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Abstract: In this paper, four groups of graphene oxide and carbon fiber hybrid-reinforced resin matrix
(GO-CF/EP) composites with different layering ways were prepared by a vacuum infiltration hot
pressing system (VIHPS). The damping properties of the specimens with different layering ways were
tested by the force hammer method, and the micromorphology of the specimens was photographed
by scanning electron microscope. The experimental results showed that the damping properties of
GO-CF/EP composites gradually increased with the increase in the number of Y-direction layers. The
[XYXYXY]6 has the best damping property, with a damping ratio of 1.187%. The damping ratio is
5.3 times higher than that of [XXXXXX]6 layer mode, and the first-order natural frequency is 77.7 Hz.
This is mainly because the stiffness of the X-direction layer is larger than that of the Y-direction layer,
and its resistance to deformation is considerable. Therefore, its decay rate is slower. The Y-direction
layer has weak resistance to deformation and fast energy attenuation. The increase in the number of
Y-direction layers will lead to the overall increase in, and the improvement of, the damping properties
of GO-CF/EP composites.

Keywords: layer way; GO-CF/EP composites; force hammer method; damping ratio; resonance
frequency

1. Introduction

Carbon fiber reinforced resin matrix (CFRP) composites have significant advantages
of a lightweight, high-heat resistance, good corrosion resistance, and high strength, and are
ideal high-performance materials in important technical fields such as aerospace, weapons,
and equipment [1,2], especially in the leading-edge aerospace field, such as wing housing,
helicopter, propeller blade, and engine duct design. Moreover, composites play a role
in major structures, such as complete wing and fuselage components. Civil and military
structural dynamic systems are prone to serious vibration when they are close to resonance,
limit cycle, chaos, and aeroelastic instability conditions. Enhancing the damping of the
structural system can not only reduce aeroelastic flutter and gust load but also improve the
fatigue life, cockpit noise, maneuverability, and operational performance of structural com-
ponents [3,4]. Therefore, the analysis and effective prediction of the damping performance
of composite materials can realize the effective control of structural vibration and impact,
noise, and fatigue failure, which has very important engineering practical significance [5].
For this reason, many experts and scholars have carried out in-depth and multifaceted
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academic research studies on the damping performance of CFRP and achieved certain
research results.

Among them, Rahman et al. [6] prepared flax fiber reinforced polypropylene (FFRP)
composites with different fiber orientations through the vacuum bagging process and tested
damping performance by the force hammer method. It was found that with the increase
in layering angle, the damping increased. It was concluded that the damping decreases
slightly at 45◦. Florence et al. [7] used vacuum bag-forming technology to prepare sandwich
plates of 70% CF and 30% E-glass fiber. The influence of different fillers on the damping
performance was explored. It was found that the polyurethane (PU) filled sandwich plate
has good damping performance. Bhudolia et al. [8] prepared thermoplastic tubular com-
posites using the balloon-assisted resin transfer molding (B-RTM) manufacturing process
and conducted vibration modal analysis and test. The results showed that the structural
damping of tubular composites exhibits different results at different output positions. Tsi-
mouri et al. [9] fabricated sandwich CFRP structures with polydimethylsiloxane (PDMS)
as the core layers. The high damping of the structures was achieved by exploiting the
high shear deformations induced within thin PDMS layers. Although the composites were
successfully prepared by the above processes, the microstructure of the composites was
not characterized, and the influence of the preparation methods on the composites was not
systematically explored. A vacuum infiltration hot pressing system (VIHPS) independently
developed and designed by the team was adopted in this paper [10]. In this system, elec-
tromagnetic stirring, ultrasonic dispersion, vacuumization, hot pressing infiltration, and
other methods were used to prepare graphene oxide and carbon fiber hybrid-reinforced
resin matrix (GO-CF/EP) composites with ideal structure.

Graphene, a nanomaterial, is increasingly being used to improve the damping of
CFRP because of its excellent mechanical properties and large specific surface area [11–13].
Sarikaya et al. [14] studied the vibration damping behavior of graphene nanocomposites
through dynamic mechanical analysis and cyclic tensile compression test. The experimental
results showed that the damping performance of the composite could be improved by
about 70% by adding graphene nanoplatelets (GNP). Aside from the interfacial stick–slip
friction between nanomaterials and matrix, interfacial sliding inside the nanomaterials has
also attracted interest in improving the energy dissipation in composites. Lu et al. [15]
fabricated sandwich PU beams with GNP as the core layers. The damping loss factor
of these composites measured from quasistatic and dynamic damping tests increased by
71% and 94% compared with the analogous values from PU beams, respectively. They
found that the wrinkles play an important role in energy dissipation caused by the inner
interfacial slips of GNP. Moreover, they fabricated PU foam skeletons with multilayer
sandwich GO coatings [16]. The stick–slip sliding of GO/PU and a combination of GO
interfacial sliding and the PU intrinsic damping capacities had a synergistic effect on
damping enhancement. Matsubara et al. [17] prepared a damping material using natural
rubber (NR) as the matrix and micron-sized polyethylene terephthalate (PET) as the filler.
The loss factor was determined by dynamic mechanical analysis, and a three-dimensional
strain map was obtained using marker tracking in X-ray-computed tomography (CT) data.
The results showed that adding 5% PET fiber into NR can improve the loss coefficient of
NR, and the nonlinear damping of the composite rubber is affected by the separation of the
filler–matrix interface and the internal strain of the material.

In addition, many experts and scholars have made achievements in the factors affecting
the damping performance of composite materials. Chen et al. [18] analyzed the effects
of different inclined ripple angles and fiber orientations on the natural frequency and
loss factor of CFRP 3D double-arrow (3D DAH) heteromorphic metamaterials by using
the energy method. The results showed that the natural frequency of CFRP is mainly
determined by the stiffness vibration of 3D-DAH metamaterials along the main direction,
and the loss coefficient is the largest around 45◦ fiber angle. Rueppel et al. [19] studied
the layering angle of CF and flax fiber composite laminates and tested them through
logarithmic decrement measurement, dynamic mechanical analysis, and vibration beam
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measurement. It was concluded that the damping performance is improved, and the elastic
modulus decreases with the increase in layering angle. Assarar et al. [20] found that the
damping properties of flax carbon mixtures with an external flax layer increased with the
increase in the flax fiber content. Fairlie and Njuguna [21] also reported that adding two
external flax fiber layers improved the damping performance of CFRP by 94%. Zhang
et al. [22] studied the influence of volume fraction of E-glass fiber and layering angle on
damping and strength of composite laminates. The experimental results showed that
the damping capacity of composite laminates could be improved by increasing the fiber
laying angle and decreasing the volume fraction of E-glass fiber, but the tensile strength
of composite laminates would be decreased. Al-Obaidi et al. [23] studied the mechanical
properties of leaf spring composites. The results showed that the bearing capacity of the
composite leaf spring is related to the laying angle and volume content of the fiber. The
matrix type has a significant effect on the stiffness. Nishant Varma et al. [24] showed that
the natural frequency of composite leaf spring is 93% higher than that of leaf spring. The
effects of different layering methods and chemical treatments on mechanical properties
and free vibration properties of composites were discussed in the literature [25]. Table 1
is a comparative table of recent research results on the damping properties of composite
materials. Most of the above studies are about the influence of fiber content and layering
angle on the damping performance of composite materials. However, there are few studies
on the effect of unidirectional carbon fiber layering on the damping properties of composites.
Therefore, it is necessary to investigate the effect of layering on the damping properties of
composite materials. The damping of structure can be affected only by changing the way of
layering, which provides a new idea for the design and application of composite materials.

Table 1. A comparative table of recent research results on damping properties of composite materials.

Author Craft Materials Conclusion Reference

Rahman Vacuum bagging process Flax fiber reinforced
polypropylene composites

The loss factor increases with increasing
frequency and decreases slightly with
increasing fiber content.

[6]

Florence Vacuum bag molding
technique

Sandwich plates with a
hybrid fiber of 70% CF
and 30% of ‘E’ glass fiber

The polyurethane-filled sandwich plate had a
higher damping performance than the
Rohacell-filled panel and wheat
husk-filled panel.

[7]

Bhudolia B-RTM Carbon–Elium composites
At different output positions in the tube, the
structural damping of the carbon–Elium
composite was improved by 21.7%.

[8]

Sarikaya Solution mixing process “single-layer graphene”
and “GNP”

The addition of GNP will increase the damping
properties of the nanocomposites by
up to ~70%.

[14]

Wenjiang Lu Modified dip-coating
process

Open-cell PU
foams containing
multilayered GO

These engineered composite foams with
extremely low GO content (−0.12 wt%) afford a
significant increase in quasistatic energy
dissipation (52%) and dynamic damping (76%)
when compared with counterpart foams coated
with the same number of pure PU
dispersion layers.

[16]

Yun-Long Chen

Hot-press compression
molding method and
layer-by-layer
assembly method

CFRP 3D DAH auxetic
metamaterials

The natural frequency of CFRP 3D DAH
attached metamaterials is mainly determined
by the stiffness of the main vibration direction,
and the loss factor is the highest when the
angle of the layer is about 45◦.

[18]

Rueppel

Autoclave manufacturing
and compression
resin transfer
molding

CFRP and FFRP

The damping of the two materials increases
with the increase in the angle. The matrix and
interface seem to be primarily responsible for
damping at lower frequencies.

[19]

Assarar Platen press process Flax–carbon twill epoxy
composites

[C/F/C/C/F/C] laminates are 15% higher
than non-hybrid carbon laminates without
losing specific bending modulus.

[20]

Bao Zhang Vacuum infusion
molding process

Glass fiber reinforced
composites

The 0◦ fiber layer is beneficial for improving
the strength of the laminate. The 90◦ fiber layer
is beneficial for the damping performance of
the laminate.

[22]
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In this paper, four distinct groups of GO-CF/EP composites with ideal infiltration
structures and different layering ways were prepared by VIHPS. The microstructures of
the prepared samples were well impregnated without holes and stratification. The damp-
ing performance was investigated by force hammer test and microscopic morphology
observation. This research is of great significance to aerospace [26], building materials or
automotive [27], and machine tool [28] fields.

2. Materials and Methods
2.1. Test Materials

In the experiment, the reinforcement was a 2D-T700 CF cloth purchased from Toray
Company (Tokyo, Japan). GO was purchased from Shenzhen Suiheng Technology Co.,
Ltd. (Shenzhen, China). The matrix is diglycidyl ether bisphenol A type E51 epoxy resin,
the curing agent was phenolic amine T31 curing agent, and both were purchased from
Nantong Star Materials Co., Ltd. (Nantong, China). Anhydrous ethanol was purchased
from Chinasun Specialty Products Co., Ltd. (Changshu, China).

2.2. Preparation Process of Specimens
2.2.1. Preparation of Curing Mixed Solution Containing GO

As shown in Figure 1, the specific preparation process of curing mixed solution
containing GO was as follows: (1) Firstly, an appropriate amount of GO powder and
anhydrous ethanol was weighed into a beaker and stirred for 5 min; (2) The solution was
placed in an electromagnetic mixer and stirred electromagnetically at 500 rpm for 30 min.
The aim was to make GO powder disperse more evenly in anhydrous ethanol; (3) The
solution was dispersed in an ultrasonic cleaning machine with the ultrasonic frequency of
40 kHz, power of 200 W, and time of 40 min; (4) The dispersed GO solution was poured
into the weighed epoxy resin and stirred with a glass rod; (5) Then, it was placed in an
electromagnetic stirrer and stirred electromagnetically at 500 rpm and a time of 60 min. The
purpose was to make GO evenly dispersed in the epoxy resin; (6) It needed to be placed in
an ultrasonic dispersion cleaning machine with a frequency of 40 kHz, a power of 200 W,
and a time of 60 min; (7) The solution was put into the vacuum oven for vacuumization,
the vacuum degree was −0.09 MPa, and the time was 24 h. The purpose was to remove the
bubbles generated in the solution during the preceding steps; (8) The proper amount of
curing agent was added to the solution. The mixture was first stirred evenly with a glass
rod and then placed in the electromagnetic mixer for electromagnetic stirring. The speed
was 500 rpm, and the time was 15 min.

Figure 1. Preparation flow chart of curing mixed solution containing GO.
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2.2.2. Preparation of GO-CF/EP Composites

After the preparation of curing mixed solution containing GO, we prepared the GO-
CF/EP composite sample. The specific process was as follows: (1) A brush was used
to evenly apply a curing mixture containing GO to both sides of the cut CF. The fiber
orientation that is parallel to the axial direction was X-direction, and perpendicular to the
axial direction was Y-direction, as shown in Figure 2; (2) In order to obtain CF preforms,
the coating CF needed to be stacked in a layered way. Figure 3 is the layering diagram with
the layering mode of [XYXYXY]6. In the stacking process, it was necessary to pay attention
to the neat stacking of CF and the discharge of bubbles; otherwise, it would cause defects
such as CF shift and stratification; (3) The CF preform was transferred to the molding
press, and 0.7 MPa mold pressure was applied at 50 ◦C for 10 min; (4) The CF preform
was moved from the molding machine to a thermostatic drying vacuum oven preheated to
90 ◦C, and heated and cured for 20 min under the vacuum condition of −0.09 MPa; (5) CF
preforms are removed from a thermostatic drying oven and cooled at room temperature.
The specimens of GO-CF/EP composites are obtained. The specific preparation process is
shown in Figure 4.

Figure 2. Schematic diagram of fiber orientation.

Figure 3. Schematic diagram of layering [XYXYXY]6.
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Figure 4. Preparation flow chart of GO-CF/EP composites.

2.3. Test and Characterization Methods

According to GB/T 18258-2000 standard, a force hammer of SN L W37727 (PCB
Piezotronics, Inc., Beijing, China) with a sensitivity of 2.267 mV/N was used at room
temperature. The displacement sensor model was LK-GD 500 (Senmeirui Technology Co.,
Ltd., Shenzhen, China). The charge amplifier model was YE5873A (Jiangsu Lianneng Elec-
tronic Technology Co., Ltd., Yangzhou, China), and the signal collector was LMS SCADAS
Mobile. Ms. Test. Lab (Beijing Ruide Hengxin Technology Co., Ltd., Beijing, China) was
used for data analysis. The size of the sample was 210 mm × 10 mm × 2 mm. There were
four specimens of GO-CF/EP composites with the same layer way. The schematic diagram
of the vibration modal test system is shown in Figures 5 and 6 is the schematic diagram of
the specimen size of the vibration modal test.

Figure 5. Schematic diagram of vibration model test system.

Figure 6. Schematic diagram of the size of the test piece.

The test process was as follows. One end of the sample is fixed onto the fixture.
The clamping length was 20 mm, and the cantilever length was 190 mm. The position of
the displacement sensor needed to be adjusted so that infrared light was projected near the
sample axis. The force hammer gently hammered the sample on one side near the fixture,
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and the impact point was as far away from the axis of the sample as possible. The number
of intermittent impacts was five, and the difference between the five impact forces was as
small as possible. The change of displacement response with time was measured. When the
specimen was impacted, the vibration amplitude of the specimen farthest from the fixture
fluctuated, and the infrared ray sent by the displacement sensor captured the vibration
signal and transmitted the signal to the data collector. The data collector recorded the
readings of the displacement sensor on the computer and then calculated the frequency–
response function using Fast Fourier Transform in special software LMS Test. Lab. In order
to reduce the impact of noise signals during the test, the signal-to-noise ratio of the input
pulse signal was improved by adding a force window, the influence of noise was reduced
by adding an exponential window to the response signal, and the noise of transfer function
was eliminated by averaging technique. The damping calculation formula is shown in
Equation (1) [29].

ln
(

An

An+1

)
≈ 2πζ (1)

where An and An+1 are the vibration amplitudes of the nth and the n + 1th; ζ is the damping
ratio.

3. Analysis of Test Results
3.1. Microstructure
3.1.1. Microstructure of GO

The interface bonding zone is the bonding transition zone between the reinforced
fiber and the resin matrix, as shown in Figure 7a, with a certain thickness. Different from
the reinforced fiber, it has a relatively high shear modulus, which provides necessary
conditions for energy dissipation. In CFRP composites, the energy consumption at the
interface between fiber and matrix is very poor [30]. Therefore, the improvement of its
performance will inevitably affect the damping performance of CFRP. In this paper, GO was
added to improve the properties of the interface binding zone. It was found by SEM that GO
was distributed on the fiber bundle in the form of folds, as shown in Figure 7b. Obviously,
it can be observed that the fiber bundles no longer appear in a smooth form but have many
rough GOs on their surface, forming a mechanical locking structure. This phenomenon will
lead to increased internal friction and faster energy consumption in the process of energy
dissipation. In the interface bonding zone, the movement of boundary phase molecules
needs to overcome resistance, which takes a certain amount of time, resulting in boundary
phase damping. The addition of GO will increase the damping of this bounded phase.
In addition, the internal friction force will be generated by the debonding and slippage of
the boundary phase under the action of external force, which will also affect the damping
of the material, thus improving the damping performance.

Figure 7. Schematic diagram of the three-phase model. (a) Three-phase model; (b) Mechanical
locking structure.
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The influence of filler on the damping property of polymer material mainly comes
from two aspects: one is the influence of the damping property of filler, and the second
is the influence of the shape of filler. In general, the specific surface area of the filler is
different due to its different shapes and types, so its influence on damping performance
is also different. GO sheets have a high specific surface area and relatively low particle
density [31], which contributes greatly to the damping of polymer materials. The folded
structure is located between the fiber and the resin, showing the damping of the micro-
constraint layer. That is, the Van der Waals interaction between the GO sheets is much
weaker than the bonding between CF and epoxy, so the interfacial sliding of the multi-
layer GO can be activated by the deformation of the fiber–matrix interface. The larger
fiber–matrix interface area and multilayer sliding deformation in GO can generate more
energy dissipation [32]. Furthermore, the slippage between graphene layers is recoverable
under small deformations [19], thus enabling the material to dissipate energy continuously
without structural deterioration. Because the orientation of GO in the epoxy resin matrix is
random, there are many sliding phenomena at the interface between GO and resin. This
improves the vibration energy loss capacity of the system. In addition, fillers limit the
movement of polymer chains and increase the internal friction of the material. The relative
lag between strain and stress increases, the internal friction of the material improves, and
the effective damping temperature domain of the material expands. These phenomena can
well explain the reason why the damping performance of GO-CF/EP composites is better
than that of CFRP.

3.1.2. Micromorphology of Infiltration Structure

In order to explore the mechanism of the influence of layer way on the damping
performance of the prepared GO-CF/EP composite, SEM images of four groups of samples
with different layering ways were taken, as shown in Figure 8. It is obvious that the infiltra-
tion effect is ideal; the matrix is evenly distributed in the composite. The fiber is tightly
combined with the matrix, showing bright black, and there are no obvious defects such as
fat poor and fat rich, bubbles, holes, and so on. GO is evenly distributed on the fiber. When
subjected to impact force, relative sliding occurs between GO and matrix as well as between
GO and GO. The addition of GO can improve the toughness of the resin curing system
and enhance the impact resistance of the composite system. The toughening mechanism
may be due to the heterogeneity of the solidified cross-linking network, resulting in the
formation of a micro heterogeneous continuous two-phase structure to achieve energy
dissipation and thus significantly improve the impact resistance of composites. There are
no obvious microstructure defects in the morphology of different layering ways, so the
damping performance is mainly affected by different layering ways.

Figure 8. Cont.
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Figure 8. Morphology of microinfiltration of GO-CF/EP composites. (a) [XXXXXX]6; (b) [XYXXXX]6;
(c) [XYYXXX]6; (d) [XYXYXY]6.

3.2. Damping Performance
3.2.1. The Damping Ratio

Damping reflects a material’s ability to convert mechanical energy into heat energy.
The greater the damping, the greater the rate of energy loss through the material. At the
same time, a greater damping material can significantly reduce the amplitude peak of
the system in resonance. According to the test results of the force hammer method, the
free attenuation curves of different layering ways are obtained. Obviously, it can be
observed that the attenuation of vibration amplitude is faster and faster with the increase
in the Y-direction layer. Its damping ratio is plotted as a bar graph, as shown in Figure 9.
[XXXXXX]6 has the lowest damping ratio of 0.189%. The damping ratio of [XYXYXY]6 is
1.187%, which is 5.3 times higher than that of the specimen without the Y-direction layer.
This data conclusion is also consistent with the view in reference [19,33]. This is mainly
because when the specimen is subjected to impact force, the energy dissipation path of the
specimen is fixed, as shown by the arrow in Figure 10. However, the damping properties of
GO-CF/EP composites with different layering ways are different. In the X-direction fiber
layer, the energy dissipation path is consistent with the direction of the fiber. Therefore,
its damping property is mainly affected by the damping property of the fiber. Although
the reinforced CF can play a role in damping when subjected to impact force, the material
property is rigid, and, coupled with its own viscoelastic difference and poor interface
damping, its damping coefficient is low. Therefore, the contribution of its inherent damping
to the damping of the specimen is not obvious, so the specimen with [XXXXXX]6 layering
mode has the smallest damping ratio. Similarly, in the Y-direction layer, the dissipation
path of energy is consistent and fixed. However, the damping material in its path changes.
In the Y-direction layer, the part of matrix participation has increased. The contribution of
the matrix to the overall properties of composites plays an important role [22,23]. It can be
said that the fiber is combined with the matrix, so the damping performance of the matrix
will have a great influence on the damping performance of the specimen. In addition, in
CFRP, the organic resin is a typical viscoelastic material with a large damping coefficient,
and its polymer characteristics tend to produce energy consumption. Its contribution to the
damping ratio is much higher than that of other components. As a result, the increase in
resin matrix participation rate has a great change in the damping performance of specimens.
Therefore, with the increase in the number of Y-direction layers in GO-CF/EP composites,
the damping ratio presents an almost linear increase, and the specimen with [XYXYXY]6
layers has the highest damping ratio.
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Figure 9. Damping ratios of different layering ways.

Figure 10. Diagram of energy dissipation.

3.2.2. Natural Frequency

The first-order resonance frequency of laminates is a key index to measure the vibration
characteristics of structures. The higher the fundamental frequency, the higher the overall
stiffness, the better the stability of the laminates, and the stronger the deformation resistance
under the action of pulse load, which can reduce the incidence of resonance of the laminates.
The first mode is determined by the inherent damping properties of the material, such as
viscoelasticity. The first-order resonance frequency of GO-CF/EP composites prepared
was tested by the force hammer method. In the range of 0–2000 Hz, only the first-order
resonance frequency is obvious. Therefore, in the next step, the acquisition frequency
is uniformly set as 0–512 Hz. The first-order resonance frequency–response curves of
specimens with different layering ways were obtained, and the results were plotted to
obtain the curves shown in Figure 11a. It is observed that with the increase in the number
of Y-direction layers, the corresponding frequency of peak values in the response curve of
the specimen gradually moves to the left, and the corresponding peak values gradually
decrease. The values of first-order resonance frequency under different layering ways
are drawn as a bar chart, as shown in Figure 11b. It is observed that the first-order
resonance frequency of the specimen decreases gradually with the increase in the number
of Y-direction layers in the specimen. The reason for this phenomenon is that with the
increase in the number of Y-direction layers, the modulus of the composite decreases after



Polymers 2022, 14, 2358 11 of 15

forming. At the same excitation, the material amplitude increases, and the natural frequency
decreases. The natural frequency of CFRP mainly depends on the stiffness vibration in the
main direction of the material, while the flexural stiffness of the laminates decreases with the
increase in the number of fiber laminates in the Y-direction, resulting in a downward trend
of the natural frequency. The structure stiffness of Y-directional fiber is small, and energy is
consumed mainly by internal friction between fiber and matrix. Small amplitude in the
vibration spectrum indicates high damping [34]. By observing the frequency–response
curve, it is found that with the increase in the number of Y-direction layers, the rising trend
of the response curve at the peak gradually slows down. The response curve amplitude of
layering mode [XYXYXY]6 is significantly lower than that of layering mode [XXXXXX]6,
and the slope of its peak curve becomes slow, so its damping performance is the best.
This also confirms that the steeper the frequency–response curve, the smaller the loss
coefficient, and the weaker the damping capacity. The smoother the frequency–response
curve, the greater the damping coefficient and the better the damping performance of
the corresponding material. In addition, increasing the number of Y-direction fibers will
increase the structural flexibility, which will also lead to a reduction in natural frequency.
These conclusions are also confirmed in reference [18,23].

Figure 11. The first-order resonance frequency of different layering ways. (a) Frequency–response
curve; (b) The first-order resonance frequencies of different layering ways.
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4. Discussion

The damping and vibration reduction characteristics of GO-CF/EP composites pre-
pared in this paper mainly come from the intrinsic damping of resin, CF, and additive GO,
the boundary phase damping of resin-GO and resin-fiber, viscoelastic damping, thermoe-
lastic damping, etc. The volume fraction of fiber is generally higher, and the fiber widely
existing in the resin matrix can increase the strain of the composite and improve the energy
consumption capacity of the material. The main dissipation mechanism of GO-CF/EP com-
posites is friction sliding. Compared with traditional reinforcement materials, the friction
area between GO and resin increases with the addition of GO, so its dissipation mechanism
is higher.

In the multiphase coexistence system of composite materials, the interface refers to
the contact area between the reinforcement phase and the matrix phase. The interface
layer is different from the adjacent reinforcement phase and the matrix phase in structure
and properties, and the properties change in the direction of thickness to a certain extent.
In composite materials, the interface is the core structure. It is widespread and abundant
and divides the large continuous body into several small continuous regions, causing
discontinuity of structure and performance at the interface. Different from the damping
mechanism of general materials, the energy dissipation of fiber-reinforced composites is
caused by different mechanisms at the structural level, such as viscoelasticity between the
matrix and the fiber material, damping at the interface of the fiber and matrix, etc. In terms
of laminates, the damping of composite materials strongly depends on the characteristics,
orientation, interlayer effect, and vibration coupling of the constituent layers [35]. With the
increase in the number of Y-direction layers, the interlayer effect and vibration coupling
will change. This reason has been explored.

Yim et al. [36] found that increasing the percentage of X-direction layers in the lam-
inates can reduce damping, even though the viscoelastic effect of the matrix is the main
damping mechanism. Adams et al. [37] found that for cross bedding, the most important
factor is to determine the cross-bedding ratio of the relative number of X-direction and Y-
direction layers. These also confirm the importance of exploring the damping performance
of different layering ways. The energy dissipation of composite laminates mainly depends
on the inconsistencies of compressive deformation between upper and lower panels when
the structure is deformed under stress. The interlaminar shear stress between layers can
dissipate the vibration energy of the structure. For composite laminates, the bending
deformation perpendicular to the fiber direction and the shearing deformation within the
laminate are the main reasons that affect the damping characteristics. Transverse damping
factor and shear damping factor are the most important factors affecting the damping
ratio of composite laminates. The stress-related damping in the fiber direction is almost
entirely determined by the fiber damping. The damping related to the stress perpendicular
to the fiber axis and the damping related to the in-plane shear stress are almost entirely
determined by the matrix damping. The fiber moves in a viscoelastic matrix in longitudinal
and transverse dissipation. The comparison of experimental results shows that the fiber–
matrix interaction is dominant in the longitudinal direction [38]. All these indicate that the
damping performance of the Y-direction layer is stronger than that of the X-direction layer.
Therefore, with the increase in the number of Y-direction layers, the damping performance
of GO-CF/EP composites will be gradually enhanced, and the damping ratio will also be
significantly improved.

5. Conclusions

In this paper, VIHPS was used to prepare four groups of GO-CF/EP composites with
ideal infiltration structures and different layering ways. Their damping ratio and first-
order resonance frequency were collected. Through the combination of SEM results and
experimental data, the following results were obtained:
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(1) The addition of nanoscale GO can significantly enhance the damping performance
of CFRP composites. The main dissipation mechanism of GO-CF/EP composites is
friction sliding. Compared with traditional reinforced materials, the addition of GO
makes the friction area between GO and resin larger, so the dissipation mechanism
is higher;

(2) Among the prepared specimens, the damping ratio of [XYXYXY]6 specimens is up to
1.189%, which is more than six times that of [XXXXXX]6 specimens. This is because,
with the increase in the number of Y-direction layers, the participation of the matrix,
which contributes greatly to the damping performance, gradually increases, thus
improving the damping performance of GO-CF/EP composites;

(3) The natural frequency of GO-CF/EP composites is greatly affected by the stiffness of
the materials. The anisotropy of the stiffness of the specimen changes with different
lamination modes, and so does the dynamic stiffness of the laminate. With the increase
in the number of Y-direction layers, the dynamic stiffness decreases, and the natural
frequency of the material decreases.
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