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Abstract

Chromatin immunoprecipitation followed by sequencing (ChIP-seq) is an important tool for studying gene regulatory
proteins, such as transcription factors and histones. Peak calling is one of the first steps in the analysis of these data. Peak
calling consists of two sub-problems: identifying candidate peaks and testing candidate peaks for statistical significance.
We surveyed 30 methods and identified 12 features of the two sub-problems that distinguish methods from each other. We
picked six methods GEM, MACS2, MUSIC, BCP, Threshold-based method (TM) and ZINBA] that span this feature space and
used a combination of 300 simulated ChIP-seq data sets, 3 real data sets and mathematical analyses to identify features of
methods that allow some to perform better than the others. We prove that methods that explicitly combine the signals
from ChIP and input samples are less powerful than methods that do not. Methods that use windows of different sizes are
more powerful than the ones that do not. For statistical testing of candidate peaks, methods that use a Poisson test to rank
their candidate peaks are more powerful than those that use a Binomial test. BCP and MACS2 have the best operating char-
acteristics on simulated transcription factor binding data. GEM has the highest fraction of the top 500 peaks containing the
binding motif of the immunoprecipitated factor, with 50% of its peaks within 10 base pairs of a motif. BCP and MUSIC
perform best on histone data. These findings provide guidance and rationale for selecting the best peak caller for a given
application.
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Introduction

Regulation of gene expression is one of the fundamental means
by which cells adapt to internal and external environments.
Many regulatory mechanisms rely on modifying or ‘marking’
the DNA in particular ways, either through covalent modifica-
tion or by intermolecular interactions. Chromatin immunopre-
cipitation followed by sequencing (ChIP-seq) data are generated
to provide readouts of these modifications, such as the location
and frequency of binding of a transcription factor or the distri-
bution of histone modifications that are used by the cell to es-
tablish or maintain specialized chromatin domains.

The data for ChIP-seq peak calling are stacks of aligned reads
across a genome. Some of these stacks correspond to the signal
of interest (e.g. binding of a transcription factor or modified his-
tone). Many other stacks are regarded as molecular or experi-
mental noise, or as being influenced by a systematically greater
accessibility of measurement by the experiment at that particu-
lar genomic location. This manuscript deals with the problem
of separating signal from noise in the stacks of reads to estimate
where the immunoprecipitated protein is bound to the DNA.

Many methods target this problem. The newer methods
make claims of superiority over a subset of the existing ones by
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displaying performance on certain metrics. However, the gener-
alizability of these performance results is unclear given the
number of data sets (typically 3–5), methods, parameter settings
(often only default settings) and performance metrics used.
There have been efforts to benchmark peak calling methods
[1–5]. These have the advantage of being independent evalu-
ations, but they have also been limited in scope and sometimes
provide conflicting advice owing to differences in numbers and
widths of peaks evaluated [6]. For example, Harmanci et al. [7],
Koohy et al. [5] and Micsinai et al. [4] disagree about the ranking
of Spatial clustering approach for the Identification of ChIP-
Enriched Regions (SICER) [8], F-seq [9] and Model-based Analysis
for ChIP-Seq (MACS) [10]. Consequently, the field lacks system-
atic recommendations for calling peaks in different scenarios.

We address these criticisms of benchmarking efforts by first
abstracting the peak calling problem into two sub-problems,
identifying peaks and testing peaks for significance, respect-
ively. We identify four features of the algorithms that differenti-
ate them in terms of how they address the first sub-problem
and eight features that differentiate the algorithms on the se-
cond sub-problem. We pick six methods that span most of the
possible feature values for the two sub-problems. We then
simulate ChIP-seq data for transcription factor binding to gener-
ate 100 independent ChIP and input sample pairs at each of
three different noise levels to evaluate the operating character-
istics of the six methods by varying the respective thresholds
for determining peak significance. We also test the methods on
data from one transcription factor and two histone mark experi-
ments. Combining results across these data with mathematical
analyses, we determine which features of peak calling methods
optimize performance.

Methods
Choice of peak calling methods

We surveyed 30 methods [4,7,8, 9–31] in the literature and anno-
tated each of them in terms of how they solve sub-problems 1
and 2 (Table 1 and Supplementary Table S1). We chose Model-
based Analysis for ChIP-Seq version 2 (MACS2) [10], MUltiScale
enrIchment Calling for ChIP-Seq (MUSIC) [7], Genome wide
Event finding and Motif discovery (GEM) [13], Zero-Inflated
Negative Binomial Algorithm (ZINBA) [11], Bayesian Change
Point (BCP) [14] and TM for further analysis to balance the need
to cover most of the feature space of the different methods with
that of directly testing a feasible number of the more recent
and/or popular methods (Supplementary Text).

Simulations

ChIP-seq data representing transcription factor binding and cor-
responding input samples are simulated using functions
adapted from the ChIPsim [32] Bioconductor [33] package in R
[34] that are in turn based on [35]. The data are simulated for
pairs of ChIP and corresponding input samples under three
noise settings—high noise, medium noise and low noise (details
in Supplementary Text).

To ensure that our simulated ChIP and input data resemble
real ChIP-seq experiments, we compared them with data from
the first 10 million base pairs (bp) of chromosome 1 in a ChIP-
seq experiment on the transcription factor Tbx5 in mouse cardi-
omyocytes [36]. Peaks were identified using MACS2, which is
one of the best performing methods on the simulated data.
Input was quantified using reads per 1000 bp window. Quantiles
of simulated ChIP and input data match the real data well
(Figure 1), and browser tracks resemble real data visually
(Supplementary Figure S1). The only difference detected is a
more extreme number of reads in about 1% of simulated re-
gions, both ChIP and input, compared with the real data.

Evaluation metrics for simulated data

All peak calling methods were run with the lowest significance
threshold possible (P-value or q-value equal to 1 or for any fold
enrichment) to generate the complete list of peaks that could be
evaluated for their operating characteristics on each of the
simulated data sets. Note, GEM only reports exact genomic loca-
tions of binding so a 200 bp window around these identified
binding locations was used to define peaks for comparison with
other methods. For each method, we varied the P-value or
q-value threshold to produce a nested set of peaks for evaluat-
ing performance across a range of significance levels.

We evaluated performance using several complementary
metrics. First, each set of peaks was compared with the location
of the binding features in the ChIP sample using the
findOverlappingPeaks and annotatePeakInBatch functions in the
ChIPpeakAnno [37] Bioconductor [33] package in R [34]. The frac-
tion of the true binding features that overlaps with the signifi-
cant peaks is defined as the ‘sensitivity’, the fraction of the
significant peaks that overlap with the true binding features is
defined as the ‘precision’ and the harmonic mean of the sensi-
tivity and precision is defined as the ‘F-score’ for each method
at the particular significance threshold setting on the given
simulated data set. We also computed the distance from the
center of each significant peak to the center of closest binding
feature and used the median of these distances over all signifi-
cant peaks as a performance metric (median distance-binding).

Table 1. Features of peak calling methods

GEM BCP (TF) BCP (Histone) MUSIC MACS2 ZINBA TM

Locating the potential peaks
High resolution Yes Yes No Yes Yes No Yes
ChIP and input sample signals combined No No No No No Yes Yes
Multiple alternate window sizes Yes Yes Yes Yes No No No
Use of variability of local signal Yes Yes Yes No Yes Yes No
Ranking of peaks
Binomial test Yes No No Yes No No No
Poisson test No Yes No No Yes No No
Normalized difference score No No No No No No Yes
Use of underlying genome sequence Yes No No No No No No
Posterior probability of enrichment No No Yes No No Yes No

Note. See Supplementary Table S1 for a more complete list of features and peak calling methods.
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We additionally computed the converse metric, the median dis-
tance from each of the binding features to the center of the clos-
est significant peak (median distance-peak).

The different methods have different typical peak widths,
and also the estimated P-values are not always comparable be-
cause they result from tests of different hypotheses. Therefore,
we chose two approaches to look at the variation of these five
metrics as a function of a common measure of a false-positive
rate across the six methods. First, we used the sets of peaks for
each method to compare performance at significance levels
that produce the same genome coverage (log10 fraction of gen-
ome). Second, we limited peak lengths to a 200 bp window
around either the peak summit or the center of the peak (when
the information on summit position was not available) for all
the methods and compared performance at significance levels
that produce the same number of 200 bp peaks. Results were
qualitatively the same with both approaches, so we focus on
performance as a function of log10 number of peaks. Note that
all performance evaluations are based on characteristics of the
data we used and assumptions about the ground truth, which
we discuss further in the Supplementary Text.

Evaluation with Tbx5 ChIP-seq data

We again used the ChIP-seq data sample that measured the
binding of the Tbx5 transcription factor to mouse cardiomyo-
cytes [36]. We used the two binding motifs [38] given in
Supplementary Figure S2 to represent the in vitro sequence
binding for Tbx5 in mouse cardiomyocytes. We used the
matchPWM function in the Bioconductor Biostrings [39] package
to identify all the potential binding locations of Tbx5 for each of
the two motifs. The threshold likelihood ratio score for defining
the potential binding location was fixed at 95% of the maximum
possible likelihood ratio value, assuming a zero-order Markov
model for a given sequence with prior probabilities for the nu-
cleotides given by their frequencies in the 2 kb regions of all
mouse gene promoters. The shortest genomic distance of each
significant peak identified by each peak calling method to bind-
ing the two motifs was used as a measure of accuracy. We also
compared methods based on the fraction of the top n peaks
(ordered by statistical significance or by fold enrichment for the
thresholding method) that are within 100 bp of either motif.

Evaluation with H3K36me3 data

H3K36me3 domains are broad and are known to mark regions
of the genome that are being actively transcribed [40].
Encyclopedia of DNA Elements (ENCODE) [41] data for the
H3K36me3 histone mark in the GM12878 cell line were used.
These files were aligned to the human genome hg19 using
Bowtie2 [42], and gene counts were obtained using Htseq [43].
We also obtained ENCODE RNA-sequencing data for GM12878
and used edgeR [42] to convert counts to reads per kilobase
exon model per million mapped reads (RPKM) and then esti-
mated gene expression by the average of the RPKM values over
the two replicates. We considered a peak as positive if it over-
laps an active gene (defined varying RPKM from 0 to 2) and com-
pared methods based on sensitivity, precision and F-score.

Evaluation with H3K4me3 data

H3K4me3 domains mark active and poised promoters [44].
ENCODE [41] data for the H3K4me3 histone mark in the
GM12878 cell line were used. We considered a peak as positive if
it overlaps the promoter of an expressed gene (RPKM> 0.5). The
top 15 000 peak calls from the different methods are ranked by
their significance or by their fold enrichment for the threshold-
ing method. We plotted the correct peak fraction (fraction of the
top 1000xn peaks that overlap with active promoters) detected
as a function of the correct promoter fraction (fraction of the ac-
tive promoters that overlap with the top 1000xn peaks).

Binomial test versus the Poisson test

One of the problems that most peak callers need to address is to
assign significance to a potential peak region. The significance
is based on the rejection of the null hypothesis that the propor-
tion of DNA from a given genomic region in the ChIP sample is
less than equal to that in the input sample. This is typically
tested by either a Poisson or a Binomial test on the number of
reads that map to this genomic location in the ChIP and input
samples. We compared the operating characteristics of these
two tests using a simulation procedure detailed in the
Supplementary Text.

Figure 1. Quantile–quantile plots comparing the distributions of reads in the input and ChIP sample in one of the simulated data sets with those in a real Tbx5 ChIP

sample from mouse cardiomyocytes. The dotted lines represent the linear fits to the data excluding the one extreme point in both (A) and (B). The pearson correlation

of the scatter of points modeled by the dotted lines is 0.99 in (A) and 0.97 in (B).
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Results
Benchmarking peak calling methods

We benchmarked six peak calling methods representing different
features of the approaches to identify candidate peaks and evalu-
ate their statistical significance: GEM, MACS2, MUSIC, BCP, TM
and ZINBA. These evaluations used 300 simulated and 3 real
ChIP-seq data sets. Performance was compared across a range of
significance values representing different number of called peaks.

Simulated transcription factor binding data

We simulated transcription factor ChIP-seq data with three dif-
ferent noise levels in a manner that closely resembles real data
(Methods). Simulations have the advantage of allowing us to
flexibly explore a range of different scenarios in a situation
where the ground truth is known.

BCP and MACS2 perform best by sensitivity, precision and
F-score metrics across the low (Supplementary Figure S3), medium
(Figure 2) and high (Supplementary Figure S4) noise levels. TM and
ZINBA perform worst, and MUSIC is intermediate. Across methods,
except for with ZINBA, median distance of the called peaks to the
true peaks and of the true peaks to the called peaks is typically
within 100 bp regardless of significance threshold across the low
(Supplementary Figure S5), medium (Figure 3) and high
(Supplementary Figure S6) noise levels. Reduction in simulated
noise has the expected effect of improving the sensitivity of BCP,
MACS2, GEM and MUSIC, but not of TM and ZINBA (Supplementary
Figure S3). The median distance metrics are predictably larger in
the high noise settings (Supplementary Figure S6).

Transcription factor Tbx5 binding data

We next evaluated performance of the six methods on data from
a Tbx5 ChIP-seq experiment to assess whether trends are similar
to those revealed by our simulations. Figure 4 and
Supplementary Figure S7 show the fraction of the top n peaks

that are within 100 bp of a Tbx5 motif. BCP and GEM do particu-
larly well relative to the other methods for Tbx5 Motif 1 (Figure 4).
Figure 5 and Supplementary Figure S8 displays the empirical dis-
tribution of the shortest distance of the called peaks to each of
the Tbx5 motifs for each method. GEM stands out among all the
methods in terms of the fraction of its peaks being closer to a
Tbx5 motif than any of the other methods. GEM has the highest
fraction of the top 500 peaks with either of two binding motifs of
Tbx5, and 50% of its peaks are within 100 bp of a motif (Motif 1;
Figure 4). Only 10% of the called peaks of the other methods are
within 100 bp of the same Tbx5 motif (Figure 4).

Histone H3K36me3 and H3K4me3 data

Because histones typically have wider peaks than transcription
factors and lack DNA motifs, methods perform differently on
them. To assess performance on histone ChIP-seq data, we used
two sets of experiments from the ENCODE Project [41]. Figure 6
shows the performance of the methods on H3K36me3 data, in
terms of how well peaks overlap genes that are actively tran-
scribed (see Methods). MUSIC and BCP perform better than other
methods in terms of sensitivity and F-score at a relatively small
price in terms of precision. Figure 7 displays the performance of
four of the methods on H3K4me3 data, assessed in terms of over-
lap of peaks with promoters of expressed genes (see Methods).
ZINBA failed to run on this data set, giving an error that has failed
to be resolved with the authors of the software. The other meth-
ods perform comparably on this data set, with MUSIC and BCP
again being slightly better than the other methods.

Features of peak calling methods that influence
performance

We next investigated which features of peak calling methods drive
the differences in their performance. To do so, we identified the
features or analysis choices that differentiate the six methods we
benchmarked, along with 24 other methods from the literature.
Then, we evaluated whether these features drive performance.

Figure 2. Sensitivity (a), Precision (b) and F-score (c) as a function of the log10 of the number of called peaks for the six peak calling methods on 100 simulated transcription factor

ChIP-seq data sets under the medium noise setting. For each method, the means and 95% confidence intervals (dark gray regions around the mean profiles) of the means of a

metric are estimated using Generalized Additive Models [51] of variation across the 100 simulated data sets, as a function of a smooth function of log10 of the number of called

peaks. Note the overlapping performances of GEM and MUSIC and BCP and MACS2 in (a), (b) and (c) with log10 number of peaks, respectively, between 1.2 and 1.6 and 1.6 and 2.0.
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Sub-problem 1: detection of candidate peaks

Four features distinguish methods in terms of how they identify
candidate peak regions. Most methods (19 of 30, Supplementary
Table S1) use the signal in a ‘high-resolution’ manner, i.e. peaks
could be centered on any nucleotide in the genome as opposed
to a bin or a region with more than one nucleotide. There are
low-resolution methods (11 of 30, Supplementary Table S1) that
essentially divide the genome into bins and do not allow signals
from one bin to explicitly affect those in the other bins. ‘ChIP
and input sample signal combined’ is the second feature that
separates methods. Candidate peak regions are defined using
the signal that is an explicit combination of the ChIP and input
signals either as a fold-change or as a difference score. Methods

are deemed not to have this feature (21 of 30, Supplementary
Table S1) either if they do not use the input signal at all or in
cases where the input signal is only used to determine the back-
ground rate of reads in the region but is not used to modify the
ChIP signal in any way. ‘Multiple alternate window sizes’ (9 of
30, Supplementary Table S1) representing widths of influence of
each nucleotide for querying the signal could be explicitly or im-
plicitly used. The ‘variability of the local signal’ (18 of 30,
Supplementary Table S1) is a feature in which the signal is mod-
eled as being generated from a distribution (whose parameters
are estimated either using the ChIP or the input signal).
Candidate peaks are defined using more than one moment of
this distribution and not just the mean.

Figure 3. Median distance-binding (a) and Median distance-peak (b) as a function of the log10 of the number of called peaks for the six peak calling methods on 100 simu-

lated data sets under the medium noise setting. The means and 95% confidence intervals are estimated in a similar manner as is done for Figure 2. Note the overlap-

ping performances of MACS2 and MUSIC in (a), GEM, MUSIC and TM in (b) with log10 number of peaks, respectively, between 1.6 and 2.0 and 1.2 and 2.0.

Figure 4. Fraction of top n peaks within 100 bp of a Tbx5 motif for the six meth-

ods is given. Results are based on Tbx5 Motif 1.

Figure 5. Empirical distribution of the shortest distance to the Tbx5 motif of the

significant peaks called by the six methods. Results based on Tbx5 Motif 1. Note

the overlapping performances of BCP, MACS2 and TM over the entire range and

of GEM, BCP, MACS2 and TM with distance between 100 and 10 000 bp.
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Peak detection is reduced when ChIP and input signals
are explicitly combined

We mathematically analyzed the probability of detecting a
peak when combining ChIP and input data versus not. This
analysis was motived by the behavior of TM and ZINBA rela-
tive to the other four methods, none of which explicitly com-
bine ChIP and input (Table 1) at the stage of identifying
candidate peaks.

Consider a region of the genome with a ‘true’ peak or binding
event. Assume that the number of reads from the ChIP sample
in this region, denoted by X, comes from a Poisson distribution
with parameter k1. The number of reads from the input control
sample in this region, denoted by Y, comes from a Poisson dis-
tribution with parameter k0. The reads in the ChIP and input
sample are independent of each other and have been normal-
ized for potential differences in sequencing depths. We are
interested in identifying this ‘true’ peak. We will compare a
measure of the error probability (of the inability to identify this
peak) under two scenarios. In the first scenario, only the ChIP

signal is used, whereas in the second one, the ChIP and input
signal are explicitly combined as a difference. Let H0 and H1 de-
note the null and alternate hypothesis under the two scenarios.
(Note: the difference of two Poisson random variables follows a
Skellam distribution. The mean and the variance of a Poisson
random variable with parameter k are both equal to k. The
mean and the variance of a Skellam distribution with param-
eters k1 and k0 are k1�k0 and k1þk0, respectively.)

1. Compare H0 : X � Poisðk0Þ versus H1 : X � Poisðk1Þ
2. Compare H0 : X� Y � Skellamðk0; k0Þ versus H0 : X� Y �

Skellamðk0; k1Þ

Let Peði; pÞ denote the error probability of the inability to dis-
tinguish the distributions under H0 and H1, with prior probabil-
ities p ¼ ðp0; p1Þunder scenario i ¼ 1; 2.

If we can show Peð1; pÞ < Peð2; pÞ, then using Scenario 1 is
preferable to using Scenario 2 to identify the peak. We will use
the distance between the underlying distributions of H0 and H1

as an approximation of this error probability. The intuition is
that the farther apart the distributions are the less likely it is to
make an error in being unable to distinguish the two distribu-
tions. Following Kailath [46], we will use Bhattacharyya distance
[47], B, as a measure of distance between two probability distri-
butions. Let BðiÞ denote the distance between the probability
distributions associated with H0 and H1 under scenario i ¼ 1; 2.
Kailath [46] showed that if Bð1Þ > Bð2Þ then there exists prior
probabilities psuch that Peð1; pÞ < Peð2; pÞ.

The mean number of reads in the binding regions is typically
>20 in a typical experiment [35]. Using this observation and the
Central Limit Theorem [48], the normal distribution reasonably
approximates both Poisson (Supplementary Figure S9) and
Skellam (Supplementary Figure S10) distributions. The
Bhattacharyya distance between two normal distributions N1

and N2 with parameters ðl1; r
2
1Þ and ðl2; r

2
2Þ is given by the fol-

lowing equation:

BðN1;N2Þ ¼
1
4

ln
1
4

r2
1

r2
2

þ r2
2

r2
1

þ 2
� �� �

þ 1
4

l1 � l2ð Þ2

r2
1 þ r2

2

 !
(1)

Theorem 1: If the Poisson and the Skellam probability distri-
butions can be replaced by Normal distributions with the

Figure 6. Sensitivity (A), precision (B) and F-score (C) of the overlap of the called significant peak regions with active gene bodies for H3K36me3 data. The threshold for

defining active genes was varied from 0 to 2 RPKM. Note the overlapping performances of MACS2 and ZINBA in (A), MACS2 and TM in (B) and BCP and ZINBA in (B).

Figure 7. Correct peak fraction (fraction of top called 1000n peaks that overlap

with the promoters of active genes, genes with expression>0.5 RPKM) as a func-

tion of recovered promoter fraction (fraction of promoters of active genes that

overlap with the top called 1000n peaks) for H3K4me3 data is given. The peaks

for each method were ranked by their assigned significance.
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corresponding means and variances of the respective distribu-
tions, then there exists prior probabilities p such that Peð1; pÞ
< Peð2; pÞ.

Proof: Using Equation (1) and the mean and variances for the
Poisson and Skellam distributions,

Bð1Þ ¼ 1
4

ln
1
4

k1

k0
þ k0

k1
þ 2

� �� �
þ 1

4
k1 � k0ð Þ2

k1 þ k0

 !

Bð2Þ ¼ 1
4

ln
1
4

k1 þ k0

2k0
þ 2k0

k1 þ k0
þ 2

� �� �
þ 1

4
k1 � k0ð Þ2

k1 þ 3k0

 !

Proving Bð1Þ > Bð2Þ

() k1

k0
þ k0

k1
þ 2

� �
>

k1 þ k0

2k0
þ 2k0

k1 þ k0
þ 2

� �

() k1 � k0

2k0
þ k0 k1 � k0ð Þ

k1 k1 þ k0ð Þ

� �
> 0

() k1 � k0ð Þ2 k1 þ 2k0ð Þ
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which is true because by definition the Poisson parameters k1

and k0 are positive. Using the result in Kailath [46], there exists
prior probabilities psuch that Peð1; pÞ < Peð2;pÞ.

Therefore, procedures like TM and ZINBA that explicitly
combine the ChIP and input signals are expected to be less
powerful at identifying true binding than ones that do not.

Using input signal to filter candidate peaks

Input is also used to filter regions. GEM implements a filter that
removes candidate peak regions with 3-fold or fewer reads in
ChIP relative to input, whereas BCP and MACS2 do not imple-
ment a similar filter. We observed that the sensitivity of
GEM does not improve beyond a certain level irrespective of
how much the significance threshold increases (Figure 2,
Supplementary Figure S3 and S4). We hypothesize that filtering
may be responsible for this leveling off of performance.

Window size

Methods use different window sizes to scan the genome for
candidate peaks. In our benchmark, TM used a 75 bp sliding
window, whereas MACS2 and MUSIC used 150 bp windows. To
check whether this difference drives the relative performance
of these methods, we implemented MACS2 using window
sizes of 75 bp and 200 bp. The performance of MACS2 with 75
bp windows is worse than with 150 bp and 200 bp windows
(Supplementary Figure S11), suggesting that longer windows
are preferable at least for the scenarios we simulated. This
raises the question of whether the optimal window size is dif-
ferent for narrow versus broad peaks. To explore this, we
mathematically analyzed variation in the likelihood of detect-
ing a peak of length l using a window size w to scan the
genome.

Let c1 be the Poisson rate parameter for the number of reads
per base in the peak corresponding to a binding event. So the
number of reads in a w-bp wide interval in the peak is distrib-
uted as a Poisson random variable with parameter c1w. Also, let
c0 be the Poisson rate parameter for the number of reads per
base in the input sample. Let X represent the number of reads
arising from a window of width w bp.

Consider two situations, w � l and w > l.
For the situation w � l,

Compare H0 : X � Poisðc0wÞversus H1 : X � Poisðc1wÞ (2)

For the situation w > l,

Compare H0 : X � Poisðc0wÞversus H1 : X � Pois c1lþ w� lð Þc0ð Þ
(3)

We will again use the Bhattacharyya distance as a measure
of the ability to distinguish between the two distributions in
Equations (2) and (3). The Bhattacharyya distance between two
Poisson distributions of rate parameters, ðk1; k2Þ, is given by the
following equation:

Bðk1; k2Þ ¼
1
2

ffiffiffiffiffi
k1

p
�

ffiffiffiffiffi
k2

p� �2
(4)

Let BðwÞdenote this distance measure as a function of the
size w of the window used to scan the genome. Then using the
Poisson rate parameters in Equations (2) and (3) and the formula
for distance in Equation (4),

BðwÞ ¼ w
2

ffiffiffiffiffi
c1
p � ffiffiffiffiffi

c0
p� �2 w � l

¼ w
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1

l
w

� �
þ c0 1� l

w

� �s
� ffiffiffiffiffi

c0
p

 !2

w > l

(5)

Therefore, the distance between the probability distributions
associated with the null and alternate hypothesis increases lin-
early with w until it reaches the actual peak length and thereafter
decreases asymptotically to zero. Denote the error probability of
the inability to distinguish the two signals in the peak and back-
ground as Peðw;pÞ that is a function of w and prior probabilities p

for the two hypotheses. Using the result from [46], there exists
prior probabilities psuch that the value of Peðw; pÞ decreases to a
minimum when w ¼ l after starting from a window of size one
base and then again increases asymptotically to 1 with increasing
window width (Supplementary Figure S12).

This result that the optimal window size for scanning the
genome is the true peak width suggests an explanation for
the performance results we observed with the histone data
(Figures 6 and 7). Harmanci et al. [7] present an estimate of the
spectrum of peak lengths associated with a transcription factor
and different histone marks including H3K36me3 and
H3K4me3. A characteristic of most of these spectra is the pres-
ence of peaks that vary in lengths across orders of magnitudes.
Therefore, methods that work only with one window size are
biased to pick peaks of length only of comparable magnitude.

Incorporating variability of the local signal

The difference in the operating characteristics of MUSIC as com-
pared with MACS2 and BCP can potentially be explained by the
fact that in identifying their candidate peak regions MACS2 and
BCP uses the variability of the local signal whereas MUSIC does
not. The peak regions are identified by local minima of the
smoothed signals by MUSIC, whereas MACS2 checks whether
the number of reads in a candidate region is different from the
expected assuming a given background rate using a Poisson
test, and BCP implicitly takes into account the variability of the
local signal by its estimation of the parameters associated with
its hidden Markov model.
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Sub-problem 2: Statistical significance
of candidate peaks

Once the candidate peaks have been identified, the different
methods typically rank candidates by their significance of a hy-
pothesis test that compares the counts in the corresponding gen-
omic regions of the ChIP and input samples. This test has mostly
been implemented as a ‘Poisson’ (9 of 30, Supplementary Table
S1) test, a ‘Binomial’ (7 of 30, Supplementary Table S1) test or by
‘fold-change or Normalized Difference’ (5 of 30, Supplementary
Table S1). There are methods that rank the peaks by some ‘pos-
terior’ measure (6 of 30, Supplementary Table S1) that could be
the posterior probability of binding at a given genomic region or
the posterior rate of counts in a given genomic region.
Additionally, there are methods that explicitly use the underlying
genome sequence (1 of 30, Supplementary Table S1) or the shape
of the candidate peaks (2 of 30, Supplementary Table S1) in as-
signing significance values.

Binomial versus Poisson Test

BCP and MACS2 have the best operating characteristics on
simulated data (Figures 2, Supplementary Figures S3 and S4).
Could this be because of how these methods test candidate
peaks for statistical significance? BCP and MACS2 use the
Poisson test, whereas MUSIC and GEM use the Binomial test. To
explore this question, we first used simulations (Methods) to
directly compare Poisson and Binomial tests on a predefined set

of candidate peaks. These empirical results show that the
Poisson test is more powerful at detecting enriched regions,
while maintaining a reasonable Type I error rate (Figure 8).
Second, we implemented modified versions of BCP and MUSIC
that expand the methods to allow either a Binomial or Poisson
test. Our Poisson test version of BCP and Binomial test version
of MUSIC are essentially the same as in the original methods. In
this approach, we are using the read counts in the regions called
peaks by each method and performing the statistical test in two
ways. The operating characteristics of both versions of each
method are hardly distinguishable (Supplementary Figures S13
and S14). However, in real situations, one works with a set of
peaks identified by a chosen threshold. Analyzed this way, ra-
ther than over all possible thresholds, the Poisson version of
each method is clearly better (Supplementary Figures S15
and S16).

Discussion

We performed a benchmarking study and systematic evalu-
ation of the features of ChIP-seq peak calling methods that drive
their relative performance.

Our benchmarking analysis included six methods that are
representative of the different features of ChIP-seq software
tools. Overall, BCP and MACS2 have the best operating charac-
teristics on simulated transcription factor binding data. On real
Tbx5 ChIP-seq data, GEM stood out in terms of how close its

Figure 8. Type I error rate and statistical power comparison between Poisson and Binomial tests is given. f is a parameter that controls the increase in the proportion of

DNA from a given region in the input relative to the ChIP sample for the Type I error evaluations, (A), (B) and (C), and increase in this proportion for the ChIP relative to

the input sample for the power evaluations ((D) and (E)). The dashed lines in (A), (B) and (C) are the y ¼ x lines.
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peaks are to the primary binding motif of Tbx5. BCP and MUSIC
perform best on histone ChIP-seq data.

We identified three features that are the most important
drivers of performance in peak calling. First, methods that expli-
citly combine ChIP and input signal in trying to identify candi-
date peak regions are less powerful than those that only use the
signal from the ChIP sample. This does not imply the input
sample need not be used in the second sub-problem to rank
candidate peak regions. The use of input in any ChIP-seq experi-
ment is essential in filtering out false-positive signals [49] and
should be used (when available) at the stage of ranking candi-
date peaks. Second, methods that use windows of multiple
widths to scan the genome for candidate peaks involving his-
tone marks perform better than the others. The use of multiple
window sizes can be implemented either explicitly (e.g. MUSIC)
or implicitly (e.g. BCP via a hidden Markov model). Finally, the
Poisson test is more powerful than the Binomial test for statis-
tically scoring candidate peaks.

A few other features of peak calling methods merit consider-
ation. Our results suggest that methods using variability of the
local signal in identifying candidate peak regions are likely to
have better operating characteristics than ones that do not.
Second, the ability of GEM to call peaks close to motifs of the
immunoprecipitated transcription factor points to the benefit of
incorporating the underlying genome sequence and knowledge
of binding sites at the stage of ranking candidate peaks. There are
other methods of ranking candidate peak regions based on their
shape characteristics [21, 23] that have not been evaluated in this
manuscript, which may also provide performance benefits.

This manuscript focuses on how peak calling methods differ
in terms of how they identify candidate peaks and compute their
statistical significance. All peak calling methods sequentially im-
plement solutions to these two problems, and then most use a
significance threshold to determine a set of peak calls [12]. We
note that selecting a threshold is reasonably straight forward;
most methods use a false discovery rate-based multiple testing
correction and a user-defined proportion of false discoveries that
will be tolerated in a given application. We therefore did not com-
pare methods based on a single choice of significance threshold,
but instead examined performance across a range of thresholds.

Key Points

• Peak calling using Chip-seq data consists of two sub-
problems: identifying candidate peaks and testing can-
didate peaks for statistical significance.

• Twelve features of the two sub-problems of peak call-
ing methods are identified.

• Methods that explicitly combine the signals from ChIP
and input samples to define candidate peaks are less
powerful than methods that do not.

• Methods that use windows of different sizes to scan
the genome for potential peaks are more powerful
than ones that do not.

• Methods that use a Poisson test to rank their candi-
date peaks are more powerful than those that use a
Binomial test.

Supplementary Data

Supplementary data are available online at http://bib.oxford
journals.org/.

Funding

This work was supported by the NHLBI Bench-to-Bassinet pro-
gram (grant #HL098179), NHLBI grant #HL089707 and BioFulcrum:
A Gladstone Institutes Enterprise.

References
1. Laajala TD, Raghav S, Tuomela S, et al. A practical comparison

of methods for detecting transcription factor binding sites in
ChIP-seq experiments. BMC Genomics 2009;10:618.

2. Wilbanks EG, Facciotti MT. Evaluation of algorithm
performance in ChIP-seq peak detection. PLoS ONE 2010; 5:
e11471.

3. Rye MB, Saetrom P, Drablos F. A manually curated ChIP-seq
benchmark demonstrates room for improvement in current
peak-finder programs. Nucleic Acids Res 2011;39:e25.

4. Micsinai M, Parisi F, Strino F, et al. Picking ChIP-seq peak de-
tectors for analyzing chromatin modification experiments.
Nucleic Acids Res 2012;40:e70.

5. Koohy H, Down TA, Spivakov M, et al. A comparison of peak
callers used for dnase-seq data. PLoS ONE 2014;9:e96303–11.

6. Szalkowski AM, Schmid CD. Rapid innovation in ChIP-seq
peak-calling algorithms is outdistancing benchmarking ef-
forts. BriefBioinform 2011;12:626–33.

7. Harmanci A, Rozowsky J, Gerstein M. MUSIC: identification of
enriched regions in ChIP-Seq experiments using a mappabil-
ity-corrected multiscale signal processing framework.
Genome Biol 2014;15:474

8. Zang C, Schones DE, Zeng C, et al. A clustering approach for
identification of enriched domains from histone modification
ChIP-Seq data. Bioinformatics 2009;25:1952–8.

9. Boyle AP, Guinney J, Crawford GE, et al. F-Seq: a feature density
estimator for high-throughput sequence tags. Bioinformatics
2008;24:2537–8.

10.Zhang Y, Liu T, Meyer CA, et al. Model-based analysis of ChIP-
Seq (MACS). Genome Biol 2008;9:R137r137.

11.Rashid NU, Giresi PG, Ibrahim JG, et al. ZINBA integrates local
covariates with DNA-seq data to identify broad and narrow
regions of enrichment, even within amplified genomic re-
gions. Genome Biol 2011;12:R67.

12.Xu H, Handoko L, Wei X, et al. A signal-noise model for signifi-
cance analysis of ChIP-seq with negative control.
Bioinformatics 2010;26:1199–204.

13.Guo Y, Mahony S, Gifford DK. High resolution genome wide
binding event finding and motif discovery reveals transcrip-
tion factor spatial binding constraints. PLoS Comput Biol
2012;8:e1002638.

14.Xing H, Mo Y, Liao W, et al. Genome-wide localization of pro-
tein-dna binding and histone modification by a Bayesian
change-point method with Chip-Seq data. PLoS Comput Biol
2012;8:e1002613.

15.Xu H, Wei CL, Lin F, et al. An HMM approach to genome-wide
identification of differential histone modification sites from
ChIP-seq data. Bioinformatics 2008;24:2344–9.

16.Rozowsky J, Euskirchen G, Auerbach RK, et al. PeakSeq en-
ables systematic scoring of ChIP-seq experiments relative to
controls. Nat Biotechnol 2009;27:66–75.

17.Mortazavi A, Williams BA, McCue K, et al. Mapping and quan-
tifying mammalian transcriptomes by RNA-Seq. Nat Methods
2008;5:621–8.

18. Jothi R, Cuddapah S, Barski A, et al. Genome-wide identifica-
tion of in vivo protein-DNA binding sites from ChIP-Seq data.
Nucleic Acids Res 2008;36:5221–31.

Benchmark ChIP-seq peak calling algorithms | 449

Deleted Text: Note 
Deleted Text: ,
Deleted Text: ,
Deleted Text: -
Deleted Text: tiliz
Deleted Text: ly
Deleted Text:  very
Deleted Text: Note that 
Deleted Text: 22
Deleted Text: &hx2019;
Deleted Text: is 
Deleted Text: 50
Deleted Text: -
Deleted Text:  
Deleted Text: -
Deleted Text:  
Deleted Text: -
Deleted Text: -
http://bib.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bbw035/-/DC1
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
Deleted Text: Acknowledgements
Deleted Text: ,


19.Valouev A, Johnson DS, Sundquist A, et al. Genome-wide ana-
lysis of transcription factor binding sites based on ChIP-Seq
data. Nat Methods 2008;5:829–34.

20.Song Q, Smith AD. Identifying dispersed epigenomic domains
from ChIP-Seq data. Bioinformatics 2011;27:870–1.

21.Hower V, Evans SN, Pachter L. Shape-based peak identifica-
tion for ChIP-Seq. BMC Bioinformatics 2011;12:15.

22.Lan X, Bonneville R, Apostolos J, et al. W-ChIPeaks: a compre-
hensive web application tool for processing ChIP-chip and
ChIP-seq data. Bioinformatics 2011;27:428–30.

23.Wu H, Ji H. PolyaPeak: detecting transcription factor binding
sites from chip-seq using peak shape information. PLoS ONE
2014;9:e89694.

24. John S, Sabo PJ, Thurman RE, et al. Chromatin accessibility
pre-determines glucocorticoid receptor binding patterns. Nat
Genet 2011;43:264–8.

25.Qin ZS, Yu J, Shen J, et al. HPeak: an HMM-based algorithm for
defining read-enriched regions in ChIP-Seq data. BMC
Bioinformatics 2010;11:369–13.

26.Spyrou C, Stark R, Lynch AG, et al. BayesPeak: Bayesian
analysis of ChIP-seq data. BMC Bioinformatics
2009;10:299–17.

27.Kharchenko PV, Tolstorukov MY, Park PJ. Design and analysis
of ChIP-seq experiments for DNA-binding proteins. Nat
Biotechnol 2008;26:1351–9.

28. Ji H, Jiang H, Ma W, et al. An integrated software system for
analyzing ChIP-chip and ChIP-seq data. Nat Biotechnol
2008;26:1293–300.

29.Albert I, Wachi S, Jiang C, et al. GeneTrack–a genomic data
processing and visualization framework. Bioinformatics
2008;24:1305–6.

30.Blahnik KR, Dou L, O’Geen H, et al. Sole-Search: an inte-
grated analysis program for peak detection and functional
annotation using ChIP-seq data. Nucleic Acids Res
2010;38:e13.

31.Fejes AP, Robertson G, Bilenky M, et al. FindPeaks 3.1: a tool
for identifying areas of enrichment from massively parallel
short-read sequencing technology. Bioinformatics 2008;24:
1729–30.

32.Humburg P. ChIPsim: Simulation of ChIP-seq experiments.
2011; R package version 1.22.0.

33.Gentleman RC, Carey VJ, Bates DM, et al. Bioconductor: open
software development for computational biology and bio-
informatics. Genome Biol 2004;5:R80.

34.R Core Team. R: A language and environment for statistical com-
puting. R Foundation for Statistical Computing. Vienna, Austria,
2015. http://www.R-project.org/.

35.Zhang ZD, Rozowsky J, Snyder M, et al. Modeling ChIP
sequencing in silico with applications. PLoS Comput Biol
2008;4:e1000158.

36.Luna-Zurita L, Stirnimann CU, Glatt S, et al. Complex inter-
dependence regulates heterotypic transcription factor distri-
bution and coordinates cardiogenesis. Cell 2016;164:999–1014.

37.Zhu LJ, Gazin C, Lawson ND, et al. ChIPpeakAnno: a
Bioconductor package to annotate ChIP-seq and ChIP-chip
data. BMC Bioinformatics 2010;11:237.

38.He A, Kong SW, Ma Q, et al. Co-occupancy by multiple cardiac
transcription factors identifies transcriptional enhancers ac-
tive in heart. PNAS 2011;108:5632–7.

39.Pagès H, Aboyoun P, Gentleman R, et al. Biostrings: String
objects representing biological sequences, and matching
algorithms. 2008; R package version 2.36.4.

40.Kolasinska-Zwierz P, Down T, Latorre I, et al. Differential
chromatin marking of introns and expressed exons by
H3K36me3. Nat Genet 2009;41:376–81.

41.Consortium TEP. The ENCODE (ENCyclopedia of DNA elem-
ents) project. Science 2004;306:636–40.

42.Langmead B, Salzberg SL. Fast gapped-read alignment with
Bowtie 2. Nat Methods 2012;9:357–9.

43.Anders S, Pyl PT, Huber W. HTSeq – A Python framework to
work with high-throughput sequencing data. Bioinformatics
2014;31:btu638–169.

45.Hastie T, Tibshirani R. Generalized additive models. Statistical
Sci 1986;1:297–318.

44.Barski A, Cuddapah S, Cui K, et al. High-resolution profiling of
histone methylations in the human genome. Cell 2007;
129:823–37.

46.Kailath T. The divergence and bhattacharyya distance meas-
ures in signal selection. IEEE Trans Commun Technol 1967;15:
52–60.

47.Bhattachayya A. On a measure of divergence between two
statistical population defined by their population distribu-
tions. Bull Cal Math Soc 1943;35:99–109.

48.Durrett R. Probability Theories and Examples. Duxbury Press,
1996.

49.Landt SG, Marinov GK, Kundaje A, et al. ChIP-seq guidelines
and practices of the ENCODE and modENCODE consortia.
Genome Res 2012;22:1813–31.

450 | Thomas et al.

http://www.R-project.org/

	bbw035-TF1

