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Abstract

Human cancers are driven by the acquisition of somatic mutations. Separating the driving mutations from those that are
random consequences of general genomic instability remains a challenge. New sequencing technology makes it possible to
detect mutations that are present in only a minority of cells in a heterogeneous tumor population. We sought to leverage
the power of ultra-deep sequencing to study various levels of tumor heterogeneity in the serial recurrences of a single
glioblastoma multiforme patient. Our goal was to gain insight into the temporal succession of DNA base-level lesions by
querying intra- and inter-tumoral cell populations in the same patient over time. We performed targeted ‘‘next-generation’’
sequencing on seven samples from the same patient: two foci within the primary tumor, two foci within an initial
recurrence, two foci within a second recurrence, and normal blood. Our study reveals multiple levels of mutational
heterogeneity. We found variable frequencies of specific EGFR, PIK3CA, PTEN, and TP53 base substitutions within individual
tumor regions and across distinct regions within the same tumor. In addition, specific mutations emerge and disappear
along the temporal spectrum from tumor at the time of diagnosis to second recurrence, demonstrating evolution during
tumor progression. Our results shed light on the spatial and temporal complexity of brain tumors. As sequencing costs
continue to decline and deep sequencing technology eventually moves into the clinic, this approach may provide guidance
for treatment choices as we embark on the path to personalized cancer medicine.
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Introduction

Human cancers are typically categorized into subtypes based on

tissue of origin and/or histopathology. As larger numbers of

individual tumors are characterized at ever-higher molecular

resolution it is clear that there is substantial mutational

heterogeneity across patients, even within the same histopatho-

logical subtype. There are two additional levels of heterogeneity

that are seldom studied: intra-tumor heterogeneity and heteroge-

neity of the subpopulations evolving over time. A consequence of

intra-tumor heterogeneity is that crucial mutations may be present

in only a subset of cells. Moreover, treatments may lead to selective

expansion or regression of particular subpopulations within the

original tumor, particular when it evolves to a recurrence or

metastasis. Researchers have begun to take advantage of such

intra-patient heterogeneity, inferring the mechanisms and tempo-

ral sequence of events in metastasis in pancreatic carcinoma [1,2]

and breast cancer [3,4].

Gliomas are known for their inter- and intra-patient heteroge-

neity, and represent a substantial challenge for the surgeon. A

persistent problem during surgery is precise resection of a

maximum amount of malignant cells while preserving healthy

brain tissue. Glioblastoma multiforme (GBM) is the most common

primary brain malignancy in adults, accounting for some 13,000

deaths per year in the United States [5]. In addition to surgery,

treatment for GBM patients generally consists of radiotherapy and

chemotherapy. Unfortunately, these treatments are rarely curative

and the vast majority of tumors recur locally within the brain. At

present, it is unknown whether the primary reason for this is

lingering malignant cells, de novo clonal expansions, selective

pressures from adjuvant radiation/chemotherapeutic treatment,

or some other mechanism [6–8]. Although a subset of patients

show increased survival with concurrent radiation and chemo-

therapy, there is an urgent need for better treatments [9].

To help gain understanding that may lead to new therapeutic

options, some recent studies have aimed to identify specific

mutations, genes, and molecular pathways driving gliomagenesis.

Two such large-scale efforts [10,11] included in their strategies

targeted capillary-based sequencing of genes across large numbers

of tumor samples. Performing Sanger sequencing at one tumor

region per patient can be problematic, however, because of cell-to-

cell molecular heterogeneity within each region, as well as region-
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to-region heterogeneity within the tumor. Indeed, resected tumor

samples are frequently extremely admixed, making accurate

detection of the tumor-specific mutational signature non-trivial.

Expanding the knowledge of the mutational spectrum of matched

sets of primaries and recurrences for patients with GBM may shed

light on this molecular heterogeneity and the temporal sequence of

mutations that arise in response to the selective pressures of

radiation and/or chemotherapy.

Technologies for interrogation of the cancer genome have

decreased in cost and exploded in throughput over the last decade.

Most recently, ‘‘next-generation’’ sequencing has emerged as a

crucial tool in this effort [12]. The new sequencing technologies

are capable of producing tens of millions of short (75–100 bp)

reads in a single experiment with cost currently around $1,000 and

decreasing. Critically, each read represents the sequence of single

DNA molecule, rather than the combined signal from all cells in

the sample, as is the case in Sanger sequencing. As a result, the

new technology is able to detect mutations that are present in a

small minority of cells [13]. Here we sought to characterize tumor

heterogeneity across various tumor regions as well as over time

using a single lane of sequence from a widely-used next-generation

sequencing platform. We interrogate seven distinct samples from a

single GBM patient, targeting genes known to have important

roles in glioblastoma [10,11,14–16]. Leveraging the platform’s

power to detect low-frequency mutations, our goal was to

characterize heterogeneity with regard to both presence and

cellular frequency within each tumor region. This approach may

serve as a paradigm for the pursuit of personalized medicine in the

setting of brain cancer.

Materials and Methods

Ethics Statement
The Case Cancer Institutional Review Board approved all

activities pertaining to the study. Written informed consent was

obtained from the participant.

Patient samples and DNA extraction
The patient was a male of European ancestry, diagnosed at age

69 with primary GBM and subsequent double GBM recurrence.

Treatment for the primary tumor involved surgical resection

followed by concurrent radiotherapy and temozolomide chemo-

therapy, and then adjuvant temozolomide chemotherapy [9].

Treatment for the first recurrence involved surgical resection

followed by chemotherapy with thalidomide and bevicizumab.

Treatment for the second recurrence involved surgical resection

only. Time between primary diagnosis and first recurrence was 6

months. Time between first and second recurrences was 3

months, and overall survival time from primary diagnosis was 11

months. After en block resection, pieces of the most representative

portion of each tumor were dissected into 0.1–0.2 g aliquots and

snap-frozen in liquid nitrogen within five minutes of resection

using an IRB-approved protocol. H&E staining was performed

by a trained neuro-pathologist using a six-micron re-cut of tumor

tissue. Proportion tumor nuclei ranged from 10–60% and

proportion necrosis ranged from 10–90%, which is typical in

resected brain tumors. This study examined normal blood

obtained at the time of diagnosis, and two randomly selected

specimens from each of the three resected tumors (Figure 1).

DNA was extracted from whole blood and from 25 mg of each

snap frozen tumor sample using the QIAamp DNA Mini Kit

(Qiagen Ltd) as per manufacturer’s instructions for each

biospecimen type.

Gene selection
Since the aim of this study was to characterize mutational

heterogeneity, we selected genes that have been reported as being

frequently altered in GBM in previous studies. Using published

lists of frequently altered genes [10,11,14–16], we selected ten –

CDKN2A, CDKN2B, EGFR, IDH1, IDH2, NF1, PIK3CA, PIK3R1,

PTEN, and TP53 – for exon sequencing.

Exon amplification and barcoding
Primers were designed using ExonPrimer (http://ihg2.

helmholtz-muenchen.de/ihg/ExonPrimer.html) for PCR amplifi-

cation of exons. Target specificity was assessed using electronic

PCR [17]. A total of 107 primer pairs covering 168 exons of 10 the

target genes were designed in total (Table S1). Following

purification using the QIAquick PCR Purification Kit (Qiagen

Ltd; Valencia, CA), PCR products from a single sample were

pooled together and sonically fragmented to sizes of 100–200 bp

using adaptive focused acoustic technology (Covaris; Woburn,

MA). After shearing, adapters including a unique sample-specific

barcode 7 bp in length and universal sequencing primers were

ligated to either end of the DNA fragment. The resulting ligation

products were run on an agarose gel, fragments 150–200 bp were

gel-excised and extracted from the agarose, and a second PCR was

performed using the universal sequencing primers. Following an

additional purifications step, all the bar-coded samples were

pooled together and delivered to the High-Throughput Sequenc-

ing Core Facility at the Case Western Reserve University

Comprehensive Cancer Center.

Ultra-deep sequencing
Reads of 75 bases were generated using the single-end protocol

of the Illumina Genome Analyzer II. Exact duplicates were

discarded as potential PCR artifact. The 7-base barcode

subsequences were used to uniquely assign each read to its parent

sample, then removed in silico. The resulting 68-base reads were

next base-quality filtered as follows. If all bases had quality scores

above 22, the read was left intact. Otherwise, the read was split

into 34-base halves. Halves with any base quality score below 23

were discarded. The combined set of 34- and 68-base reads was

then aligned to the reference human genome sequence (hg18)

using the MAQ software [18], and poor read alignments were

removed according to the software defaults.

Allele frequency and mutation calling
A single-base deviation from the human reference genome

sequence within a target exon was flagged as a possible single

Figure 1. Sample set schematic. This schematic gives a conceptual
view of the seven GBM patient samples interrogated in this study. From
left to right, we will refer to them in this manuscript as: primary tumor
A, primary tumor B, first recurrence A, first recurrence B, second
recurrence A, second recurrence B, and blood.
doi:10.1371/journal.pone.0035262.g001

Genomic Heterogeneity in Recurrent Glioblastoma
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nucleotide variant (SNV) if, in a sample: (i) it was observed in at

least seven independent reads, at least one of which came from

each of the positive and negative strands; (ii) at least 10% of the

reads carried the same non-reference allele; (iii) the base did not

lie within a homopolymer repeat; and (iv) the base did not

correspond to an alternate allele in a pseudogene region. The

SNV sites were then queried in all other samples. Mutations with

allele frequencies below 5% were disregarded as potential

sequencing errors.

Pyrosequencing and TA cloning validation
Pyrosequencing was performed as previously described [19,20].

Briefly, PCR amplification products from all seven samples were

delivered to the pyrosequencing facility in a blinded manner and

sequenced using the sequencing primers designed specifically for

the PyroMark MD pyrosequencing instrument (Biotage) as per the

manufacturer’s instructions. Each experiment was performed in

triplicate, and the mean of the estimates is reported. For TA

cloning, the region harboring the putative mutation was PCR-

amplified, and the amplicon was inserted into the pGEM vector

Figure 2. Distinguishing germline variants from somatic variants. (A) For each SNP, the non-reference allele frequencies for samples (out of
seven) with smallest (black) and largest (gray) such frequencies are shown. In all samples, these frequencies do not deviate substantially from the
germline frequencies. All SNPs in all samples have minor allele frequencies near the expected 50% or 100% and are therefore clearly and consistently
distinguishable as either homozygotes (leftmost three) or heterozygotes (the remainder). (B) In contrast, the somatic variants display much wider
ranges in allele frequencies across samples. Note that the absence of black bars is indicative complete absence of the mutation in some samples.
doi:10.1371/journal.pone.0035262.g002

Genomic Heterogeneity in Recurrent Glioblastoma
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(Promega) by ligation with a T4 DNA ligase enzyme. The ligated

products were then transformed into DHa5 (Invitrogen) compe-

tent bacterial cells. The reaction includes a heat shock step

followed by plating onto LB plates with ampicillin, X-gal and

IPTG for selection of the transformed product. Positive colonies

were used as an innoculum for growing up the clones in 200 ml LB

Table 1. Somatic mutations.

Sample Gene Chromosome Position Ref Alt No. Read No. Ref No. Alt % Alt
Amino Acid
Change

Blood PTEN 10 89643788 G 78 77 0 0

primary tumor A PTEN 10 89643788 G A 122 93 29 23.8 G36R

primary tumor B PTEN 10 89643788 G A 52 39 13 25 G36R

first recurrence B PTEN 10 89643788 G A 100 71 29 29 G36R

Blood TP53 17 7517819 G A 388 383 4 1.0

second recurrence B TP53 17 7517819 G A 405 355 50 12.4 R282W

Blood TP53 17 7520197 G 163 160 0 0

second recurrence B TP53 17 7520197 G C 215 188 27 12.6 P72R

Blood PIK3CA 3 180420432 T 25 25 0 0

primary tumor A PIK3CA 3 180420432 T C 23 21 2 8.7 V638A

primary tumor B PIK3CA 3 180420432 T C 13 12 1 7.7 V638A

first recurrence A PIK3CA 3 180420432 T C 14 13 1 7.1 V638A

second recurrence B PIK3CA 3 180420432 T C 53 46 7 13.2 V638A

Blood EGFR 7 55233911 T C 669 6 663 99.1 T903T

second recurrence B EGFR 7 55233911 T C 603 146 457 75.8 T903T

Read counts in the blood sample are shown as a reference control.
doi:10.1371/journal.pone.0035262.t001

Figure 3. Validation of PTEN mutation. For the sequencing data, the percentage of reads harboring the mutation (horizontal axis) is used as an
estimate of the mutation frequency in each sample, plotted against the pyrosequencing frequency estimates (vertical axis; see Materials and
Methods).
doi:10.1371/journal.pone.0035262.g003
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media with ampicillin. To identify the putative mutation in a single

clone, sequencing was performed directly from the bacterial

cultures on an ABI 3730 DNA Sequencer.

Results

Coverage Metrics
After the filtering steps described in the Materials and Methods

section, the mean sequence coverage across all samples for the

bases in the interrogated exons was 124 reads per base (sample

mean range 81–145). Although the sequence coverage varied

substantially among genes, coverage within each gene was quite

consistent across samples (Figure S1). Differences in gene coverage

were therefore most likely either the result of differential PCR

efficiency that was consistent across samples, or of varying degrees

of non-unique reference sequence within codons.

Candidate mutations
Using the criterion described in Materials and Methods, we

flagged 22 nucleotide positions as candidate SNVs (Table S2). Of

these, 18 were identified in the normal blood (and in the tumor

samples) and are all annotated as single nucleotide polymorphisms

(SNPs) in the dbSNP database (http://www.ncbi.nlm.nih.gov/

projects/SNP/). Such known SNPs provide convenient control

sites with which to assess the accuracy of the read allele frequency

as a measure of actual sample allelic content. Specifically, in the

germline and tumor samples unaffected by copy number

aberrations, we would expect non-reference allele read counts

near either 50% (for heterozygotes) or 100% (for non-reference

allele homozygotes) at these SNPs. This signature is clear

throughout all samples in 17 of the 18 SNPs (Figure 2A) which

attests to the precision of read count proportion as a measure of

true frequency. This left five sites as candidate somatic mutations

(Figure 2B and Table 1). These include the remaining SNP, a

silent variant in EGFR that is clearly a minor allele homozygote in

all samples except the second recurrence B, where it reverts to a

heterozygote in approximately half of the cells.

Independent validation
To guard against false-positive mutation calls that can arise

from technological artifacts – particularly in emerging technologies

such as next-generation sequencers – we validated somatic

alterations using two independent methods. The relatively low

mutational frequencies (Table 1) make reliable detection chal-

Figure 4. Spatial and temporal mutational heterogeneity. For each sample, the percentage of reads harboring each mutation is plotted. If a
mutation is present in a heterozygous constellation, the percentage of cells carrying it will be approximately twice the read percentage displayed
here.
doi:10.1371/journal.pone.0035262.g004

Table 2. Computational classifications of mutations.

Gene Chromosome Position Amino Acid Change SIFT Prediction PolyPhen Prediction
CanPredict
Prediction

PTEN 10 89643788 G36R DAMAGING Probably Damaging Likely Cancer

TP53 17 7517819 R282W DAMAGING Probably Damaging Likely Cancer

TP53 17 7520197 P72R TOLERATED Benign Likely Not Cancer

PIK3CA 3 180420432 V638A TOLERATED Benign Likely Not Cancer

EGFR 7 55233911 synonymous N/A N/A N/A

doi:10.1371/journal.pone.0035262.t002
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lenging for Sanger sequencing [21]. Seeking to validate both the

presence and frequencies of the mutations across all samples, we

performed pyrosequencing (see Materials and Methods) of the

PTEN mutation site in all seven samples. Pyrosequencing allows

simultaneous detection and quantification of specific nucleotide

residues. For each sample, the resulting mutational frequency

estimates were remarkably consistent between the Illumina

sequence output and pyrosequencing (Figure 3). We also validated

the PTEN and TP53 R282W mutations by sequencing multiple

TA clones generated from samples harboring the mutations

(Figure S2).

Prior reports and functional impact of detected
mutations

One of the goals in this study was to distinguish between the

mutations driving tumor initiation and recurrence from those that

are passenger consequences of treatment and/or general genomic

instability, or whose presence does not confer resistance to

standard therapies. The PTEN codon 36 that is altered in three

of the samples has been reported by other groups to be quite

frequently mutated somatically, particularly in GBM. The

COSMIC database [22] cites six cases of GBM with alterations

in PTEN codon 36, one of which has the same G36R mutation as

our study’s patient. The Cancer Genome Atlas GBM study [10]

reports one sample with a G36E mutation. Regarding TP53, the

R282W substitution is one of the most common across many

tumor types, and is reported in 20 brain tumors in the COSMIC

database, as well as in two of the 206 TCGA GBM samples. On

the other hand, the P72R mutation is actually at the site of a

common SNP, rs1042522 (minor allele frequency 23.3% in

HapMap [23] European ancestral samples (CEU)) and has not

been previously reported as a somatic mutation. Similarly, the

mutated EGFR site is a SNP (rs1140475) that has not been

previously reported as a somatic mutation, nor has any site in the

PIK3CA codon 638.

To determine whether the somatic substitutions are potentially

deleterious, we queried them using three widely-used computa-

tional tools: SIFT [24], CanPredict [25], and PolyPhen-2 [26]

(Table 2). All of these aim to classify the impact of amino acid

changes on protein function by analyzing cross-species conserva-

tion of the residue, biochemical properties of the amino acid

sequence, curated literature, and other sources. The PTEN G36R

substitution that dominates the mutational landscape (Figure 4) of

the primary and first recurrence samples is classified as deleterious

by all four tools. However, as the patient progresses to the second

recurrence, three of the four other mutations were either silent or

classified as benign, with only the TP53 R282W substitution

deemed deleterious.

Contrasting mutational and histopathological landscapes
Having established mutational heterogeneity among our set of

patient samples, we sought to determine the degree to which the

heterogeneity was reflected in the histopathology. Figure 5 shows

the H&E-stained re-cuts of the three tumor samples – primary,

first recurrence, and second recurrence. Though morphologies

differ considerably from primary to first recurrence to second

recurrence, each individual image shows a fairly uniform

pathology. Thus, the histopathology is somewhat indicative of

the underlying molecular landscape, but is not sufficiently sensitive

to recapitulate all of the mutational heterogeneity.

A model for gliomagenesis and recurrence in this patient
The spatial and temporal heterogeneity characterized in our

study (Figure 4) facilitates the construction of a putative model

specific to this patient’s individual disease. Prior to treatment, a

subclonal population arose with a PTEN mutation, present in

Figure 5. Histopathology of the primary tumor and recurrenc-
es. The primary tumor (top) shows uniform cellularity with moderate
pleomorphism. The first recurrence (middle) demonstrates marked
nuclear pleomorphism and regions of necrosis, while the second
recurrence (bottom) shows enlarged, moderately pleomorphic nuclei.
doi:10.1371/journal.pone.0035262.g005
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approximately half of the tumor cells. This mutation was probably

at least partially driving the primary tumor, given the multiple

previous reports of the same codon being mutated in GBM as well

as the substitution’s deleterious classification (see above). The

primary tumor also harbored a PIK3CA mutation in a small subset

of cells. No published studies report this codon as being mutated,

however, and the classification algorithms suggest that it is likely a

passenger mutation. In any case, the PTEN and PIK3CA mutations

appear in separate subclonal populations, as evidenced by their

mutual exclusivity in the first recurrence (with focus A harboring

the PIK3CA lesion and focus B the PTEN lesion). Although the

initial round of surgery, chemotherapy, and radiation did not

eradicate the cells with the driver mutation, the second round

appears to have done so. Indeed, the second recurrence has no

evidence of PTEN mutation, but the subclonal population

harboring the PIK3CA mutation seems to have acquired a

‘‘hypermutator’’ phenotype, acquiring three new observed (and

certainly many more unobserved) mutations. It should be noted

that we observed no mutations in recurrence A among the

interrogated genes, underscoring the potential pitfall of drawing

broad conclusions from only a specific region of a heterogeneous

tumor.

Discussion

Our work here highlights heterogeneity within tumors and their

cellular subpopulations, and also describes mutational differences

between primary tumors and recurrences. Although sets of

primary tumors and metastases have been previously studied by

some groups for genomic heterogeneity [1,2,27], analogous studies

of sequential recurrences as presented here are uncommon. This is

due to the difficulty of finding matched sets of properly preserved

samples and the necessity of very high depth sequencing coverage

across all samples in order to detect mutations that appear only in

a minority of cells in a sample. The signals from such mutations

are often below the noise threshold in Sanger sequence reads [21],

and therefore likely remain underreported in the literature. We

were able to accurately call mutations that were present in

frequencies as low as 10%. Interestingly, the 10% threshold of

detection was also cited in a recent study [28] of heteroplasmy in

mitochondrial genomes using next-generation sequencing.

The results presented here establish several important princi-

ples. First, it is crucial that researchers do not rely solely on

capillary-based sequencing for mutation detection and validation,

since molecular heterogeneity may obscure important lesions.

Second, filtering out annotated SNPs from lists of putative somatic

substitutions can lead to false negatives because the mutation may

occur at a known SNP. Some sites are assigned SNP IDs (i.e. rs

numbers) based on scant validation, as is the case with the R282W

substitutions reported here in TP53. The SNP (rs28934574) was

reported only by one group in a single sample in dbSNP (www.

ncbi.nlm.nih.gov/projects/SNP/). Even well-validated SNPs may

be the site of somatic mutation simply by chance. Third, a single

sample of tumor tissue might not be representative of other regions

within the tumor (and may itself be an amalgamation of subclonal

populations), and primary tumor samples do not necessarily

represent the clonal origin of future recurrences.

Our proof-of-principle study required only one lane of

sequencing on the Illumina Genome Analyzer II (at a current

cost of approximately $1,000) because we focused on well-known

targets of mutation in GBM. However, the method would be

straightforward to scale up with regard to patient sample size and

number of genes tested, particularly as costs decline and selective

DNA capture methods develop. Additionally, the cellular

resolution achieved here will improve – recent publications have

demonstrated the promise of the ultimate in cellular resolution by

sequencing at the single-cell level [3]. With these and other near-

term technological advancements, extensions of the approach we

have presented here will allow further progress toward the goal of

personalized medicine via individual tumor sequencing.

Supporting Information

Figure S1 Sequence coverage by gene and sample. The top

panel shows coverage at each gene broken down by sample. The

bottom panel shows the same quantities scaled to have the same

average per gene, for visibility.

(DOC)

Figure S2 Sequencing of individual clones to validate mutations

(site indicated with arrow) revealed by next-generation sequencing.

(DOC)

Table S1 Primer pairs used to amplify exonic regions.

(XLS)

Table S2 Candidate single nucleotide variants revealed by next-

generation sequencing.

(XLS)
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