
1Scientific RepoRts | 6:31321 | DOI: 10.1038/srep31321

www.nature.com/scientificreports

iFish: predicting the pathogenicity 
of human nonsynonymous variants 
using gene-specific/family-specific 
attributes and classifiers
Meng Wang & Liping Wei

Accurate prediction of the pathogenicity of genomic variants, especially nonsynonymous single 
nucleotide variants (nsSNVs), is essential in biomedical research and clinical genetics. Most current 
prediction methods build a generic classifier for all genes. However, different genes and gene families 
have different features. We investigated whether gene-specific and family-specific customized 
classifiers could improve prediction accuracy. Customized gene-specific and family-specific attributes 
were selected with AIC, BIC, and LASSO, and Support Vector Machine classifiers were generated for 254 
genes and 152 gene families, covering a total of 5,985 genes. Our results showed that the customized 
attributes reflected key features of the genes and gene families, and the customized classifiers 
achieved higher prediction accuracy than the generic classifier. The customized classifiers and the 
generic classifier for other genes and families were integrated into a new tool named iFish (integrated 
Functional inference of SNVs in human, http://ifish.cbi.pku.edu.cn). iFish outperformed other methods 
on benchmark datasets as well as on prioritization of candidate causal variants from whole exome 
sequencing. iFish provides a user-friendly web-based interface and supports other functionalities such 
as integration of genetic evidence. iFish would facilitate high-throughput evaluation and prioritization 
of nsSNVs in human genetics research.

The rapid development of next-generation sequencing (NGS) technology and its wide application in disease gene 
discovery and clinical genetics brought both opportunities and challenges. A major challenge is how to assess the 
disease relevance of genomic variations on a large scale1. Single Nucleotide Variants (SNVs) are the most abun-
dant type of variants in the human genome. On average each individual has over three million SNVs2. Although 
nonsynonymous SNVs (nsSNVs) account for more than half of mutations known to lead to genetic disorders3, 
unlike truncated mutations or frameshift mutations which usually tend to be damaging, the vast majority of the 
nsSNVs in the human genome are benign and do not lead to disease phenotypes4. Thus, accurately distinguish-
ing pathogenic nsSNVs from neutral ones is critical in biomedical research and clinical genetics5,6. Because the 
sequenced variants are far too many for experimental studies, in silico methods to predict pathogenicity are often 
used to prioritize the variants for further experiments1,4.

The state-of-the-art in silico methods discriminate pathogenic nsSNVs from neutral ones by measuring 
sequence evolutionary conservation such as SIFT7, MAPP8, or by incorporating both sequence, structure and 
function features such as SAPRED9, MutPred10, SNPs&GO11, MutationTaster212 and PolyPhen213. These tools 
build and train a generic machine-learning classifier based on known pathogenic and neutral nsSNVs in the 
human genome. However, each gene has its own features, and genes in a gene family share similar features. 
Finding and using gene-specific/family specific attributes, rather than applying the same fixed attributes to assess 
all of the nsSNVs in the human genome, would be more biologically meaningful and help to improve the predic-
tion performance.

In fact, gene-specific classifiers have been built for a small number of genes such as the causal genes for 
CHARGE syndrome (CHD7)14 and alternating hemiplegia of childhood (ATP1A3)15. Group-specific classifi-
ers have been built for a group of six functionally related genes associated with hypertrophic cardiomyopathy 
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(MYH7, TNNT2, TPM1, TNNI3, MYPC3 and MYL2)16. They were found to achieve higher accuracy than generic 
classifiers14,16. However, it remains untested whether these are special cases or reflect a general rule. Gene-specific/
family-specific classifiers have not been implemented or assessed at the whole genome scale. One possible rea-
son was that in previous years there were not enough known pathogenic and neutral variants to train and test 
gene-specific/family-specific classifiers. Fortunately, largely driven by the high-throughput genotyping and 
sequencing technologies in the past decade, there are now a wealth of SNV data from large genetic studies and 
the 1000 Genomes Project2,17. Large number of known pathogenic SNVs are now stored in databases such as 
the Online Mendelian Inheritance in Men (OMIM)18, Human Gene Mutation Database (HGMD)3 and locus 
specific databases19. The abundant neutral and pathogenic SNV data makes it possible to build gene-specific/
family-specific attributes and classifiers and test whether they can achieve better accuracies.

Here we reported our construction and rigorous evaluation of gene-specific and family-specific attributes and 
classifiers for the prediction of the pathogenicity of nsSNVs. We implemented the classifiers into a new online web 
server, iFish (integrated Functional inference of SNVs in human, http://ifish.cbi.pku.edu.cn/), which had flexible 
functionalities and user-friendly interfaces. We evaluated iFish on multiple independent benchmarking datasets 
and compared its performance with seven other state-of-the-art tools. We also implemented other user-friendly 
functionalities in iFish such as integration of users’ own collected data on certain genes to build their own gene 
specific classifiers.

Results
Overview of iFish. iFish predicts the pathogenicity of nonsynonymous SNVs using gene and gene family spe-
cific attributes and classifiers (Fig. 1). 58,794 unique pathogenic nsSNVs on 2,877 disease related genes and 70,189 
neutral nsSNPs on 15,552 genes were collected as training set. Each variant was annotated with 40 attributes that 
had been previously demonstrated informative for classification by our9 and other groups13 (Supp. Table S1).  
Several studies had demonstrated that the integration of prediction results from multiple tools resulted in a higher 
classification accuracy20,21. Therefore, prediction scores from widely used tools including SIFT, PolyPhen2 and 
MutationAssessor22 were included in the list of candidate attributes. The 40 attributes annotated for each variant 
can be grouped into five categories: evolutionary conservation, protein sequence features, protein structural fea-
tures, amino acid physicochemical changes and prediction scores from other tools. Supp. Figure S1 showed the 
z-score distribution of all the collected pathogenic and neutral nsSNVs for each attribute. Unlike existing tools 
that make use of the same set of attributes to classify variants in all genes, different predictive attributes were 

Figure 1. Overall framework of iFish. The arrows indicate the order of the five steps: training data collection, 
variants annotation, attribute selection, classifier construction, and genetic evidence integration. The light 
blue arrows indicate the steps for gene-specific/family-specific customized attribute selection and classifier 
construction. The green arrows indicate the steps for generic attribute selection and classifier construction. The 
dark blue arrows indicate shared steps.

http://ifish.cbi.pku.edu.cn/
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automatically selected with AIC, BIC and Lasso method for different genes and gene families that have adequate 
pathogenic and neutral training nsSNVs (detailed in Methods). A linear support vector machine (SVM) classifier 
was constructed and trained using selected attributes for each customized gene and gene family to assert novel 
nsSNVs.

Finally, 254 genes had sufficient training nsSNVs for gene-specific customized attribute selection. Another 
152 gene families, covering additional 5,731 genes, had sufficient training nsSNVs for family-specific customized 
attribute selection. We also built a generic classifier to predict the effect of variants in genes that did not have 
sufficient training variants to build customized classifiers. The generic attributes were selected based on half of all 
training nsSNVs (see Methods). The list of selected attributes for genes and gene families were available on the 
iFish website and Supplementary Data S1. A total of 28 attributes were selected as generic attributes. In contrast, 
most genes and families had a relatively small number of customized attributes selected and over 44.9% of genes 
and families had only 1–4 customized attributes selected (Supp. Figure S2). The usage frequency of the different 
attributes were shown in Fig. 2A.

As an example of gene specific attributes selection in iFish, for the DOK7 gene which is associated with con-
genital myasthenic syndrome, four attributes including GERP conservation score, hydrophobicity, transmem-
brane tendency and turn tendency of amino acids were selected. This gene encodes a pleckstrin homology 
domain for membrane association and a phosphotyrosine binding domain and its protein sequence is conserved 
among many species23. It had been shown that mutations on DOK7 gene can affect salt bridge formations, hydro-
phobic space and backbone torsion angles24. The four customized attributes covered these functional effects and 
were informative for variants pathogenicity prediction.

Together with functional effect predictions, iFish supports the integration of genetic evidences such as 
co-segregation with disease in a family and case-control associations. These evidences are quantified and inte-
grated in iFish with a Bayesian model (see methods), which yields a unified posterior probability that the SNV 
is pathogenic given all of the available evidences. Incorporating genetic evidences were previously shown to be 
effective in discriminate pathogenic variants from neutral ones in cancer genes such as BRCA1 and BRCA2 25,26.

Evaluation and comparison of gene-specific, family-specific and generic classifiers. The perfor-
mance of all the SVM classifiers were first evaluated by ten-fold cross validation. The generic classifier achieved 
ten-fold cross-validation accuracy of 0.83 on the training set. In comparison, gene-specific and family-specific 
customized classifiers achieve significantly higher accuracies than the generic classifier on nsSNVs in most corre-
sponding genes and families (Fig. 2B, p-value <  10−15, Wilcoxon Signed-rank Test), with a mean accuracy of 0.87. 
Specifically, 71.43% (290) of the customized classifiers achieved higher accuracy than the generic classifier on 
nsSNVs in the corresponding genes and families and 20.44% (83) of the customized classifiers achieved the same 
accuracy as the generic classifier. Only 8.13% (33) of the customized classifiers achieved lower accuracy than the 
classifier using generic features, and most of the differences were small as illustrated by the points below the diag-
onal in Fig. 2B. We also performed gene-stratified cross-validation (by leaving out all variants on one gene at a 
time) for the family-customized classifiers, and found that they achieved significantly higher accuracies than that 
using generic features (Fig. 2C, p-value <  10−13, Wilcoxon Signed-rank Test). We then evaluated and compared 
the performance of the classifiers on nsSNVs in the corresponding genes and gene families in the benchmark 
datasets NovelVar. Customized classifier method achieved the classification accuracy of 0.74, an increase of 0.01 
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Figure 2. Evaluation of gene-specific and family-specific customized classifiers and comparison with 
generic classifiers. (A) The usage frequency of each candidate attributes in these customized classifiers. The 
y-axis represents the 40 candidate attributes, and the x-axis represents their usage frequency in all classifiers. 
(B) Comparison of cross-validation accuracies using the customized attributes (Y-axis) vs. using the generic 
attributes (X-axis). Each point represents a gene (green) or a gene family (orange) that had enough training 
SNVs for customized attributes and classifiers. (C) Evaluation of the gene-family specific classifiers using gene 
stratified cross validation (leave variants on one gene out). The gene-family specific classifiers with customized 
features achieved higher accuracies than the classifiers using generic features.
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over the generic classifier. These results demonstrated that customized classifiers built with gene-specific and 
family-specific attributes achieved high prediction accuracy and outperformed the generic classifier.

Performance evaluation of iFish and comparison with other tools. We next evaluated the per-
formance of iFish, applying the customized classifiers whenever possible and the generic classifier on all other 
nsSNVs. We compared iFish with seven other widely employed tools, SIFT, PolyPhen2, MutationAssessor, 
CADD27, MutationTaster2, FATHMM28 and Condel20. We employed three stringent independent test datasets 
(described in Methods and Table 1). To evaluate the actual ability of the prediction tools in discriminating novel 
pathogenic variants from neutral ones, the benchmark test sets should be carefully selected to avoid two types 
of circularity29. Type 1 circularity is the overlap between training variants and testing variants. We constructed 
an independent test dataset, named NovelVar, to avoid the type 1 circularity. Type 2 circularity occurs when 
all variants in the same gene are jointly annotated as pathogenic or neutral, which may mislead tools that rely 
on gene-level information to overfit29. To test whether these tools were confounded by type 2 circularity, we 
constructed two independent test sets, SwissvarFilteredMix and VaribenchSelectedPure, based on public bench-
mark test datasets SwissVar and Varibench30. The SwissvarFilteredMix test set contained variants in “mix” genes 
(genes with both pathogenic and neutral variants) and the VaribenchSelectedPure set was composed of variants 
on “pure” genes (genes with all variants labeled as pathogenic or all labeled as neutral). If a prediction tool was 
affected by type 2 circularity, then its accuracy would be spuriously inflated on the VaribenchSelectedPure test 
dataset compared to that on the SwissvarFilteredMix test dataset29.

ROC analysis showed that iFish achieved the highest AUC (0.85) on NovelVar (Fig. 3A). iFish also achieved 
the highest prediction accuracy of 76.99% and the best MCC of 0.54 on NovelVar, with both high sensitivity and 
specificity (Fig. 3B and Table 2). By default, iFish utilized customized prediction cutoff for each classifier that 
maximize the sum of sensitivity and specificity. This cutoff can be reset by the user in the iFish web tool to achieve 
different desired sensitivities and specificities for different research questions. With the default configuration, 
although the sensitivity of iFish was a little lower than SIFT, PolyPhen2 and MutationTaster2, its specificity was 
much higher than that of the other tools (Table 2). If only the generic classifier is used, the AUC of iFish was 0.84 
on NovelVar which was the same as Condel and better than the other tools. Details about the prediction results of 
the tools and the NovelVar dataset were provided in Supp. Data S2.

iFish also archived the highest AUC of 0.73 on the independent test set SwissvarFilteredMix, followed by 
PolyPhen2 trained by HumVar (AUC: 0.72), MutationAssessor (AUC: 0.72), Condel (AUC: 0.71), CADD 
(AUC: 0.71), PolyPhen2 trained by HumDiv (AUC: 0.71), SIFT (AUC: 0.71), MutationTaster2 (AUC: 0.70) and 
FATHMM (AUC: 0.69), shown in Fig. 3C. Furthermore, the performance of iFish was not inflated when assess-
ing variants on “pure” genes in VaribenchSelectedPure (Fig. 3C). It is useful to note that the performance of the 
tools on VaribenchSelectedPure cannot be compared directly because this dataset was biased and the labels of 
variants in this dataset were at least partially artificial29. It was only constructed for testing whether a predic-
tion method was confounded by type 2 circularity. Details about the prediction results of all the tools and the 
SwissvarFilteredMix and VaribenchSelectedPure test datasets were provided in Supp. Data S3 and Supp. Data S4, 
respectively.

Taken together, the prediction results on the three independent test datasets demonstrated that the accu-
racy of iFish was high and not confounded by type 1 or type 2 circularity. Compared to iFish, MutationTaster2 
and Condel had similar AUC on NovelVar. But the performance of MutationTaster2 was slightly worse on 
SwissvarFilteredMix (Fig. 3C) and did not show consistent high performance over the other tools. This indi-
cated that the high performance of MutationTaster2 on NovelVar might be confounded by type 1 circularity to 
certain extent. MutationTaster2 used private training variants which were not publicly available and may overlap 
with NovelVar. The performance of Condel got inflated a little when predicting variants on ‘pure’ genes than 
that on ‘mix’ genes, indicating that its high performance may be due to type 2 circularity29 to certain extent. 
Another tool, FATHMM, performed the worst on SwissvarFilteredMix but got a spuriously highest AUC of 0.95 
on VaribenchSelectedPure (Fig. 3C), suggesting that FATHMM was confounded by type 2 circularity.

Since iFish incorporated the prediction scores from existing tools (SIFT, MutationAssessor, and PolyPhen2 
trained by HumDiv and HumVar) into the classifiers, we next evaluated the effect of incorporating these tools 

Name Source
Number of pathogenic 

nsSNVs
Number of neutral 

nsSNVs
Removed variants 
overlapping with Notes

Training variants iFishTrainVar

Pathogenic: HGMD 
2014.4

58,794 70,189 —

Common nsSNVs 
(AF ⩾ 1%) in 1000 Genomes 

and dbSNP were used as 
neutral variants.

Neutral: 1000 
Genomes dbSNP138

Testing variants

NovelVar
Pathogenic: HGMD 

2015.3 4,044 4,868
iFishTrainVar Common nsSNVs 

(AF ⩾ 1%) in dbSNP were 
used as neutral variants.Neutral: dbSNP142 PolyPhen2 training variants

SwissvarFilteredMix UniProt 1,217 1,324
iFishTrainVar Only variants on “mix” 

genes were included.PolyPhen2 training variants

VaribenchSelectedPure Varibench 2,144 3,777
iFishTrainVar Only variants on “pure” 

genes were included.PolyPhen2 training variants

Table 1.  Summary of training and testing nsSNVs datasets.
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Figure 3. Performance evaluation of iFish and comparison with other tools. (A) ROC curves on NovelVar test 
dataset of iFish, SIFT, PolyPhen2 trained by HumDiv and HumVar, MutationAssessor, MutationTaster2, CADD, 
FATHMM and Condel. (B) Comparison of true positives (TP), true negatives (TN), false positives (FP), false 
negatives (FN), and not called (NoCall) variants of these tools on NovelVar test dataset. (C) AUCs of these tools 
on test sets composed by only variants on “mix” genes (SwissvarFilteredMix) and that only had variants on 
“pure” genes (VaribenchSelectedPure). iFish archived the best AUC on SwissvarFilteredMix test set. And unlike 
FATHMM, the AUC of iFish and other tools did not spuriously inflated on VaribenchSelectedPure. (D) Boxplot 
of the cross validation accuracies of each customized classifier in iFish and compared with the classifiers when 
prediction results of SIFT, MutationAssessor, PolyPhen2 trained by HumDiv and HumVar were removed from 
the candidate attributes set. These tools contributed to the improvement of the accuracies. However, when these 
tools were excluded, most classifiers still remained high accuracy.

Accuracy(%) FDR(%) Sensitivity(%) Specificity(%) MCC

iFish 76.99 28.16 81.06 73.60 0.54

SIFT 68.15 38.81 86.00 52.66 0.41

PolyPhen2 HDIV 69.81 37.18 88.22 53.37 0.44

PolyPhen2 HVAR 72.84 32.71 82.56 64.15 0.47

Mutation Assessor 72.70 31.23 75.03 70.69 0.46

Mutation Taster2 71.78 37.81 91.08 56.68 0.49

CADD 76.20 28.76 79.75 73.25 0.53

FATHMM 73.07 25.77 62.66 81.78 0.45

Condel 76.74 27.41 80.77 73.20 0.54

Table 2.  Performance evaluation and comparison using independent test set (NovelVar) of iFish, SIFT, 
MutationAssessor, PolyPhen2 trained by HumDiv and HumVar, CADD, MutationTaster2, FATHMM and 
Condel. FDR: False Discovery Rate. MCC: Matthews Correlation Coefficient.
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on the iFish performance, by removing scores of these tools from the list of candidate attributes and re-running 
attribute selection and classifier construction. Even after these tools were removed from the candidate attribute 
set, iFish still achieved a high AUC of 0.82 in ROC analysis on NovelVar (Supp. Data S2). For 35.47% of the 
customized classifiers, the cross validation accuracies remained unchanged whether or not the other tools were 
included in the candidate attribute set (Fig. 3D). These results demonstrated that candidate attributes other than 
these prediction tools contributed substantially to the high accuracy of iFish, whereas inclusion of these tools 
further improved the accuracy (Fig. 3D. p-value =  0.005, Wilcoxon Signed-rank Test). Thus the final version of 
iFish incorporated these tools into the classifier.

Application to discover disease causal gene from next-generation whole exome sequenc-
ing data. We demonstrated the utility of iFish in the discovery of disease causal genes and mutations from 
two whole exome sequencing datasets. The candidate nsSNVs in four individuals affected by Miller Syndrome 
(MIM: 263750) were ranked by their probability of being pathogenic by iFish and five other tools. We did not run 
FATHMM here because it was significantly confounded by type 2 circularity. Two mutations in DHODH which 
were the correct causal mutations in the correct gene31 ranked among top 3 by iFish with scores of 0.98 and 0.97, 
respectively (Supp. Table S2). The single validated neutral nsSNV in this gene (rs3213422:A >  C)32 was predicted 
to be neutral by iFish with a score of 0.53. In contrast, the result from SIFT ranked 199 mutations in 157 genes 
(including DHODH) as equally most pathogenic. MutationAssessor had reasonable performance and ranked the 
two causal mutations in DHODH among its top 10 list (Supp. Table S3). PolyPhen2 ranked 117 mutations in 102 
genes (including DHODH) as equally most pathogenic when trained by HumDiv and 30 mutations in 27 genes 
(including DHODH) as equally most pathogenic when trained by HumVar. CADD did not include any mutation 
in DHODH in its top 10 list. MutationTaster2 ranked 62 mutations in 56 genes as equally most pathogenic, not 
including DHODH. Condel ranked only one causal mutation in its top 10 list. Thus, iFish had the best perfor-
mance in discovering the causal gene and mutations.

We then applied iFish and the other tools to prioritize candidate nsSNVs from the whole exome sequenc-
ing data of the Alternating Hemiplegia of Childhood (AHC) families, whose causal gene was discovered to 
be ATP1A3 15,33,34. One causal mutation in ATP1A3 ranked the first by iFish, and both of the other two causal 
mutations in this gene ranked 12th by iFish (Supp. Table S4). SIFT ranked 135 mutations in 104 genes (includ-
ing ATP1A3) as equally most pathogenic. MutationAssessor ranked one mutation in ATP1A3 among its top 
10 list (Supp. Table S5). PolyPhen2 trained by HumDiv ranked 78 mutations in 69 genes (including ATP1A3) 
as equally most pathogenic, and PolyPhen2 trained by HumVar ranked 19 mutations in 16 genes (including 
ATP1A3) as equally most pathogenic. CADD and Condel included no mutation in ATP1A3 in their top 10 lists. 
MutationTaster2 ranked 38 mutations in 29 genes (including ATP1A3) as equally most pathogenic. Thus, com-
pared with the other tools, iFish showed the strongest signal indicating the causal mutations and causal gene from 
next-generation sequencing data.

Discussion
Here we presented a new tool, iFish, that could predict the pathogenicity of human nsSNVs with increased 
accuracy. We demonstrated that iFish outperformed other existing tools on stringent independent benchmark-
ing datasets. iFish has an user-friendly and flexible web-based interface that allows users to analyze large sets 
of nsSNVs rapidly. It supports the integration of genetic evidence into the prediction of pathogenicity using a 
Bayesian model. It also facilitates registered users to construct their own gene-specific classifiers using their pri-
vate variants, which is not available in other existing tools.

Grimm et al. cautioned that two types of circularity may spuriously increase the prediction accuracies in the 
evaluation of pathogenicity prediction tools29. Here we constructed independent benchmark test datasets with 
no overlap with the training datasets to avoid type 1 circularity, and showed that iFish achieved high accuracies 
and outperformed other existing tools. Type 2 circularity was often ignored in previous evaluation of prediction 
tools29. Here we constructed one test dataset on “mixed” genes and another on “pure” genes, and showed that the 
high accuracy of iFish was not confounded by type 2 circularity.

The diverse characteristics of different genes and gene families were largely overlooked by previous predicting 
systems which built a single genome-wide classifier and employed a single genome-wide cutoff. Recently, Itan 
et al. proposed a method with gene-customized cutoff and demonstrated that the gene-level prediction system 
outperformed that using uniform cutoff35. However, this method employed the unified scoring system for all the 
genes and did not take gene-specific features into consideration. We built gene/family-specific classifiers that not 
only had gene/family-specific prediction cutoff but also utilized gene/family-specific features. We demonstrated 
that most gene-specific and family-specific customized classifiers achieved higher prediction accuracies than the 
generic classifier. The increase in prediction accuracy was in part due to the customized attributes selected for 
each gene and family. Proper attribute selection is critical for improving the performance of machine learning 
based methods. Each gene has its own characteristics. Not all generic attributes were informative for classifica-
tion of variants in every gene. Selecting the most predictive customized combination of attributes captured the 
key features of different genes and gene families. In fact, Gene Ontology (GO) enrichment analysis showed that 
genes with a certain attribute selected in iFish were enriched in GO terms that were related to that attribute, 
whereas genes without that attribute selected were not enriched in these GO terms (Supp. Table S6). For instance, 
genes with the ‘Intramembrane’ attribute selected were enriched in GO terms ‘integral component of membrane’, 
‘intrinsic component of membrane’ and ‘membrane part’. Genes with the ‘site’ attribute selected were enriched 
in GO terms ‘protein binding’, ‘ligase activity’ and ‘receptor binding’. These results suggested that the customized 
attributes selected for genes reflected gene-specific features.

A limitation of building gene-specific and family-specific customized models is that the number of custom-
ized models was limited by the amount of available training pathogenic and neutral variants in a gene and gene 
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family. Although tens of thousands nsSNVs with known relevance to diseases were collected, they mainly con-
centrated on a small subset of genes and gene families. Most of genes and gene families had too few training SNVs 
to build customized classifiers. Customized models have higher risks of overfitting, and thus more careful and 
extensive evaluations, as we had conducted here, are required. Another challenge, faced by not only iFish but also 
other prediction models, is that some SNVs in the training set might be mislabeled. Variants labeled as disease 
mutation in HGMD database might not be the real causal mutation. Instead they might be in linkage disequilib-
rium with the underlying causal mutation. The common variants in individuals without disease phenotype are 
assumed to be neutral. However, these variants may also give rise to functional alterations or late-onset diseases. 
These could reduce the accuracy of the classifiers, especially the customized classifiers which have a smaller train-
ing set. This situation would gradually improve as more data and knowledge become available on the functional 
effects of genetic variants.

The advances of human genetic research, fueled by next-generation sequencing technologies, will continue to 
increase the number of known pathogenic and neutral nsSNVs. We anticipate more customized classifiers to be 
built for increasing number of genes and gene families. As a result, the prediction accuracy of iFish will continue 
to increase. We will continue to update iFish to make it a useful tool for human genetic and genomic studies.

Methods
Collection of neutral and pathogenic nsSNVs as training dataset. Variants from the Phase 3 of the 
1000 Genomes project36 were downloaded from the ftp site (ftp://ftp.1000genomes.ebi.ac.uk/) in VCF format. 
The raw variants were filtered such that only common SNVs with a population allele frequency of at least 1% 
were retained. In addition, common SNVs with a population allele frequency of at least 1% in dbSNP138 were 
retrieved from the UCSC genome browser (http://genome.ucsc.edu/). These two sets of common variants were 
combined with duplicated items removed and used as the “neutral” training SNVs. The pathogenic SNVs were 
obtained from HGMD (release 2014.4) database with the tag ‘DM’. Some pathogenic mutations in HGMD were 
also present in the common variants in the 1000 Genomes Project or dbSNP. These variants were removed from 
the training SNVs. The collected SNVs were then annotated by ANNOVAR37 and mapped to the genes (UCSC 
KnownGene) in which they were located. Only nonsynonymous SNVs were retained. The genomic coordinates 
of the SNVs were based on human reference genome GRCh37.

Calculation of the Sequence and Structural Attributes for the Variants. GERP38 scores for each 
variant were obtained from the precompiled results on the website (http://mendel.stanford.edu/SidowLab/down-
loads/gerp/). Phylop39 conservation scores were downloaded from the UCSC genome browser (https://genome.
ucsc.edu/). The protein sequence features and protein 3D structure features were annotated using PolyPhen2 
(version 2.2.2). Physicochemical changes of amino acids were based on values given by ProtScale (http://web.
expasy.org/protscale/). The missing values in each feature were replaced by the mode value of that feature. The 
raw values for each attribute were scaled to obtain z-scores, which were used in subsequent attribute selection, 
model training and validation.

Variants grouping by genes and gene families. To build customized classifiers for genes and gene fam-
ilies when possible, all of the nsSNVs in the training dataset were grouped based on the genes and gene families 
in which they were located. The list of gene families and the genes they include were based on the HGNC Gene 
Families/Groupings Nomenclature (http://www.genenames.org/genefamily.html). In order to build a customized 
classifier, we required that (1) a gene should have at least 15 training nsSNVs and a gene family should have at 
least 30 training nsSNVs. This criteria resulted in 794 genes containing 41,117 pathogenic nsSNVs and 5,635 
neutral nsSNVs and 261 gene families containing 39,955 pathogenic nsSNVs and 36,219 neutral nsSNVs. (2) The 
ratio of pathogenic to all variants should be between 0.2 and 0.8. Adding this criteria resulted in a final set of 254 
genes containing 4,073 pathogenic nsSNVs and 2,548 neutral nsSNVs and 152 gene families containing 21,458 
pathogenic nsSNVs and 23,884 neutral nsSNVs.

Attribute selection and classifiers construction. Attribute selection is an important step to reduce 
the risk of overfitting. Three methods were employed to select attributes from the attribute list: logistic regres-
sion with Akaike Information Criterion (AIC) model selection, logistic regression with Bayesian Information 
Criterion (BIC) model selection, and least absolute shrinkage and selection operator (LASSO) regression. For 
each gene/family that had enough balanced training variants, attributes were selected with AIC, BIC, and LASSO, 
respectively, and for each set of selected attributes, a support vector machine (SVM) classifier was trained with 
linear kernel function, implemented using libSVM40, and validated by ten-fold cross validation. The SVM clas-
sifier that had the best cross-validation accuracy was used as the final classifier for that gene/family and the 
corresponding attributes set was designated as the final attributes set for that gene/family. To build the generic 
classifier, all the training nsSNVs were randomly split into two parts with equal number of variants. One part 
was used to select genome-wide generic attributes and the other part was used to train the genome-wide generic 
SVM classifier. The parameters in all the classifiers were chosen using grid search to maximize the cross validation 
accuracy of classification. The customized classifiers and the generic classifier were combined into iFish.

Performance evaluation and comparison with other tools. The accuracies of the customized 
classifiers and generic classifier were first evaluated using ten-fold cross validation on the training set. For the 
family-specific classifiers, we also performed gene-stratified cross validation on the training set by leaving out all 
variants on one gene at each time. For 30 gene families that had one single gene containing more than 50% total 
variants of this family, the gene stratified cross validation was not performed since the distribution of the variants 

ftp://ftp.1000genomes.ebi.ac.uk/
http://genome.ucsc.edu/
http://mendel.stanford.edu/SidowLab/downloads/gerp/
http://mendel.stanford.edu/SidowLab/downloads/gerp/
https://genome.ucsc.edu/
https://genome.ucsc.edu/
http://web.expasy.org/protscale/
http://web.expasy.org/protscale/
http://www.genenames.org/genefamily.html
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was too unbalanced. Next we compared the performance of iFish vs. other state-of-the-art tools (SIFT, PolyPhen2 
trained by HumDiv and HumVar, respectively, MutationAssessor, CADD, MutationTaster2, FATHMM and 
Condel) on three independent test sets. Accuracy was measured using Receiver Operating Characteristic (ROC) 
analysis41. The classification accuracy, false discovery rate (FDR), sensitivity, specificity, and Matthews Correlation 
Coefficient (MCC) were also evaluated and compared. For iFish and CADD, the predicted class for nsSNVs was 
obtained by maximizing the sum of the sensitivity and specificity. For SIFT and MutationAssessor, the classifica-
tion cutoff was set to 0.05 and 1.9, respectively, as recommended22,42. For Polyphen2, MutationTaster2, FATHMM 
and Condel, the predicted classes were included in their outputs.

We constructed three stringent test datasets. NovelVar was comprised of pathogenic variants in HGMD 
2015.3 release and common variants (AF ≥  1%) in dbSNP142 that did not overlap with iFish training variants 
nor the training variants of PolyPhen2 (HumDiv and HumVar) which was used as a candidate attribute in iFish. 
Scores from SIFT and MutationAssessor were also used as candidate attributes in our tool, but they were based on 
measuring the evolutionary conservation and were not trained using known pathogenic and neutral variants7,43. 
We constructed the SwissVarFilteredMix test dataset by (1) removing from SwissVar (release 2015.9, http://www.
uniprot.org/docs/humsavar) all variants overlapping with iFish training dataset or PolyPhen2 training dataset, 
and (2) selecting only variants in SwissVar located in “mix” genes. We constructed the VaribenchSelectPure data-
set by (1) removing from VaribenchSelected all variants overlapping with iFish training dataset or PolyPhen2 
training dataset, and (2) selecting only variants in VaribenchSelected located in “pure” genes.

We compared the performance of iFish and the other tools on the prioritization of disease-causing candidate 
mutations from two next-generation sequencing datasets. The first was a commonly used benchmark dataset 
from the whole exome sequencing of four unrelated individuals affected by Miller Syndrome (MIM: 263750), 
obtained from NCBI dbGaP (http://www.ncbi.nlm.nih.gov/gap) with accession number phs000244.v1.p1. Miller 
Syndrome was known to be caused by mutations in DHODH31. The second was the whole exome sequencing data 
of six unrelated children affected by Alternating Hemiplegia of Childhood (AHC, MIM: 614820) together with 
both unaffected parents of three of these affected children (dbGaP Study Accession: phs000660.v1.p1)15. AHC 
was a rare dominant disorder caused predominantly by de novo mutations in ATP1A3. For both datasets, the raw 
reads were trimmed to remove sequencing adaptors; reads of low quality were filtered; and the remaining reads 
were mapped to GRCh37 reference genome using BWA44. Variants were called by GATK45 following the recom-
mended best practices46. For the Miller Syndrome dataset, observed nsSNVs on genes on which all four affected 
individuals carried nsSNVs were included as candidate variants, resulting in a total of 2,365 nsSNVs in 1,275 
genes. For the AHC dataset, nsSNVs on genes on which at least two affected individuals carried nsSNVs and that 
were absent in the unaffected parents were included as candidate variants, resulting in a total of 710 nsSNVs in 
400 genes. The causal mutations of Miller Syndrome and AHC were removed from iFish training set.

Bayesian model to integrate genetic evidence. Genetic evidences (GE) were integrated with the pre-
diction of pathogenicity by SVM into a naïve Bayesian model. Each nsSNV was considered as either pathogenic 
(M) or neutral (M). The probability of pathogenicity (P M( )) predicted by the SVM classifier was taken as the 
prior probability of pathogenicity for the nsSNV. LRwas the likelihood ratio of observing the genetic evidence 
under the assumption that the nsSNV was pathogenic versus under the assumption that the nsSNV was neutral. 
We calculated the posterior probability that a mutation was pathogenic given all of the available genetic evidences 
as

| ... =
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∏ =( )
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1 1
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1 2 1
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1
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Co-segregation was quantified by calculating the likelihood ratio as described by Thompson et al.47. Likelihood 
ratios of case-control association were derived by employing Bayesian statistical methods for association studies, 
as described by Stephens and Balding48.

Implementation of iFish web-based application. Gene-specific, family-specific, and the generic classi-
fiers were integrated into iFish with a web-based user interface, freely available at http://ifish.cbi.pku.edu.cn. iFish 
takes one or more nsSNVs as input, specified by the chromosome, position, reference allele and alternative allele 
of each nsSNV. The variant calling results from next-generation sequencing in the standard Variant Call Format 
(VCF) could be directly used as input. Genetic evidence, when available, could be provided in VCF, together 
with the pedigree file in family-based co-segregation analysis or the phenotype of each individual in case-control 
association studies.

The annotation and prediction results given by iFish could be retrieved and downloaded in the web browser. 
To enable iFish making rapid predictions, we had enumerated all possible nsSNVs in the human genome, pre-
compiled all annotations, and stored them in a local Hash database. The customized attributes selected for each 
gene and gene family could be browsed in the web browser. For users who have significant amount of private 
nsSNV training data on genes of their interest, iFish supports the users to build their own customized classifiers 
using their private training data.
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