cancer
Endpoints) group, an international collaboration that col-
lates and analyzes individual patient data from rand-
omized trials of adjuvant chemotherapy for colorectal
cancer. In 2004, ACCENT published a prediction model
in the Journal of Clinical Oncology[1]. This model estimates
the probability that a patient will be disease-free and alive
at five years with and without adjuvant therapy, depend-
ing on variables such as age, stage and nodal status. The
prediction tool is available online[7]. The ACCENT data
consist of 3302 patients enrolled in seven randomized tri-
als and must therefore be seen as a "gold standard" for
prediction models used to implement the results of rand-
omized trials.

Unfortunately, relatively few areas in medical research
benefit from large pooled-analyses of individual patient
data. To understand some of the characteristics of model-
ling single randomized trials, in comparison to a gold
standard, we chose one of the studies ("the Moertel trial")
from the ACCENT pooled-analysis[14]. A full data set for
this trial is available on the Internet[15]. We modelled
this data set independently of the ACCENT model and
data so as to simulate the real life situation of an analyst
faced with new data. The Moertel trial[14] involved a
comparison between levamisole, chemotherapy plus
levamisole or surgery alone in 929 patients with stage III
colorectal cancer. We focused on the comparison between
chemotherapy plus levamisole versus surgery alone.
Details of the modelling approach used are available on
request from the authors.

In the case of adjuvant therapy for colon cancer, the gen-
eral recommendation is in favor of treatment, that is, the
difference between the proportion of deaths in treatment
and control groups is generally considered clinically rele-
vant. In such a case, the role of prediction modelling is to
identify what is likely to be a minority of patients who are
at decreased risk of disease recurrence and whose expected
benefit is therefore lower than the group level estimate.
Alternatively, consider the case where a treatment is effec-
tive, but the difference between groups is more modest.
Here the role of prediction modelling is to identify a sub-
group of patients at greater than average risk whose
expected benefit from treatment would more than likely
outweigh the costs and harms. An example of this situa-

tion is the use of 5-alpha-reductase inhibitors to prevent
complications of benign prostatic hyperplasia (BPH).
Though undoubtedly effective[16], the degree of benefit
appears moderate, primarily because only a small propor-
tion of men with untreated BPH experience clinically
important events such as acute urinary retention or the
need for surgery[17]. The drugs can be somewhat expen-
sive, and there is a risk of sexual side-effects. To examine
the role of prediction modelling when the benefit from
treatment is modest, we obtained individual patient data
from three randomized trials of Dutasteride (total n =
4294) for the prevention of complications from BPH[18].
Modelling of the Dutasteride data has been previously
described[19]

Results
ACCENT data
As previously reported, the bootstrap corrected concord-
ance index for the prediction model for the full ACCENT
data set was 0.655. There was good separation of absolute
risk reduction, with the benefit of treatment ranging from
a 2 – 16% improvement in 5-year disease-free survival in
individual subgroups of patients. Net benefit is shown in
table 3. Individualized prediction would be of clear value
when the minimum benefit required for an individual
patient to pursue treatment is 4 – 10%. To put this in con-
text, in a survey of breast cancer patients[20], 50% of
patients reported that it would require less than 5% reduc-
tion in absolute risk to opt for adjuvant therapy, 25%
required 5 – 10%, and 25% required more than a 10%
risk improvement.

To illustrate our method, table 4 provides an example for
a treatment benefit threshold of 5%, that is, if a patient
were willing to accept treatment only if it provided a ≥ 5%
benefit. In this case, a patient management strategy that
bases treatment on the prediction model reduces the
number of treatments given by 39% (from 1474 to 889
patients treated) at the cost of a small increase in the
number of events (from 472 to 482). Note that the event
rate in patients who would not be treated on the basis of
prediction is lower than that in the treatment group, sug-
gesting that the prediction model correctly identifies
patients at lower than average risk.

The size of the benefit is clinically relevant. For example,
at a T of 5%, the advantage of prediction compared to
treating all patients is 0.008. Now imagine that we had an
infallible diagnostic test that could accurately identify 16
out of every 100 patients as entirely cancer-free and not in
need of chemotherapy. For a T of 5%, this test would have
a net benefit of 16 ÷ 100 × 5% = 0.008. In other words,
using the ACCENT model has the same effect as a strategy
in which the number of treatments was reduced by 16 per
100 patients and the number of events (recurrences or
Page 6 of 11
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deaths) was unchanged. We can calculate the reduction in
the number of treatments for other levels of T using the
formula: decrease in treatment rate = net benefit ÷ T. For T
of between 4 and 10%, the use of the prediction model is
equivalent to a strategy that reduced the number of treat-
ments given by 12 – 25% without any increase in the
number of events.

The use of the prediction model to determine treatment
allocation also has the capacity to increase the number of
events disproportionately. In table 3, for a small treatment
threshold of 2%, the value of -0.007 is the equivalent to a
strategy in which an equal number of patients were
treated but there was an additional one cancer recurrence
or death for every 143 patients. If a patient or physician is
willing to accept treatment for a modest benefit, then the
risk of not treating, and then having the patient experience
an event, is large enough to dictate a strategy of treatment
for all patients. In cases where patients would opt for
treatment only if the effect size was large, in this case, ≥

12%, basing individual patient treatment decisions on the
prediction model is also on average sub-optimal. Com-
pared to a strategy of treating no patients, prediction-
based treatment has results equivalent to a strategy in
which 2 – 4% of patients are treated with no reduction in
the number of events.

Moertel trial
The concordance index for the prognostic models in the
chemotherapy and no treatment groups were 0.660 and
0.711 respectively, corrected by bootstrapping to 0.626
and 0.687. There was very wide separation in predicted
treatment benefit between patients based on the model
(from 10% harm to 30% benefit), and this did not appear
to result from model miscalibration.

The results of the net benefit calculations are shown in
Table 5. The results are broadly similar to the ACCENT
results. The model remains of value for higher treatment
thresholds compared to ACCENT, presumably because it

Table 4: Results for the ACCENT data for a treatment threshold (T) of 0.05. 

Strategy Treat no patients, 
regardless of model

Treat all patients, 
regardless of model

Treat according to prediction model

Prediction model 
recommends treatment

Prediction model 
recommends no 

treatment

Prediction model total

Number of patients 1397 1474 889 564 1453
Number of events 568 (40.66%) 472 (32.02%) 343 (38.6%) 139 (24.6%) 482 (33.2%)

Decrease in event rate 8.64% 7.49%
Number of treatments 1474 (100%) 889 (61.2%)

Net benefit 8.64% – 100% × 0.05 = 
0.0364

7.5% – 61.2% × 0.05 = 0.0443

The results in the first and second columns give the results from the treatment and control groups. The third column shows that there were 889 patients in the treatment 
group for whom the prediction model estimated a benefit of 5% or more and that 343 of these died. The fourth column shows that there were 564 patients in the control 
group of the randomized trial with predicted benefit of less than 5%, of whom 139 died. The final column shows the overall results for patients given an individualized 
prediction.

Table 3: Net benefit for ACCENT data. 

T Treat all patients Treat by prediction Advantage of prediction

0.5% 0.081 0.081 0.000
1.0% 0.076 0.076 0.000
2.0% 0.066 0.060 -0.007
3.0% 0.056 0.049 -0.007
4.0% 0.046 0.050 0.004
5.0% 0.036 0.044 0.008
7.5% 0.012 0.029 0.017
10.0% -0.014 0.013 0.013
12.5% -0.038 -0.003 -0.003
15.0% -0.064 -0.006 -0.006
17.5% -0.089 0.000 0.000
20.0% -0.114 0.000 0.000
25.0% -0.164 0.000 0.000

T is the treatment threshold corresponding to the minimum reduction in absolute risk required to consider opting for treatment. The units are the 
equivalent of the number of events (death or recurrence) per patient. The "advantage of prediction" column shows the increment in net benefit of 
prediction compared to the better of "treat all" and "treat none".
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involves a greater separation of risks. The benefit of pre-
diction is also generally larger than for ACCENT. In this
case, estimates of the value of individualized prediction
modelling obtained from a single trial were over-optimis-
tic when compared to a later meta-analysis.

The Dutasteride trials
The concordance index for the model in this dataset was
0.720, corrected by bootstrapping to 0.715. Though the
range of risks was extreme – a small number of patients
had a predicted benefit less than zero whilst others were
predicted to benefit by 45% – over 90% of patients had
predicted risk reductions in the range of 0 – 10%.

Net benefit is shown given in Table 6. To interpret this
table, we obtained the following estimate of treatment
thresholds from a clinician: "80% of patients would want
at least a 10% absolute risk reduction; 20% might settle
for 5%". There is a small benefit of prediction up to treat-

ment thresholds of 10%. Using the estimates for the dis-
tribution of thresholds given above, we estimate that for
every 100 patients given an individualized prediction, 10
would elect treatment and one would not experience an
event as a result. This is highly cost-effective compared to
a strategy of treating all patients, where approximately 30
patients are treated to prevent one event. The benefit of
individualized prediction is lost for patients who would
require a large treatment effect, presumably because, in
this case, the model would need to identify accurately the
very small proportion of patients at high risk of an event.
Note that, unlike the adjuvant colon cancer case, there is
no lower limit to the benefit of prediction. That said, the
size of the benefit is very small. For example, for a thresh-
old of 2%, individualized prediction compared to "treat
all" is the equivalent of a strategy that reduces the number
of treatments by only 1% for an equivalent number of
events.

Table 5: Net benefit for the Moertel trial. 

T Treat all patients Treat by prediction Advantage of prediction

0.5% 0.133 0.139 0.007
1.0% 0.128 0.132 0.004
2.0% 0.118 0.116 -0.001
3.0% 0.108 0.108 0.000
4.0% 0.098 0.102 0.005
5.0% 0.088 0.091 0.003
7.5% 0.063 0.064 0.001
10.0% 0.038 0.065 0.028
12.5% 0.013 0.035 0.022
15.0% -0.013 0.029 0.029
20.0% -0.063 0.021 0.021
25.0% -0.113 0.011 0.011
30.0% -0.163 -0.002 -0.002
35.0% -0.213 0.000 0.000

T is the treatment threshold corresponding to the minimum reduction in absolute risk required to consider opting for treatment. The units are the 
equivalent of the number of deaths per patient. The "advantage of prediction" column shows the increment in net benefit of prediction compared to 
the better of "treat all" and "treat none".

Table 6: Net benefit for the Dutasteride data. 

T Treat all patients Treat by prediction Advantage of prediction

0.5% 0.026 0.027 0.001
1.0% 0.021 0.024 0.002
2.0% 0.011 0.017 0.006
3.0% 0.001 0.011 0.009
4.0% -0.009 0.012 0.012
5.0% -0.019 0.009 0.009
7.5% -0.044 0.002 0.002
10.0% -0.069 0.002 0.002
12.5% -0.094 0.000 0.000
15.0% -0.119 -0.001 -0.001

T is the treatment threshold corresponding to the minimum reduction in absolute risk required to consider opting for treatment. The units are the 
equivalent of the number of events per patient, where an event is either acute urinary retention or surgical intervention for BPH. The "advantage of 
prediction" column shows the increment in net benefit of prediction compared to the better of "treat all" and "treat none".
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Discussion
Models to provide individual-level predictions of treat-
ment benefit are becoming widely advocated. We have
proposed a method to judge the value of such models,
and have applied this method to several real data sets. Our
methods appear to be useful for identifying the condi-
tions under which a prediction model is useful. When the
group level effect of a treatment is thought to be clinically
relevant, prediction modelling can play a role in identify-
ing patients who are unlikely to benefit from treatment.
When the effect of treatment is thought to be more lim-
ited, prediction modelling may have a role in identifying
patients who benefit more than average. However, the use
of prediction modelling to guide treatment decisions for a
particular patient can be harmful for patients who would
accept treatment even if it was of relatively little benefit, as
it would recommend no treatment to some patients who
would indeed benefit.

In the datasets we have examined, the magnitude of the
benefit associated with appropriate clinical implementa-
tion of an effective prediction model appears sufficient to
warrant development of further models. Models would
appear to be particularly appropriate in situations where
event rates are low, such as in screening and prevention
trials.

Historical trends suggest that prediction models are likely
to be of increasing importance. The 1948 streptomycin
trial is often considered to be the first randomized trial of
the modern era[21]. In this trial there was a very large
effect size (an absolute risk reduction of 43%), a high con-
trol event rate (92%) and few if any prognostic markers. It
is clear that individualized prediction has no role for cli-
nicians using streptomycin to treat tuberculosis. Alterna-
tively, consider a recent randomized trial reporting three-
year disease-free survival following fluorouracil plus leu-
covorin chemotherapy with or without oxaliplatin (which
increases toxicity) in patients receiving curative resection
for colon cancer[22]. The effect size was small (5% abso-
lute risk reduction in 3-year disease-free survival) and the

control event rate was moderate (27%). The trial was very
large, with over 2000 patients, which enables the genera-
tion of reliable models. This recent trial has many charac-
teristics suggesting that prediction modelling might be of
value for the clinician in deciding whether to add oxalipl-
atin to a patient's treatment regimen.

The exponential increase in research on molecular mark-
ers of disease also suggests that prediction modelling will
become of increasing importance. One focus of research is
the detection of circulating tumor cells as a method of pre-
dicting cancer outcome. A recent study demonstrating the
value of this approach in breast cancer[23], was accompa-
nied by an editorial[24] in the New England Journal of Med-
icine that emphasized the need for "tools that ... enable us
to tailor treatment decisions". Noting that the new assay
"permits the prediction of ... survival", the editorial sug-
gests that the findings "may substantially affect ...the
standards and practice of decisions about treatment". It
has also been suggested that molecular markers could be
of benefit in preventive medicine. For example, The Amer-
ican Society of Clinical Oncology has officially recom-
mended that tools be developed to "quantify cancer risk
in individuals" with the aim of developing "improved
interventions targeting cancer-risk reduction"[25]

We advise appropriate caution in the use of prediction
modelling. A statistically significant association between a
predictor and a clinical outcome, such as that reported in
the study of circulating breast cancer cells, does not dem-
onstrate an advantage to using the prediction tool in clin-
ical management. Similarly, good discrimination and
calibration does not establish the clinical value of a pre-
diction tool. Individualized prediction is becoming
widely used before there are clear data that it truly
improves outcome. With the exception of the ACCENT
data analyzed above, most current prediction models,
available online [5-7] have yet to be examined to explore
their potential impact on eventual patient outcome. Of
course a prospective evaluation would be optimal; short
of such an effort, we suggest that those developing predic-
tion models use the tools we have developed in this paper.
As an immediate first step, we see value in educating users
about the possible negative impact of using models to dic-
tate treatment decisions in patients who would opt for
treatment even if it was of relatively modest benefit.

Appendix: A patient's threshold for accepting 
treatment is equivalent to the ratio between the 
harm associated with treatment and the harm 
associated with the event
Figure 1 gives a decision tree for treatment. A patient at
risk of event (e.g. recurrence after surgery for breast can-
cer) can opt for treatment (e.g. chemotherapy) or not, and
will experience an event or not. The four possible out-

Decision tree for treatmentFigure 1
Decision tree for treatment. 
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comes – treatment without event; event despite treatment;
no event or treatment; event without treatment – are each
associated with a certain probability and a certain "value",
sometimes assigned by the patient, in terms of, for exam-
ple, quality adjusted life years, utilities or economic costs.
The value of the best possible outcome, avoiding the event
without having to go through treatment, is set to one.
Experiencing an event and undergoing treatment are each
associated with a decrease in the value of a health out-
come, the size of which can vary from patient to patient or
from clinician to clinician. The probabilities and values
for each outcome are multiplied together to determine
which decision, treatment or no treatment, leads to the
best expected health outcome. In the figure, ptrepresents
the probability of event for patients receiving treatment;
p0 represents the probability of event in untreated
patients. "Event" is the decrease ("disutility") in how
patients value their health if they experience an event;
"treatment" is the decrease associated with treatment and
reflects its inconvenience, side-effects, risks and financial
cost.

The model assumes that the disutility of treatment is the
same whether or not a patient has an event. This is gener-
ally true for the treatments usually incorporated in predic-
tion models, such as chemotherapy, where a treatment
causing unpleasant but transient side-effects, is given to
try to prevent an event occurring sometime later. The
assumption may not hold in certain other situations, such
as when treatment causes persistent disutility, and the
event is death.

Solving the decision tree, a patient should be uncertain
whether to opt for treatment when the expected outcome
of treatment and no treatment are equal, that is, when:

pt (1 - event - treatment) + (1 - pt)(1 - treatment) 
= p0 (1 - event) + 1 - p0

Expanding and simplifying each side gives:

- ptevent - treatment = - p0event

Rearranging:

Now p0 - pt is the absolute risk reduction, in other words,
the treatment effect at equipoise, or the threshold we
defined in the text as T. Treatment is the harm associated
with treatment and event is the harm associated with the
event. Hence T is equivalent to the ratio between harms of
treatment and those of an event.
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