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Paradoxical seizure exacerbation by anti-epileptic medication is a well-known clinical
phenomenon in epilepsy, but the cellular mechanisms remain unclear. One possibility is
enhanced network disinhibition by unintended suppression of inhibitory interneurons. We
investigated this hypothesis in the stargazer mouse model of absence epilepsy, which
bears a mutation in stargazin, an AMPA receptor trafficking protein. If AMPA signaling onto
inhibitory GABAergic neurons is impaired, their activation by glutamate depends critically
upon NMDA receptors. Indeed, we find that stargazer seizures are exacerbated by NMDA
receptor blockade with CPP (3-[(R)-2-carboxypiperazin-4-yl]-prop-2-enyl-1-phosphonic acid)
and MK-801, whereas other genetic absence epilepsy models are sensitive to these
antagonists.To determine how an AMPA receptor trafficking defect could lead to paradoxical
network activation, we analyzed stargazin and AMPA receptor localization and found that
stargazin is detected exclusively in parvalbumin-positive (PV+) fast-spiking interneurons in
somatosensory cortex, where it is co-expressed with the AMPA receptor subunit GluA4.
PV+ cortical interneurons in stargazer show a near twofold decrease in the dendrite:soma
GluA4 expression ratio compared to wild-type (WT) littermates. We explored the functional
consequence of this trafficking defect on network excitability in neocortical slices. Both
NMDA receptor antagonists suppressed 0 Mg2+-induced network discharges in WT but
augmented bursting in stargazer cortex. Interneurons mediate this paradoxical response,
since the difference between genotypes was masked by GABA receptor blockade.
Our findings provide a cellular locus for AMPA receptor-dependent signaling defects in
stargazer cortex and define an interneuron-dependent mechanism for paradoxical seizure
exacerbation in absence epilepsy.
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INTRODUCTION
The ability of an anti-epileptic drug (AED) to aggravate seizures
is an unwelcome clinical problem affecting a small percentage of
individuals with epilepsy (Gayatri and Livingston, 2006). However,
due to the underlying heterogeneity of human seizure disor-
ders, no common predictive biomarker or mechanism linked
to this malignant form of pharmacoresistance has been identi-
fied. Paradoxical seizure enhancement by drugs that ordinarily
reduce membrane depolarization or excitatory synaptic transmis-
sion suggests an innate difference in intrinsic cellular excitability
or functional connectivity mediating the aberrant neuronal syn-
chronization. One possibility, a pre-existing defect in the strength
of inhibitory interneurons, may offer a specific mechanism for
this idiosyncratic response. For example, phenytoin aggravates
myoclonic seizures in a severe form of infantile epilepsy, Dravet
syndrome, arising from mutation of Scn1a (Guerrini, 2012).
Recent analysis of haploinsufficient Scn1a mouse mutants found a
decreased density of inward sodium current that preferentially
impaired high frequency discharges in interneurons (Yu et al.,

2006; Ogiwara et al., 2007; Dutton et al., 2012). Further depres-
sion of their excitability by sodium channel blocking drugs
such as phenytoin could synaptically disinhibit pyramidal cells,
despite phenytoin’s simultaneous membrane suppressant effects
on them. This example of malignant disinhibition arising from
an inherently weakened interneuron population identifies a gen-
eral mechanism for seizure exacerbation by otherwise potent
anti-convulsant drugs.

In absence epilepsy, aggravation of seizures with anti-epileptic
medication in some individuals is also well-described (Chaves
and Sander, 2005; Thomas et al., 2006). In particular, GABAer-
gic agents such as clonazepam, tiagabine, and vigabatrin that
effectively terminate convulsive seizures typically provoke or pro-
long cortical spike-wave seizure patterns. An increase in tonic
inhibition has been proposed (Crunelli et al., 2011) to explain
the effects of these agents on thalamocortical oscillations in
genetic models of epilepsy; however, the exact mechanism of
seizure exacerbation with other anti-epileptic drugs lacking this
property, such as lamotrigine, levetiracetam, and carbamazepine,
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is unknown (Nakken et al., 2003; Gayatri and Livingston, 2006).
We identified a glutamate-related paradoxical response in the
stargazer mouse model of absence epilepsy, where seizures are
markedly exacerbated by 3-[(R)-2-carboxypiperazin-4-yl]-prop-
2-enyl-1-phosphonic acid (CPP), a competitive NMDA receptor
antagonist (Nahm and Noebels, 1998), which has also been noted
to aggravate seizures in some patients with epilepsy (Sveinbjorns-
dottir et al., 1993). The stargazer phenotype of absence seizures
and ataxia arises from mutation of Cacng2, which encodes the
protein stargazin (Letts et al., 1998; Kato et al., 2010). Despite its
gene symbol, this protein functions as a transmembrane AMPA
receptor regulatory protein (TARP) critical for AMPA subunit
clustering at synaptic and extrasynaptic sites in cerebellar gran-
ule cells (Chen et al., 2000). Although this explains the ataxic
phenotype, the AMPA receptor trafficking deficit should also
affect the thalamocortical loop implicated in the generation of
absence seizures (Pinault, 2003; Meeren et al., 2005; Beenhakker
and Huguenard, 2009). Each limb of the thalamocortical network
is regulated locally through inhibitory GABAergic neurons in the
neocortex and the nucleus of the reticular thalamus (RTN). A
reduction of functional AMPA receptor current has been identi-
fied in stargazer RTN neurons (Menuz and Nicoll, 2008; Barad
et al., 2012), and recently, a deficit in AMPA receptor expression
has been reported in stargazer cortical interneurons in vitro (Tao
et al., 2013). However, the exact cellular localization of stargazin
in cortical interneuronal subpopulations and its contribution
to AMPA receptor trafficking, cortical network excitability and
the phenomenon of paradoxical AED response have not been
explored.

Here we interrogated the cortical node of the thalamocorti-
cal loop, and demonstrate that in mouse somatosensory cortex,
stargazin is exclusively expressed in PV+ cells, and that lack of
functional stargazin reduces dendritic GluA4 trafficking in these
interneurons. We also find that NMDA receptors play a key role in
limiting abnormal cortical synchronization in stargazer mice, since
both competitive and non-competitive antagonists lead to para-
doxical seizure exacerbation in vivo. Interestingly, the response is
specific to this gene mutation, since analogous seizures in totter-
ing mice were appropriately blocked by NMDA receptor blockade.
In vitro, we determined that cellular hyperexcitability differences
unmasked by NMDA receptor blockade in Mg2+ deficient solution
are abolished by GABA receptor blockade, isolating the stargazer
cortical network excitability defect to interneurons.

MATERIALS AND METHODS
MICE
Experiments used adult homozygous stargazer mutants on a
C57BL6/J background (stg/stg) and their wild-type (WT) lit-
termate controls (+/+). To selectively label PV+ cells in WT
mice in vivo, we used a PV-Cre Ai9 (stop-floxed tdTomato)
transgenic mouse line (Jackson Laboratory Stock #008069 and
#007909). These mice have a >90% C57BL6/J background, with
minimal contribution from the 129P3/J strain after four gener-
ations of cross-breeding, ultimately expressing Cre recombinase
from the endogenous parvalbumin (Pvalb) locus (Madisen et al.,
2010). However, due to the tight linkage of the stg and Pvalb
loci on chromosome 15, we were unable to create a transgenic

stg mutant expressing a Pvalb-driven reporter. Genotypes were
confirmed by PCR of tail DNA with the following primers: GAG-
CAAGCAGGTTTCAGGC, TACTTCATCCGCCATCCTTC, and
TGGCTTTCACTGTCTGTTGC, which produce a WT (360 bp)
and mutant (155 bp) band (Burgess et al., 1997). All animal
research was performed in accordance with Baylor College of
Medicine Institutional Animal Care and Use Committee (IACUC)
guidelines and regulations.

IN VIVO VIDEO-EEG MONITORING
Mice were anesthetized by Avertin and surgically implanted with
bilateral silver wire electrodes (0.005′′ diameter) inserted into the
subdural space over the parietal cortex bilaterally through cranial
burr holes and attached to a microminiature connector cemented
to the skull. Mice were allowed to recover for at least 48 h before
analysis. EEG and behavioral activity in freely moving mice were
analyzed using simultaneous video-EEG monitoring (Harmonie
software version 6.1c, Stellate Systems). All EEG signals were fil-
tered using a 0.3 Hz high-pass filter, 70 Hz low-pass filter, and
60 Hz notch filter. All in vivo experiments were initiated between
12 and 1 pm to prevent confounding diurnal variation. Mice were
allowed to acclimate to the recording environment for 30 min,
and video-EEG was then collected for a 30 min baseline sampling
period, followed by intraperitoneal drug injection with either MK-
801 (Sigma) or phosphate-buffered saline (PBS) and monitored
for 3 h. Seizure activity, defined by spike and wave discharges with
an amplitude greater than or equal to 2× baseline voltage with
a corresponding video-recorded behavioral arrest, was quantified
by visual inspection. Total seconds of seizure activity, indepen-
dent of seizure frequency or duration, were counted and divided
by the baseline seizure duration at 30 min epochs to create a
ratio relative to the 30 min baseline sampling period. Statistical
differences were tested using a repeated measures ANOVA with
Bonferroni post-tests to compare groups over time (Prism 5, ver-
sion 5.0d, GraphPad, CA, USA). Statistical significance was set at
p < 0.05.

IMMUNOCYTOCHEMISTRY
Adult, 6–7-week-old mice of either sex were anesthetized with
isoflurane and perfused with PBS followed by 4% paraformalde-
hyde (PFA). Brains were extracted and post-fixed in PFA for 1 h,
then soaked in 30% sucrose in PBS at 4◦C overnight. Primary
antibodies used for immunohistochemistry included: mouse anti-
parvalbumin (Sigma, 1:1000 dilution) for co-labeling with rabbit
anti-GluA4 (Millipore, 3 mg/ml); mouse anti-stargazin (Neu-
romab, 1:10 dilution) for co-labeling with rabbit anti-parvalbumin
(Novus Biologicals), and rabbit anti-GluA4 as above. Secondary
antibodies for immunofluorescence included: Alexa Fluor 488
F(ab′)2 fragment of goat anti-mouse IgG (H+L) 2 mg/ml and
Alexa Fluor 555 F(ab′)2 fragment of goat anti-rabbit IgG (H+L)
2 mg/ml; both at 1:1000 dilution. The fixed brain was embedded in
optimal cutting temperature (OCT) medium, mounted in a Cryo-
stat and cut in 30 μm coronal sections. Slides were thawed at room
temperature for 30 min, washed three times in PBS, blocked for 1 h
in a 10% bovine serum albumin (BSA) and 0.3% Triton blocking
solution in PBS, and then washed three times in blocking solu-
tion and incubated overnight at room temperature with primary
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antibodies. After washing in blocking solution three more times,
slides were incubated with secondary fluorescent antibodies, then
washed once in blocking solution and twice in PBS before mount-
ing with ProLong Antifade medium. Investigators were blinded to
the genotypes prior to visualization and analysis.

CONFOCAL MICROSCOPY
Images were acquired with a Zeiss LSM 510 confocal micro-
scope and analyzed with ImageJ software (NIH), using the same
settings for both WT and mutant mice. For compartmental densit-
ometric analysis of GluA4 subunit staining, somatosensory cortex
was identified along the suprathalamic convexity in coronal slices
where PV+/GluA4+ cells were identified at 63× magnification.
Z-stacks through the cell body of PV+ cortical cells were obtained
and then collapsed into two dimensions using the same trans-
parency settings for both genotypes. A 10 × 2 μm2 rectangular
region of interest was used to measure the pixel density of GluA4
staining along the axis of the longest dendrite, and a circular region
of interest with a diameter of 5 μm in the somatic region at the
base of this dendrite was similarly used to measure the pixel den-
sity in the soma. To define a reproducible and valid sample set for
dendritic expression analysis, only PV+ stained cells with a soma
greater than 10 μm in greatest diameter were accepted, and any cell
where the longest primary dendrite had a length less than 10 μm or
which branched within the first 10 μm was excluded from the anal-
ysis. The densitometric ratio between dendritic and somatic GluA4
was then determined for each PV+/GluA4+ neuron. Statistical dif-
ferences were tested using the unpaired Student’s t-test (Prism 5,
version 5.0d, GraphPad, CA, USA). Statistical significance was set
at p < 0.05.

ELECTROPHYSIOLOGY
Animals were sacrificed by cervical dislocation. Each brain was
quickly removed and placed in cold (4◦C) cutting saline (in mM:
NaCl, 60; KCl, 3; NaH2PO4, 1.25; NaHCO3, 28; CaCl2, 0.5; MgCl2,
7; L-ascorbic acid, 0.6; sucrose, 110; and alpha-D(+)-glucose, 5; pH
7.4) saturated with 95% O2 and 5% CO2 (carbogen). Two coronal
cuts were made to the whole brain in order to obtain a 0.4 cm block
of tissue [including coronal sections 160–360 (Sidman, 1971)]
containing parieto-temporal cortex. This freshly exposed surface
of the block was affixed to a vibratome stage with cyanoacry-
late glue, bathed with cold carbogenated cutting saline, and serial
350–400 μm brain slices were cut and placed in room temperature
carbogenated aCSF (in mM: NaCl, 124; KH2PO4, 2; MgSO4, 1.25;
CaCl2, 2; NaHCO3, 25; KCl, 2; and alpha-D(+)-glucose, 11; pH
7.4) for at least 60 min. Slices [coronal sections 280–320 (Sidman,
1971)] were then transferred to a humidified carbogen interface
recording chamber and continuously perfused (100 ml/h) with
carbogenated aCSF or 0 Mg2+ aCSF (normal aCSF, with MgSO4

omitted) maintained at 32◦C. Slices were allowed to equilibrate in
the chamber for 30 min before recordings were commenced.

Drugs were applied through a multiple 3-way valve perfu-
sion system. The flow rate through the system was held constant
(100 ml/h), and the volume of the bath was maintained at 0.5 ml
(in the interface chamber) and 1.2 ml (in the submerged cham-
ber) to ensure rapid drug equilibration. Drugs were removed by
switching to the drug-free aCSF solution.

Extracellular field recordings were made in brain slices using
standard techniques. The electrodes (thin-wall single-barrel
borosilicate glass 1.2/0.9 mm outside diameter/inside diameter
[OD/ID], World Precision Instruments) were pulled on a Sutter
Instruments Flaming/Brown (P-87) micropipette puller and filled
with 2 M NaCl. Electrode tips were broken to obtain resistances
of 5–10 M�. Electrodes were positioned in the neocortex (layer
V) with oblique fiber optic illumination. The extracellular sig-
nals were amplified 20×, and the low-pass Bessel filter (Corning
Instruments 901) was set to a corner frequency of 1.05 kHz and
visualized on a digital oscilloscope (Nicolet).

Amplitudes of 0 Mg2+-induced epileptiform discharges were
determined by taking the average of the peak amplitude of the
depolarizing envelope and the amplitude at the end of the afterdis-
charge. All values were presented as mean ± standard error of the
mean (SEM). For each parameter the statistical differences were
tested using the non-parametric Mann–Whitney U-test. Statistical
significance was set at p < 0.05.

RESULTS
SELECTIVE IN VIVO SEIZURE EXACERBATION WITH MK-801 IN
STARGAZER BUT NOT TOTTERING MICE
Within 15 min of intraperitoneal injection 0.5 mg/kg MK-801 dra-
matically prolonged spike-wave activity, increasing the duration of
spiking by 448% at 1 h post-injection compared to saline (Figure 1,
p < 0.0001). Electrographic spiking during these episodes slowed
from 6–9 to ∼3–4 Hz. A lower dose of 0.1 mg/kg MK-801 had
no effect. To determine whether exacerbation by NMDA blockade
was specific to the stargazer mutant, a second model of absence
epilepsy, tottering mice, which bear a mutation in Cacna1a volt-
age gated P/Q calcium channels, were injected with 0.5 mg/kg
MK-801. In contrast to stargazer, a single dose of MK-801 elim-
inated spike-wave seizures in tottering within 1 h post-injection,
which later returned to baseline levels over a 2 h period (Figure 1,
p < 0.0001 compared to stargazer 0.5 mg/kg).

STARGAZIN IS SELECTIVELY EXPRESSED IN PV+ CELLS IN
SOMATOSENSORY CORTEX
To explore the mechanism underlying paradoxical prolongation
of seizures following NMDA receptor blockade, we investigated
the cellular localization of stargazin in neocortex. Fluorescence
immunohistochemistry with specific antibodies for stargazin
labeled a subpopulation of neurons sparsely distributed through-
out all cortical layers. Co-labeling with a specific antibody for
parvalbumin (PV) revealed these were uniformly interneurons;
in these PV+ cells, stargazin is highly expressed in the dendritic
arbor and to a lesser degree, their soma (Figure 2, top). Of 71
PV+ interneurons identified through all layers of somatosensory
cortex over a region of 1.6 × 10−2 cubic millimeters in an adult
WT mouse, 68 (95.8%) expressed detectable stargazin immunore-
activity. There were no stargazin+ cells that were not also PV+.
No stargazin staining could be detected in pyramidal neuronal
processes in somatosensory cortex, unlike in the hippocampus,
where staining in the apical dendrites of CA1 pyramidal neu-
rons could be observed (Figure 3, top). In contrast, dendrites
of neocortical PV+ cells in stargazer show no detectable stargazin
staining, and only faint staining in the soma (Figure 2, bottom).
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FIGURE 1 | (A) Exacerbation of spontaneous spike-wave seizures following
MK-801 in stargazer mice. Compared to ip saline, the total seizure
duration is elevated by up to 448% 1 h post-injection with 0.5 mg/kg
in stargazer mutants (*p < 0.05, **p < 0.0001). At the same dose,
seizures are entirely suppressed in tottering mice (†p < 0.01, ††p < 0.0001

compared to stargazer 0.5 mg/kg). A dose of 0.1 mg/kg was ineffective
in stargazer mutant mice. Baseline seizure duration was obtained
by summing burst durations over 30 min of acclimatized EEG
recording. (B) Representative EEG traces at baseline and 1 h
post-injection.

FIGURE 2 | Stargazin expression is restricted to PV+ interneurons in WT mouse somatosensory cortex (upper row). Somatodendritic stargazin
immunoreactivity is lost in PV+ interneurons in stargazer mouse (lower row). Co-labeling of stargazin and parvalbumin antibodies shown in layer 2/3 at 63×
magnification (scale = 10 μm).

To corroborate the PV+ co-localization, we also evaluated the
cellular expression of stargazin using a floxed PV-Cre/Ai9 mouse
expressing the red fluorescent protein tdTomato (TdT) in PV+
cells. In somatosensory cortex, 108 of 125 (86.4%) PV+ interneu-
rons counted over a region of 1.9 × 10−2 cubic millimeters were
immunopositive for stargazin. Again, no stargazin+ cells were
detected that were not also TdT+. We noted six TdT+ cells in
layers 5-6 which had a pyramidal morphology, as has been pre-
viously recognized in this PV-Cre line (Tanahira et al., 2009).
None of these TdT+ pyramidal-shaped cells expressed stargazin; if
excluded from the total, 108 of 119 (90.8%) TdT+ cells expressed
stargazin.

To evaluate the extent of stargazin antibody specificity for PV+
interneurons throughout the cortex, other cortical regions were
examined in an adult WT mouse expressing TdT in PV+ cells,
sampling at least 6.4 × 10−3cubic millimeters for each area. These
regions showed somewhat greater heterogeneity of stargazin co-
expression with parvalbumin. In retrosplenial cortex, 40 of 71
(56%) TdT-labeled cells expressed stargazin in soma and den-
drites. Similarly, 42 of 76 (55%) in entorhinal cortex; 16 of 46

(35%) in frontal cortex; and 20 of 59 (34%) in occipital cortex
expressed somato-dendritic stargazin in TdT+ cells. All of the 226
stargazin+ cells sampled in somatosensory, entorhinal, frontal,
and occipital cortex were TdT+ and hence PV+ (Figure 3, mid-
dle and bottom). In contrast, in CA1, piriform cortex, perirhinal
cortex, and insular cortex, stargazin expression was found in both
TdT-labeled and TdT-unlabeled cells (Figure 3, top).

STARGAZIN IS LINKED TO GluA4 EXPRESSION IN CORTICAL
INTERNEURONS AND LOSS IMPAIRS TRAFFICKING
Since PV+ interneurons express the calcium-permeable AMPA
receptor subunit GluA4 (Chang et al., 2010), we next investigated
the cellular co-localization of stargazin and GluA4 proteins in
somatosensory cortex. Stargazin expression was associated exclu-
sively with GluA4 expression in the soma and proximal dendrites
of PV+ cells in all layers (Figure 4). Sampling 2.5×10−2 cubic mil-
limeters of somatosensory cortex in an adult WT mouse revealed
no stargazin+ cells (0/96) that were not also GluA4+. Since loss of
stargazin protein reduces membrane insertion and stabilization of
AMPA receptors, we searched for evidence that GluA4 trafficking
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FIGURE 3 | Regional variation in stargazin immunoreactivity. In the hippocampal CA1 region, both PV+ interneurons and pyramidal neurons (arrow) can
express stargazin, whereas in frontal and occipital cortex, as in somatosensory regions, stargazin expression is limited to PV+/TdT+ interneurons
(scale = 10 μm).

FIGURE 4 | Stargazin expression in PV+ interneurons, shown here in layers 5/6 of WT somatosensory cortex, is somatodendritic and associated with

dendritic GluA4 expression (scale = 20 μm).

was also impaired in stargazer PV+ cortical interneurons. PV+
cells that expressed GluA4 were readily identified in stargazer
somatosensory cortex, with clear staining of the soma; however,
dendritic processes displayed visibly decreased staining for GluA4
in mutant PV+ cells compared to WT (Figure 5A). A total of 18
PV+ neurons from 4 stg/stg mice and 15 PV+ neurons from 3 +/+
mice met all of the inclusion and exclusion criteria for dendritic
densitometric analysis. In PV+ interneurons, there was a signifi-
cant, near twofold decrease in the dendrite to soma ratio of GluA4
staining in mutant compared to WT controls (52%, p < 0.001,
Figure 5B).

NMDA RECEPTOR ANTAGONISTS CPP AND MK-801 AUGMENT
STARGAZER NEOCORTEX EXCITABILITY IN VITRO
In order to determine whether intracortical networks were suf-
ficient to express the proepileptic effect of NMDA receptor
antagonists, isolated cortical slices from WT and stg/stg mice were
perfused with 0 Mg2+ aCSF to generate synchronous epileptiform

discharges, which are due to NMDA receptor activation (Traub
et al., 1994). Extracellular field recordings of layer V neurons
revealed no significant differences between the two genotypes in
the frequency of extracellularly recorded bursts before drug expo-
sure. Application of the competitive NMDA receptor antagonist
CPP (10 μM) nearly completely abolished the 0 Mg2+ epilep-
tiform discharges in WT slices (number of discharges/200 s, 0
Mg2+: 7.7 ± 2.4, n = 4; 10 μM CPP: 0.3 ± 0.3, n = 4, p < 0.001,
Figures 6A,C). However, application of 10 μM CPP elevated
network excitability in the neocortex of stargazer mice by 308%
(number of discharges/200 s, 0 Mg2+: 6.0 ± 0.4, n = 4; 10 μM
CPP: 18.5 ± 0.3, n = 4, p < 0.001, Figures 6B,C). In both geno-
types, there was a nearly equivalent and significant decrease in
mean duration of burst discharges by 93 and 87% in WT and
stargazer mice, respectively (duration of discharges, WT: 0 Mg2+:
3.8 ± 0.8 s, n = 4; 10 μM CPP: 0.3 ± 0.3 s, n = 4, p < 0.001;
stargazer: 0 Mg2+: 5.2 ± 0.3 s, n = 4; 10 μM CPP: 0.7 ± 0.3 s,
n = 4, p < 0.001, Figure 6D).
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FIGURE 5 | (A) Cortical PV+ interneurons in stargazer mutant mice show
clear evidence of GluA4 mistrafficking in dendrites. Strong labeling in WT
dendrites (arrows) is consistently diminished in stargazer interneurons. A
relative decrease in the density of dendritic GluA4 immunoreactivity can be
demonstrated by comparison of the dendrite:soma immunostaining ratio in
stargazer interneurons compared to WT interneurons (scale = 10 μm).
(B) Quantification of mean dendrite:soma ratio of GluA4 staining reveals a
significant decrease in mutant PV+ interneurons (mean ratio of 0.753 for
+/+, n = 15, vs 0.396 for stg/stg, n = 18, *p < 0.001).

Likewise, the non-competitive NMDA receptor antagonist MK-
801 was perfused at varying concentrations on WT neocortical
slices, where it nearly abolished 0 Mg2+-induced discharge activ-
ity at higher doses (Figure 7A). Bath application of MK-801 in 0
Mg2+ aCSF in WT slices decreased the mean discharge frequency
by 45% at 1 μM, 75% at 3 μM, and 88% at 10 μM (number of dis-
charges/200 s, 0 Mg2+: 10.2 ± 1.4, n = 4; 1 μM MK-801: 5.7 ± 0.8,
n = 4, p = 0.0273; 3 μM MK-801: 2.5 ± 0.5, n = 4, p = 0.0019;
10 μM MK-801: 1.3 ± 0.3, n = 4, p = 0.0007, Figure 7C). The dis-
charge frequency of the 0 Mg2+-induced bursts never increased at
any point during application of MK-801. In addition, application

of MK-801 to WT slices decreased the mean discharge duration by
44% at 1 μM,66% at 3 μM,and 89% at 10 μM (0 Mg2+, 4.5 ± 0.6 s,
n = 4; 1 μM MK-801, 2.5 ± 1.1 s, n = 4, p > 0.05; 3 μM MK-801:
1.5 ± 0.3 s, n = 4, p = 0.0045; 10 μM MK-801: 0.5 ± 0.1 s, n = 4,
p = 0.0005, Figure 7D). In contrast, application of 1, 3, and 10 μM
MK-801 to stargazer slices did not block 0 Mg2+-induced bursting
(Figure 7B), but rather, similar to the effects of CPP, increased the
mean frequency of network discharges by 331% at 1 μM, 405% at
3 μM, and 451% at 10 μM (number of discharges/200 s, 0 Mg2+:
6.2 ± 1.4, n = 4; 1 μM MK-801: 20.4 ± 3.9, n = 4, p = 0.0139; 3 μM
MK-801: 24.9 ± 4.3, n = 4, p = 0.0061; 10 μM MK-801: 27.8 ± 5.8,
n = 4, p = 0.0108, Figure 7C). MK-801 decreased the mean dura-
tion of the discharges by 32% at 1 μM, 68% at 3 μM, and 85% at
10 μM (0 Mg2+, 5.4 ± 0.9 s, n = 4; 1 μM MK-801, 3.7 ± 1.1 s,
n = 4, p > 0.05; 3 μM MK-801: 1.8 ± 1.3 s, n = 4, p = 0.0156;
10 μM MK-801: 0.8 ± 0.5 s, n = 4, p = 0.0023, Figure 7D).
These data demonstrate that blockade of NMDA receptors with
both competitive and non-competitive antagonists paradoxically
increases neocortical excitability in stargazer cortex without the
participation of subcortical circuitry.

NMDA RECEPTOR-DEPENDENT CORTICAL HYPEREXCITABILITY IS
MEDIATED BY INHIBITORY INTERNEURONS
In order to examine the hypothesis that NMDA receptor antag-
onism mediates its paradoxical excitatory effect in stargazer neo-
cortex through inhibitory interneurons, we blocked GABAergic
transmission within the neocortical circuit with GABA recep-
tor antagonists and re-examined the effects of CPP on the 0
Mg2+-induced discharges in the fully disinhibited circuit. After
co-application of 50 μM PTX, a GABAA receptor antagonist, and
100 μM CGP35348, a GABAB receptor antagonist, synchronous
epileptiform discharges elicited in 0 Mg2+ aCSF increased in

FIGURE 6 | Stargazer mutant paradoxical cortical excitability defect

is maintained in vitro. (A) The frequency of spontaneous network
discharges in WT cortical slices bathed in Mg2+-free solution (upper trace)
is decreased in 10 μM CPP (lower trace). (B) In contrast, discharge activity
in stargazer cortical networks is increased following CPP exposure.

(C) Group data reveal mean discharge frequency in WT is significantly
decreased by 10 μM CPP (n = 4) and increased in stargazer slices
(n = 4), *p < 0.001. (D) No significant difference in mean discharge
duration between WT and stargazer mice before or after administration
of CPP.
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FIGURE 7 | Non-competitive NMDA receptor blockade with MK-801 also

provokes paradoxical cortical network hyperexcitability in vitro. (A) In 0
Mg2+, discharges in WT cortex show a dose-dependent reduction in duration
and frequency with application of MK-801. (B) In contrast, spontaneous 0
Mg2+-induced network bursting in stargazer cortical slices accelerates with

increasing doses of MK-801. (C) Graphical representation of divergent
response to increasing doses of MK-801 in WT and stargazer mice
(*p < 0.05, **p < 0.005). In (D), there is a coordinate reduction in discharge
duration with no significant difference between groups at each incremental
concentration of MK-801.

frequency in both WT and stargazer mice (number of dis-
charges/200 s in WT, 0 Mg2+: 8.2 ± 0.7, n = 4; 50 μM PTX and
100 μM CGP35348: 15.7 ± 2.9, n = 4, p = 0.0450; in stargazer,
0 Mg2+: 7.0 ± 0.8, n = 4; 50 μM PTX and 100 μM CGP35348:
16.4 ± 2.9, n = 4, p = 0.0392, Figure 8). However, perfusing 10 μM
CPP in the presence of the two antagonists significantly reduced
epileptiform activity, but to a similar extent in both genotypes
(number of discharges/200 s, WT: 1.8 ± 0.4, n = 4; stargazer:
1.5 ± 0.3, n = 4, p < 0.001, Figure 8). These findings support
the hypothesis that the paradoxical response to NMDA receptor
antagonism in stargazer mice is mediated by cortical GABAergic
interneurons.

DISCUSSION
Our findings pinpoint a likely synaptic mechanism for para-
doxical spike-wave seizure exacerbation due to NMDA receptor
antagonism, showing that it is present in stargazer, but not
tottering mutant mice, and thus depends upon an interneuron-
specific AMPA receptor dendritic trafficking abnormality. We
show that expression of stargazin in adult mouse somatosensory
cortex is confined to a singular population of fast-spiking, PV+
interneurons. These cells are primarily responsible for fast synap-
tic inhibition of neurons in both superficial and deep pyramidal
cell layers (DeFelipe, 1997). This specificity was most pronounced
in the somatosensory cortex, a region proposed to possess a low
threshold for involvement in aberrant thalamocortical oscillations

in rodent models (Polack et al., 2007). In stargazer mice, we iden-
tified a concomitant deficit in dendritic AMPA receptor trafficking
in these interneurons. In vitro cortical network hyperexcitability, as
evidenced by epileptiform bursting in a magnesium-free environ-
ment, was enhanced by NMDA receptor antagonists in stargazer
somatosensory cortex but reduced in WT mice. The paradoxical
excitability difference between epileptic and non-epileptic cortex
in response to CPP was no longer evident when GABA recep-
tors were completely blocked, indicating that hyperexcitability
induced by NMDA receptor antagonism was mediated through
interneurons.

PARADOXICAL SEIZURE EXACERBATION WITH MK-801 IS SPECIFIC TO
STARGAZER MICE
In vivo administration of the NMDA receptor antagonist MK-801
markedly exacerbated seizures in stargazer mice but had an oppo-
site effect in tottering mice, indicating that the paradoxical seizure
aggravation is gene-linked, rather than a non-specific modula-
tion of spike-wave seizures due to a confounding variable such
as sedation. The excitatory effect of MK-801 was similar to that
of CPP in stargazer mice (Nahm and Noebels, 1998), confirming
that both competitive (CPP) and non-competitive NMDA (MK-
801) receptor antagonism, rather than an off target effect of either
drug, mediated the paradoxical response. MK-801 has also been
shown to reduce spike-wave seizures in other rodent models of
epilepsy, including the kindling model (Lojková et al., 2006) as well
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FIGURE 8 | Paradoxical exacerbation in stargazer cortex requires

GABAergic synaptic transmission. (A,B) Spontaneous 0 Mg2+-
induced network discharges in WT and stargazer cortex (upper traces)
are accelerated by combined GABAA and GABAB receptor blockade
(middle traces); however, in this disinhibited condition, application of

10 μM CPP strongly and equally attenuates network bursting in
both genotypes (lower traces). (C) Exacerbation of epileptiform
discharges by CPP is not evident in WT or stargazer slices with
complete GABAergic blockade (n = 4 per group, *p < 0.05,
**p < 0.001).

as the WAG/Rij (Wistar Albino Glaxo from Rijswijk; Peeters et al.,
1989; Citraro et al., 2006) and Genetic Absence Epilepsy Rats from
Strasbourg (GAERS) models of absence epilepsy (Koerner et al.,
1996), further supporting the specific association of the paradox-
ical response to NMDA receptor antagonism with the stargazer
trafficking defect. In a prior study of stargazer mice, CPP exacer-
bation of spike wave activity was also clearly observed, although
no significant difference in total seizure duration over the time
period measured was reported (Aizawa et al., 1997). In that study,
MK-801 at a dose of 0.5 mg/kg did not stimulate discharge activity,
but did produce an “irregular pattern” of EEG epileptiform acti-
vation that could represent a prolonged period of absence status
epilepticus as we have occasionally observed.

STARGAZIN EXPRESSION IS REGIONAL AND LIMITED TO FAST-SPIKING
INTERNEURONS IN SOMATOSENSORY CORTEX
The specificity of stargazin expression in PV+ interneurons of
the somatosensory cortex initially seemed at variance with previ-
ous findings that its phosphorylation is dependent on CaMKII
(calcium/calmodulin-dependent protein kinase II), an enzyme
which is restricted to excitatory neurons (Tomita et al., 2005;
Tsui and Malenka, 2006; Opazo et al., 2010). However, these
studies investigated stargazin function in the hippocampus, not
in the cortex. The lack of stargazin expression in excitatory
cells within somatosensory cortex, however, is consistent with
the finding that phosphorylation of stargazin is dependent on

CaMKII in dissociated hippocampal, but not cortical, cultured
neurons (Inamura et al., 2006). In addition, a recent study
found that stargazin is specifically expressed in interneurons
in primary dissociated cortical cell cultures (Tao et al., 2013).
Finally, the relative specificity for stargazin in inhibitory neu-
rons rather than principal cells is a pattern that recurs in
the cerebellum (Shevtsova and Leitch, 2012) and the thalamus
(Menuz and Nicoll, 2008).

COMPARTMENTAL AMPA TRAFFICKING DEFECT IN STARGAZER
INTERNEURONS
In the absence of functional stargazin, GluA4 trafficking may still
be partially compensated by TARP redundancy mediated by other
co-expressed gamma subunits (Menuz et al., 2008) as well as the
recently described “TARPless” expression of calcium-permeable
surface AMPA subunits at some synapses (Bats et al., 2012). Sev-
eral other candidate interacting molecules for AMPAR trafficking
have been proposed (Jackson and Nicoll, 2011). However, the rel-
atively decreased dendrite to soma ratio of GluA4 expression in
stargazer PV+ interneurons indicates that these potential compen-
satory mechanisms are incomplete and therefore define a specific
vulnerability in this cellular subgroup. When specific antibodies
for remaining gamma subunit family members become available,
the exact cellular TARP expression profiles may clarify the cellular
populations at risk for AMPA receptor impairment due to Cacng
subunit mutations.
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The exclusive association of stargazin with GluA4+ neurons in
the neocortex is phenotypically consistent with the recent find-
ing that the Gria4 knockout mouse, which is devoid of GluA4
expression, also displays similar spike-wave seizures (Beyer et al.,
2008; Paz et al., 2011). In both stargazer and Gria4 knockout mice,
there is evidence for thalamic disinhibition due to a specific deficit
of synaptic excitation at fast-spiking PV+ inhibitory neurons in
the RTN (Barad et al., 2012). We therefore posit the presence of a
similar functional defect of intracortical inhibition in this model
due to a parallel deficit in the ability to excite fast-spiking PV+
interneurons in the somatosensory cortex.

DOES DEFICIENT DENDRITIC GLUA4 TRAFFICKING IMPAIR SYNAPTIC
ACTIVATION OF INTERNEURONS IN STARGAZER CORTEX?
The degree to which abnormal dendritic GluA4 distribution alters
synaptic activation of interneurons and hence the efficiency of
GABA release has not been examined in this study, and functional
recordings from PV+ cells activated by feedforward excitatory
synapses will be required to determine whether AMPA receptor
mistrafficking reduces the strength of this input. One impediment
to studying this lies in the coincidental proximity of the stargazin
locus on chromosome 15 to the parvalbumin locus, separated by
only 0.01 cM. This complicates the ability to identify these cells for
physiological study in stargazer cortex using a simple genetic cross
with parvalbumin promoter-driven reporters. Future studies using
defined presynaptic glutamate activation and post hoc immuno-
chemical identification of PV+ cells will be required to support
this hypothesis. However, it is worth noting that the impairment
of synaptic excitatory activation in hippocampal neurons depleted
of the homologous TARP gamma-8 subunit, which constitutes the
majority of TARP-mediated AMPA receptor surface expression in
these cells, was small (Rouach et al., 2005).

INTERNEURON-DEPENDENT NETWORK HYPEREXCITABILITY DUE TO
NMDA RECEPTOR ANTAGONISM IN STARGAZER MICE
Since we observed a reduction of dendritic AMPA receptor den-
sity in parvalbumin+ interneurons that are critical for feedforward
inhibition, and because stargazin does not directly traffic NMDA
receptors (Chen et al., 2000), we reasoned that the synaptic acti-
vation of these inhibitory neurons would largely depend on
NMDA receptors. Enhanced NMDA receptor-mediated excita-
tion of inhibitory neurons of the RTN has been reported in
stargazer mice (Lacey et al., 2012), but the cortical node of the
thalamocortical loop has not previously been investigated. This
hypothesis was tested in a magnesium-free environment, which is
a useful medium for evaluating the effect of anti-epileptic drugs
(Aram and Lodge, 1988). Magnesium normally blocks the acti-
vation of NMDA receptors, and its omission from the in vitro
bathing solution results in spontaneous burst discharges (Traub
et al., 1994). Although 0 Mg2+-induced discharges do not have
the same pathophysiology as in vivo spike and wave cortical

discharges, they provide a reliable functional measure of cor-
tical circuit excitability. Specifically, these discharges arise as a
consequence of saturation of fast inhibition, which can be over-
come with incremental NMDA receptor antagonism (Benardo,
1993). In solutions containing 0 Mg2+ and CPP, fast inhibi-
tion relies on AMPA receptor-mediated activation of interneurons
(Ling and Benardo, 1995), which we predicted to be compro-
mised in stargazer mice. This effect is consistent with our results
showing a reduced spontaneous burst frequency with CPP and
increasing doses of MK-801 in WT slices in a magnesium-free
environment. Accordingly, both competitive and non-competitive
blockade of NMDA receptors caused a paradoxical increase in
discharges in stargazer cortex, consistent with a compromise of
fast inhibition. The significant paradoxical increase in discharge
rate supports the hypothesis that when AMPA receptor-mediated
transmission is impaired, NMDA receptor antagonism in 0 Mg2+
not only fails to suppress seizure activity, but rather causes a
further, dose-dependent reduction in inhibition. After pharmaco-
logically removing GABAergic inhibitory inputs of the stargazer
network with picrotoxin and CGP35348, CPP application no
longer produced a paradoxical excitability increase, indicating that
the excitatory effect of CPP in stargazer mice is indeed mediated
through inhibitory neurons within the isolated cortical network.
Furthermore, GABA receptor antagonists applied independently
of CPP significantly increased the frequency of the 0 Mg2+ dis-
charges in neocortex of both stargazer and WT mice, which itself
demonstrates that disinhibition can increase the frequency of 0
Mg2+ discharges in the cortex and is consistent with the interpre-
tation that CPP mediates its excitation in the mutant by aberrant
disinhibition.

Our findings in the isolated neocortex point to potential
regional differences in the role of NMDA receptors and net-
work oscillations at various nodes of the thalamocortical loop.
Interestingly, in thalamic slices of stargazer mice bathed in
0.5 mM Mg2+, the application of 50 uM APV (DL-2-amino-5-
phosphonovalerate), a competitive NMDA receptor antagonist
like CPP, caused a significant decrease in evoked oscillations in
thalamic nuclei, similar to WT slices (Lacey et al., 2012). Thus,
the paradoxical effect of seizure exacerbation observed in vivo
may principally reside in the low threshold initiation zones in
the somatosensory cortex. These data therefore support a more
general hypothesis that a reduction in the strength of cortical
inhibitory interneurons provides an attractive candidate mech-
anism for paradoxical seizure exacerbation by anti-epileptic drugs
in some patients with absence epilepsy.
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